

WHAT IS NLP?

- Build algorithms that work with natural language.
- How do these algorithms work?
- Why do they sometimes work well?
- Why do they sometimes not work?
- We will take a research perspective.

Machine translation

Input: The quick brown fox jumped over the lazy dog.

Output: 素早い茶色のキツネは怠け者の犬を飛び越えました。

Machine translation

[source: Reddit u/yep_fate_eos]

- Machine translation
- Named entity recognition

Input: Honda

Output: company

- Machine translation
- Named entity recognition

Input: Noam Chomsky

Output: person

- Machine translation
- Named entity recognition

Input: Apple

Output: company

- Machine translation
- Named entity recognition

Input: apple

Output: not named entity

- Machine translation
- Named entity recognition
- Coreference resolution

Input: The souvenir didn't fit into the suitcase because it was too big.

Output: "it" = "souvenir"

- Machine translation
- Named entity recognition
- Coreference resolution

Input: The souvenir didn't fit into the suitcase because it was too small.

Output: "it" = "suitcase"

- Machine translation
- Named entity recognition
- Coreference resolution
- Question answering

Input: You are in the middle of a circular lake. You can swim at 1 m/s. A dog is at the edge of the lake. The dog can run on land at x m/s, but cannot swim, and you can run faster. What is the highest value for x such that you can still escape?

Output: 4.6033

Reasoning is needed to solve this task.

- Machine translation
- Named entity recognition
- Coreference resolution
- Question answering
- Image description

Input:

Output: This image features a framed painting of Purdue University. The artwork is displayed on a white marble wall...

Multi-modal NLP includes the study of tasks involving other modalities, such as vision, sound, speech, motion, etc.

NLP AS MACHINE LEARNING

- It is infeasible to write a function to solve these tasks directly.
- So we rely on machine learning to learn this function from data.
 - We use a dataset containing many input-output examples.
 - We train a machine learning model predict the output from the input.
- The specific choice of model and training regimen is the "method."

LANGUAGE IS AMBIGUOUS

"Teachers strike idle kids."

- Interpretation 1: Teachers physically strike kids who are idle.
- Interpretation 2: The teacher's strike is causing the kids to be idle.

LANGUAGE IS AMBIGUOUS

"Time flies like an arrow."

- Interpretation 1: Time moves forward similar to how an arrow flies.
- Interpretation 2: This is a command, telling you to measure the speed of the flies similar to how you would measure the speed of an arrow.
- Interpretation 3: Also a command, telling you to measure the speed of the flies, but in a manner similar to how arrows would measure the speed of the flies.
- Interpretation 4: There are things called "time flies" and they like an arrow.
- We will cover probabilistic methods that handle ambiguity.

Language modeling is a task in NLP.

Input: The quick brown fox jumped over the lazy

Output: dog

• These days, "language models" almost exclusively refers to large-scale transformer models that are trained on the language model task.

- It seems as though large language models (LLMs) have "taken over" NLP.
 - And we will discuss how they work.
- Language modeling task has a nice property:
 - Many (all?) other NLP tasks can be written as a language modeling task.
 - So if you train a good language model, you train it to perform many NLP tasks simultaneously.
 - Valid question: Can LLMs "solve" all NLP tasks?
- But this property is not unique to language modeling.
 - E.g., many NLP tasks can also be phrased as question-answering.

- LLMs are making evaluation very difficult.
- We will discuss how NLP models are evaluated.
 - And how their evaluation differs from before LLMs.

NLP ≠ DEEP LEARNING

- Modern approaches in NLP rely heavily on deep learning methods.
- But NLP is "method-agnostic":
 - Many different kinds of methods can be used to solve various problems in NLP.
- NLP is not only the study of the methods for solving natural language tasks.
- NLP includes the modeling of natural language itself:
 - What is language, formally?
 - How can we describe it?
- Studying the nature of language itself will help us build better models and implement better methods to solve NLP tasks.

LANGUAGE HAS STRUCTURE

- Language is more than just a sequence of words.
- There is recursive structure:
 - "Fae sees Alex."
 - "Fae sees the person sitting under the tree."
 - "Fae sees the person sitting under the tree that had been planted 10 years ago."
 - etc...
- There is structure within words too:
 - "Recalculating" -> "re"- "calculate"- "ing"
 - "Sleeplessness" -> "sleep"- "less"- "ness"
 - Other languages have much more complex morphologies.

LANGUAGE HAS STRUCTURE

- Most NLP tasks require understanding the structure of language.
- How can we evaluate how well an NLP method performs on a task (or build better methods) if we don't understand the structure underlying the task?
 - E.g., I can train a model to land a rocket on the moon by having it try many attempts.
 - The model will try different rocket shapes, fuels, maneuvers, etc.
 - But if I understand Newtonian gravity, I can build a better model/rocket.
- Understanding linguistic theory is similarly important.
- We will cover foundational concepts of linguistic theory, such as morphology, syntax, semantics, pragmatics, etc.

LANGUAGE HAS STRUCTURE

"Teachers strike idle kids."

- Interpretation 1: Teachers physically strike kids who are idle.
- Interpretation 2: The teacher's strike is causing the kids to be idle.

COURSE OUTLINE

- First part: NLP methods and tasks
- Text classification
 - Methods: Logistic regression, SVM, neural networks, training, evaluation
 - Tasks: Author identification, information retrieval, document classification
- Language modeling
 - Methods: n-gram models, neural language models, RNNs, LSTMs, transformers

COURSE OUTLINE

- Second part: NLP foundations
- Morphology and lexical semantics
 - Lexical relations, tokenization, byte-pair encoding
- Syntax
 - Context-free grammars (CFGs), dependency grammar
 - CFG parsing algorithms, dependency parsing
- Semantics
 - Compositional semantics, categorial grammar, formal semantics
 - Reasoning, code generation, constrained decoding
- Discourse and pragmatics
 - Conversational NLP

MORPHOLOGY

- Morphology is the study of how words are constructed from smaller components.
 - E.g., verb conjugation: "I walk," "she walks," "We walked yesterday," ...
 - "I sit," "she sits," "We sat," ...
 - "I am," "she is," "We were," ...
- Simply adding/deleting endings is not sufficient:
 - "gorge" vs "gorgeous"
 - "good" vs "goods"
 - "arm" vs "army"

SYNTAX

• Syntax describes the structural relationship between words in a sentence.

"Sally caught the butterfly with a net."

VS

"Sally caught the butterfly with a spot."

• However, syntax is not enough to capture the meaning of the sentence.

SEMANTICS

- Semantics describes the meaning of words, phrases, and sentences.
- Compositional semantics describes how the meaning of smaller phrases combines to form the meaning of larger phrases:
 - "Sally caught the butterfly" + "with a net"
- Meaning can be represented in a formal language, such as logic, programming languages, or math.
 - "Mary gave 10 apples to Bob."
 can be semantically-parsed into:
 bob['apple'] += 10
 mary['apple'] -= 10

EXPECTATIONS

- This is an advanced research class.
 - We expect students to play an active role.
 - Use this class to advance *your* own research interests!
- Evaluation:
 - Two assignments (30%)
 - First assignment will check whether you have sufficient technical background
 - One paper critique (10%)
 - Final project (30%)
 - Final exam (30%)

GUIDELINES

- Working in groups
 - We encourage you to work in groups on the assignments and final project.
 - Groups should have 3-4 people.
 - You are free to collaborate.
 - But to state the obvious: No cheating or plagiarism
 - You can discuss homeworks with other but must write up your own solution.
- Late policy: 5 late days total
 - We strongly recommend you start assignments early.
- Attend office hours to seek guidance, and to discuss papers and projects.

USE OF GENERATIVE AI

- If you find generative AI useful (e.g., ChatGPT), you are encouraged to use it.
- However, do not simply copy the output of AI into your assignments.
- You should write your own solutions.
- When coding, you may use AI to generate snippets of code (e.g., boilerplate).
 - But be wary of over-relying on/putting too much trust in the AI.
 - We will design assignments that are not as easily solved by current AI models.
- AI will not help you on the final exam.

ONLINE DISCUSSION

- We will be using Ed Discussion as the online platform for discussion.
- Join the discussion forum using the following link:

https://edstem.org/us/join/3SW3SB

- If you have any questions, please make a post there!
- I will announce this link on Brightspace.
- If you are not registered on Brightspace, send me an email and I will add you.

PAPER CRITIQUE

- To help prepare you for the project, you will write a paper critique.
 - You will select a paper from a list.
 - Hint: Pick the one that is most helpful for your project/research!
- Write a short review of the paper:
 - What is it about? What research questions do the authors attempt to answer?
 - What are the key claims? Why should we care? What's new in the paper?
 - How was the problem modeled? How were the methods evaluated?
- Key idea: You will have to answer the same questions for your project!
 - Good practice!

FINAL PROJECT

- Find a topic you care about!
 - Can be related to your own research, or other projects, etc.
 - E.g., applications of NLP to other domains.
- Key points:
 - Identify a language-related problem and define it precisely.
 - Interesting approach in tackling the problem
 - We will cover several different kinds of methods
 - You will have to choose the methods and justify your choice
 - What not to do: avoid generic problems and generic solutions
 - LLM with chain-of-thought is not novel or interesting

FINAL PROJECT

- Proposal: due end of October or early November
 - Define the problem and research question(s)
 - Related work
 - Basic intuitions and preliminary model
 - Dataset and experimental settings
 - No more than 5 pages!
- Final report: due in December
 - Short report describing your findings
 - Presentations? (depending on class size)

FINAL PROJECT IDEAS

- The TAs have provided a handful of suggested project ideas.
- Each TA is offering to provide guidance to project groups who choose to work on any suggested project (or a related project).
- Guidance can involve weekly or bi-weekly meetings.
- I suggest you reach out to the TAs and ask questions about project ideas and whether they would be willing to provide guidance.

FINAL PROJECT IDEAS: YUNXIN'S SUGGESTIONS

- Replicate "long chain-of-thought" reasoning models
 - These models solve problems by producing a long "chain-of-thought".
 - As their chain-of-thought grows longer, their accuracy on reasoning tasks increases.
- Dynamic evaluation of agents
 - Agents interact with each other and their environment, so a "static" evaluation is inappropriate.
 - Can we evaluate them in an interactive fashion?
- Test-time compute
 - Can we teach a model to more accurately solve specific problems if given more time?
 - Maybe we can borrow ideas from classical AI (e.g., search).
- Assess the environmental impact of large models
 - Can we automatically quantify the energy usage of large models during training and inference?

FINAL PROJECT IDEAS: NATHANIEL'S SUGGESTIONS

- Evaluate a model in a way that is robust against data contamination
 - Find a task that models have been found to perform well.
 - Perform trivial perturbations on the task to measure its effect on model performance.
- Use a larger/more complex model to teach a smaller model
 - Train a small model on the outputs of a larger model
 - E.g, can the small model learn how to reason from the chains-of-thought of the larger model?
- Multilingual evaluation
 - Does a model's ability depend heavily on the language of the input?
- Multi-agent vs single-agent approaches
 - For a particular task, examine whether multiple smaller models collaborating can perform as well as (or better than) one large model

