10-701 Recitation:

Probabilistic and graphical models

Abulhair Saparov



Probabilistic modeling

« There are alot of different naming conventions.
- Seems to be the case a lot in machine learning
- and outside machine learning as well...

« | will present some definitions using nomenclature that | think is
intuitive, but also not far off from what other people use.

What is a probabilistic model?



Probabilistic modeling

A probabilistic model is a collection of random variables.
The random variables can be divided into two categories:

1. the observations (data)
2. the hidden variables

Intuitively, a probabilistic model is a description of how your observations
were generated.

It can be a hypothesis of the mechanism that underlies your data.



Probabilistic modeling
For more intuition, imagine we have a system of equations.
X+2y=4

If xis O, what is y?
If X ~N0,1), whatisy?

You can think of a probabilistic model as a system where the
variables can be random.



Probabilistic modeling

A probabilistic model is a collection of random variables: {x,08}
The random variables can be divided into two categories:

1. x:the observations (data)
2. 0:the hidden variables

the prior distribution is p(0)
the likelihood is p(x|0)
the posterior distribution is p(0]x)
the joint distribution is p(x,0)



So then, what's a graphical model?

A graphical model is a graphical representation of a probabilistic model.

There are different ways to represent probabilistic models graphically:

e Bayesian networks
e Factor graphs
e Markov random fields

When people say “graphical model”, they usually mean
graph + probabilistic model.

Common convention: observations are depicted as shaded nodes,
whereas hidden variables are unshaded.



Example

probabilistic model

w ~ Uniform(0,1)

x ~ Bernoulli(w)

y ~ Bernoulli(w)
Z=X+Yy

You can think of x and y as
two coin flips, and w
represents the fairness of
the coin.

graphical model



Example

It is easy to factorize the
joint distribution by looking
at the graph structure:

p(w,x,y,z) =
p(w)p(x|w)p(y|w)p(z|x,y)

graphical model



w ~ Uniform(0,1)
x ~ Bernoulli(w)
)

Example y ~ Bernoulli(w

Z=X+Yy

What is p(x|w)?
pix=0|w}=1-wandp{x=1|w}=w
ply =0lw} = 1-wand pfy = 1jw}=w

What is p(z|x,y,w) = p(z|x,y)?
p(z[x,y) =d{z=x+y}

What if we want to get rid of x and y? We can marginalize out
x andy.

Lets compute p(z|w).



w ~ Uniform(0,1)
x ~ Bernoulli(w

)
Example y ~ Bernoulli(w)

p{z=0lw} = ) p{z =0z, wip(z|w),

re{0,1}

= Y S pfe = Oy whpefw)plyle)

re{0,1} ye{0,1}

= > > o =0,y=0}px|wp(ylw),

re{0,1} ye{0,1}
= p{z = 0lw}p{y = Olw},
= (1 —w)*.



w ~ Uniform(0,1)
x ~ Bernoulli(w)
)

Example y ~ Bernoulli(w

Z=X+Yy

Repeating the process for the other possible values of z:
p{z=0[w} = (1-w)?
p{z=1|w}=2w(1-w)
p{z = 2|w}=w?

This is a new model:
w ~ Uniform(0,1)
z ~ the above discrete distribution

The reasoning and intuition behind variable elimination and
belief propagation is the same.
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What is a good probabilistic model for this data?
The points look like they came from four normal distributions.

m,...,ukwN(O,mI), @ @ @
ajgl),...,xg)w./\/'(ubf), \@

$§2)>--.,x§12)~N(u2,1), \@ \@
DY W

and so on ... for k clusters
For simplicity, we fixed the covariances to the identity. If desired, you could
make them unknown variables and use, for instance, an inverse-Wishart
prior (see last week’s recitation resources).




We can re-write this model:

Hiy oy Mk NN(O,,lOI).},

ATRER
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What is a good model for this data?
We no longer have knowledge of the class assignments z.

M1y -5 HE NN(O? 10[)9
z; = Categorical(m),
z; ~N(u,,,I)iid. i=1,..., kn.




His - Mk NN(O7 10])7
z; = Categorical(7),
i ~ Ny, I)iid. i=1,... kn.

Let’s try to do inference using MAP in this model. Write the
log-posterior: [0g Pk .. b2 w2y [XppeeeX, ).

log p(p, z|x) = log p(x|p, z) + log p(p) +log p(z) + C,

Ln k kn
_ Z log (il g, z;) + Y log ply;) + Z log p(z),
. j=1 )
~ 9 Z = prz;) (@i — ) Z Hj Ky Z log 7



Expectation maximization (EM)

e |f we knew either p or z, then MLE/MAP would be easier.
e EMisaninference algorithm for computing MLE or MAP.

e Given any probabilistic model with observations x and hidden
variables 0, we first subdivide the hidden variables 0 into two classes: z

and p.
e Start with aguess for .
E step. compute the expectation using our current estimate of p:
aw) =&, log p(p,z[x)]
M step. update the estimate of u* by maximizing g(p):
u* = arg max q(p)
Repeat until convergence.



Expectation maximization

e We need to compute p(z|x,u) to do the E step.

p(zlz, w)p(x, 1) = p(x, z, 1),
p(zlz, u) = p(x|z, w)p(p)p(z)/p(x, 1),
log p(z|x, p) = log p(x|z, u) + log p(2) + C,

log plzi = jlo, py = logp(zi|z = j, p;) +logplz = j} + C,
1
= —5(%’ — ) (@i — p5) +log mj + C,
. 1
pizi = jl@T, p} o< mjexp {—5(% — Mj)T(sz' — Mj)} :



Expectation maximization

e We canuse p(z|x,un) to compute q.

q(p’) — Ep(z|w,u*) [logp(u‘a Z‘SL‘)]?

— p(z|af:,p,*) [lng(.’E“,L, Z)] + logp(u’) + Oa
kn

= Z Ey (2|2 p) [log p(xi| p, 2;)] + log p(p) + C.

1=1

kn
1
= =5 > By (@ — 112) T (@5 = piz,)] + log () + C,
1=1

kn k
1 . %
= =0 33wl =l — ) — ) + log p(u) + C.

i=1 j=1

kn
1 L 1
a(1;) = =3 > plzi = jla, w M — py) (@ — py) — %u}rw + C.
1=1



Expectation maximization

e Now, for the M step, we just maximize q.

i = argmaxq(p).

Hj
0q wn 1
_— = i — ) mj * i — S 2
o ;:1 PLai = Jl®, (i = p5) = oMy

kn kn
. i} L] . ¥
0= E plzi = jla, u'to; — ) (10+2 p{zijiﬂ,ﬂ}),

kn 1k
py = (10 + > pla=jle,p }) > plzi = jlz, pw}a,
1=1

1=1



12

10

—2



10

12



10

12



12

10

—2



12

10

—2



12

10

—2



12

10

—2



12

10

—2



12

10

—2



12

10

—2



12

10

—2



12

10

—2



12

10

—2



12

10

—2



12

10

—2



12

10

—2



12

10

—2



12

10

—2



10

12



12

10

—2



12

10

—2



12

10

—2



12

10

—2



12

10

—2



