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Probabilistic modeling

● There are a lot of different naming conventions.

○ Seems to be the case a lot in machine learning

○ and outside machine learning as well…

● I will present some definitions using nomenclature that I think is 
intuitive, but also not far off from what other people use.

What is a probabilistic model?



Probabilistic modeling

A probabilistic model is a collection of random variables.

The random variables can be divided into two categories:

1. the observations (data)
2. the hidden variables

Intuitively, a probabilistic model is a description of how your observations 
were generated.

It can be a hypothesis of the mechanism that underlies your data.



Probabilistic modeling

For more intuition, imagine we have a system of equations.

x + 2y = 4

If x is 0, what is y?

If x ~ N(0,1) , what is y?

You can think of a probabilistic model as a system where the 
variables can be random.



Probabilistic modeling

A probabilistic model is a collection of random variables: {x,θ}

The random variables can be divided into two categories:

1. x: the observations (data)
2. θ: the hidden variables

the prior distribution is p(θ)

the likelihood is p(x|θ)

the posterior distribution is p(θ|x)

the joint distribution is p(x,θ)



So then, what’s a graphical model?

A graphical model is a graphical representation of a probabilistic model.

There are different ways to represent probabilistic models graphically:

● Bayesian networks
● Factor graphs
● Markov random fields

When people say “graphical model”, they usually mean

graph + probabilistic model.

Common convention: observations are depicted as shaded nodes, 
whereas hidden variables are unshaded.



Example

probabilistic model

w ~ Uniform(0,1)

x ~ Bernoulli(w)

y ~ Bernoulli(w)

z = x + y

You can think of x and y as 
two coin flips, and w 
represents the fairness of 
the coin.
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Example

It is easy to factorize the 
joint distribution by looking 
at the graph structure:

p(w,x,y,z) =

p(w)p(x|w)p(y|w)p(z|x,y)
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Example

What is p(x|w)?

p{x = 0|w} = 1 - w and p{x = 1|w} = w

p{y = 0|w} = 1 - w and p{y = 1|w} = w

What is p(z|x,y,w) = p(z|x,y)?

p(z|x,y) = δ{z = x + y}

What if we want to get rid of x and y? We can marginalize out 
x and y.

Lets compute p(z|w).

 w ~ Uniform(0,1)

 x ~ Bernoulli(w)

 y ~ Bernoulli(w)

 z = x + y



Example

 w ~ Uniform(0,1)

 x ~ Bernoulli(w)

 y ~ Bernoulli(w)

 z = x + y



Example

Repeating the  process for the other possible values of z:

p{z = 0|w} = (1 - w)2

p{z = 1|w} = 2w(1 - w)

p{z = 2|w} = w2

This is a new model:

w ~ Uniform(0,1)

z ~ the above discrete distribution

The reasoning and intuition behind variable elimination and 
belief propagation is the same.

 w ~ Uniform(0,1)

 x ~ Bernoulli(w)

 y ~ Bernoulli(w)

 z = x + y
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What is a good probabilistic model for this data?

The points look like they came from four normal distributions.
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For simplicity, we fixed the covariances to the identity. If desired, you could 
make them unknown variables and use, for instance, an inverse-Wishart 
prior (see last week’s recitation resources).
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We can re-write this model:
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What is a good model for this data?

We no longer have knowledge of the class assignments z.
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Let’s try to do inference using MAP in this model. Write the 
log-posterior: log p(μ
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Expectation maximization (EM)

● If we knew either μ or z, then MLE/MAP would be easier.

● EM is an inference algorithm for computing MLE or MAP.

● Given any probabilistic model with observations x and hidden 
variables θ, we first subdivide the hidden variables θ into two classes: z 
and μ.

● Start with a guess for μ.

E step. compute the expectation using our current estimate of μ:

q(μ) = E
p(z|x,μ*)

[log p(μ,z|x)]
M step. update the estimate of μ* by maximizing q(μ):

μ* = arg max q(μ)

Repeat until convergence.



Expectation maximization

● We need to compute p(z|x,μ) to do the E step.
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Expectation maximization

● We can use p(z|x,μ) to compute q.
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Expectation maximization

● Now, for the M step, we just maximize q.
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