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PREVIOUSLY: PROMPTING

* Last lecture, we discussed how model performance is sensitive to the prompt.

* Perturbations such as spacing, newlines, paraphrasing, etc. can cause
significant differences in model accuracy/performance.
* Few-shot prompting and in-context learning can help improve task accuracy.
* The model is still sensitive to things like:
* Number of few-shot examples
* The order of the few-shot examples
* The diversity/coverage of the few-shot examples



CHAIN-OF-THOUGHT PROMPTING

* We can design the prompt to induce the model to output its step-by-step

reasoning.
g Standard Prompting Chain-of-Thought Prompting

- G-

Q: Roger has 5 tennis balls. He buys 2 more cans o Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now? tennis balls does he have now?

A: The answer is 11. A:
The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples Q: The cafeteria had 23 apples. If they used 20 to
do they have? J make lunch and bought 6 more, how many apples

do they have?
\_ J

A: The answer is 27. x A:
The

answer is 9.

[Wei et al., 2022]



CHAIN-OF-THOUGHT PROMPTING

 This is called chain-of-thought (CoT) prompting.

* CoTl prompting can be done zero-shot:

(a) Few-shot (b) Few-shot-CoT
/ \ ﬁRoger has 5 tennis balls. He buys 2 more cans of terﬁ
Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does
balls. Each can has 3 tennis balls. How many tennis balls does he have now?
he have now? A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6
A: The answer is 11. tennis balls. 5 + 6 = 11. The answer is 11.
Q: Ajuggler can juggle 16 balls. Half of the balls are golf balls, Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are and half of the golf balls are blue. How many blue golf balls are
there? there?
A A
(Output) The answer is 8. X (Output) The juggler can juggle 16 balls. Half of the balls are golf
balls. So there are 16 / 2 = 8 golf balls. Half of the golf balls are
\ / %. So there are 8/ 2 = 4 blue golf balls. The answer is 4. y
(c) Zero-shot (d) Zero-shot-CoT (Ours)
Q: A juggler can juggle 16 balls. Half of the balls are golf balls, Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are and half of the golf balls are blue. How many blue golf balls are
there? there?
A: The answer (arabic nhumerals) is A: Let’s think step by step.
(Output) 8 X (Output) There are 16 balls in fotal. Half of the balls are golf

balls. That means that there are 8 golf balls. Half of the golf balls
are blue. That means that there are 4 blue golf balls. v

[Kojima et al., 2022]



CHAIN-OF-THOUGHT PROMPTING

* CoT prompting can significantly improve performance on reasoning tasks.
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/1 Prior best

[] PaLM 540B: standard prompting

B PalLM 540B: chain-of-thought prompting

100
80 |-
60
40 33

7
20////

0
Math Word Problems (GSM8K)

o7

Solve rate (%)

18

[Wei et al., 2022]



CHAIN-OF-THOUGHT PROMPTING

—e— Standard prompting
—&— Chain-of-thought prompting
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EMERGENT ABILITIES

Only larger models seem to benefit from few-shot prompting (are capable of
in-context learning) or benefit from chain-of-thought prompting.

Is this a consequence of scaling?
If so, shouldn’t scaling laws predict this ability?

Few-shot prompting, ICL, and CoT seem to “emerge” suddenly in sufficiently
large models.

Cross-entropy still seems to be decreasing following a power law.
* There is no sudden/unexpected “drop” in the loss function.



EMERGENT ABILITIES
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EMERGENT ABILITIES?

e Schaeffer et al. (2023) showed that if you change the performance metric, the
“sudden” increase in performance becomes much smoother/linear.



EMERGENT ABILITIES?
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EMERGENT ABILITIES?

Schaeffer et al. (2023) showed that if you change the performance metric, the
“sudden” increase in performance becomes much smoother/linear.

“Emergent abilities” become predictable when using a different metric.
For example, consider a task that requires performing 10 reasoning steps.

Suppose the model’s probability of correctly performing 1 step increases
linearly with scale.

Then the probability that the model will perform all 10 steps correctly will
increase exponentially.

So overall accuracy will seem sudden/emergent, even if per-step accuracy
improves predictably.

11



EFFICIENCY



COST OF TRAINING AND INFERENCE

* How expensive is it to train and use ML models?
e Consider the forward pass of a model (e.g., transformer, RNN, etc).

* The forward pass consists of multiple operations of different types:
* Matrix multiplication
* Softmax
* Vector addition
* Vector-scalar operations
Activation functions
etc...



COST OF VECTOR OPERATIONS

Some operations, such as vector operations, are relatively cheap.
Adding two vectors of dimension d takes d floating-point operations.
Multiplying a d-dimensional vector with a scalar (or dividing) takes d FLOPs.

What about memory?
* If computing f(z) = ¢ + b, where b is a learnable vector parameter,
* There is a total of d parameters we need to store in memory.

14



MATRIX MULTIPLICATION

Matrix multiplication is significantly more expensive.

Consider multiplying two matrices 4 € R"*K and B € RE*™

[45] 19 = Z AiuBuj-
u=1
We must compute each element in the destination matrix.
* The destination matrix 4B has dimension n X m.
* Each element is computed using a dot product with length k.
* The dot product requires k multiplications, followed by k additions.

Thus the total cost (in terms of time) is: 2:n-k-m.

For memory: Suppose we have f(X) = AXwhere 4is learnable.
* We need to store n-k parameters in memory.

15



SOFTMAX

Transformers perform a softmax operation in every attention layer.

* Each layer has Hsoftmax operations, where His the number of attention

heads.
exp(az)

fl@)g = -
¢ Z[j{=1 exp (a )

Suppose « is has dimension d.

Softmax requires computing d exponential operations,
* Followed by a sum (d operations),
* Followed by d division operations.

Softmax requires no additional memory.

16



SOFTMAX

* Transformers perform a softmax operation in every attention layer.

* Each layer has Hsoftmax operations, where His the number of attention

heads.
exp(az)

fl@)g = -
¢ Z}j{=1 exp (a )

* The exponential function is expensive to compute.

* The exponential function is transcendental,

* Meaning we can not write it down as a finite sequence of addition,
subtraction, multiplication, or division operations.

* |t is approximated by computing terms in an infinite series.

17



ACTIVATION FUNCTIONS

The cost of an activation function depends on the choice of function.

Some activation functions require the computation of transcendental
functions,
* E.g., sigmoid, tanh.
e GELU(xz) = #(x) - x where &is the CDF for the normal distribution.
e Swish(x) = o(kx) - = where kis a learnable parameter.

Others are much cheaper:
e ReLU(x) = 1{z > 0} + =z

These functions cost d operations,

But each operation may be more expensive due to transcendental functions.
Trivia: GPT-2 used GELU. 18



ACTIVATION FUNCTIONS

The cost of an activation function depends on the choice of function.

Others contain matrix multiplications:

* GLU(x) = o(W,z + b,) © (W,x + b,) where W,,W,,b,,b, are learnable.

* SwiGLU(x) = Swish(W,xz + b,) O (Wz + b,)
Due to the additional matrix products, these functions cost 4d-.
Trivia: Llama-2, Llama-3, Deepseek, OLMO, PaLM use SwiGLU.

For memory, the simpler activation functions require no additional
parameters.

e But SwiGLU requires 2(d® + d) parameters.

19



COST OF FORWARD PASS

* Given the cost of each component, we can now compute the total cost of the forward pass
for a given ML model.

* Let’s take the decoder-only transformer for example.

Operation Parameters FLOPs per Token
Embed (nvocab + nctx) dmodel 4dmodel
Attention: QKV Nayer dmodel'?’dattn 2"nlayer Glmodel 3dattn
Attention: Mask — 2nlayernctxdattn /V (0] t@ . T

- 1 Mag; hese ar
Attention: Project Nlayerdattndmodel 2nayerattndmodel rix Pro

S

Feedforward Mayer 2dmodeldff 2nlayer 2dmode1dff
De-embed — 2dmodelMvocab
Total (Non- N = 2dmodelnlayer (2da.ttn + Ctorward = 2N +
Em bedding) dff ) 2nlayer TNetx dattn

[Adam Casson, Transformer FLOPs, 2023] 20



COST OF FORWARD PASS

Total number of non-embedding parameters for decoder-only transformer:

N = deodelnlayer(Zdattn * dff)°

Total number of FLOPs per token for the forward pass of a decoder-only transformer:

Cfo'r'wa,'r'd = 4dmodelnlaye'r'(2dattn * dff) + anaye'r*ncta:dattn’

= 2N + 21 e Mctyd

ctxPattn

d

In most modern LLMSs, d

moder = Qattn AN ds- is set to a multiple of d, 4., (44,,4.; IS @ common
choice).

Assuming these choices, we can re-write the above:

= = 2
N = 2d odelnlaye'r( model 4 model) <d odelnlaye'r( model) 124 model nlaye'r’

C = 2N + 2140 N0

forward ctz“model *

[Adam Casson, Transformer FLOPs, 2023] 21



COST OF FORWARD PASS

m

= 2N + 21 e Met,d

ctz¥model *

— 2
N = 124 odel nlaye'r*’

C

forward

* Note that N depends on the square of d,,,.;, whereas the term 2n,, .,.1.;,0,40;

Is linearin d,, ;...
* Thus, if d,,,., is large, the 2V term will dominate in the forward pass cost.
Take GPT-3 as an example: n;, .= 96, n., = 4096, d,,, = 12288.
N = 12(12288%) (96) = 174(10°),
Cromuara = 2(174) (10°) + 2(96) (4096) (12288) = 348(10°) + 9.7(10°).

The first term makes up > 977 of the total FLOPs.

[Adam Casson, Transformer FLOPs, 2023]
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COST OF FORWARD PASS

Scalmg of FLOPs contribution (sequence length of 4096)
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[Adam Casson, Transformer FLOPs, 2023]
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COST OF TRAINING

We now know how much it costs to perform a forward pass for a decoder-
only transformer.

But how much does it cost to train?
Recall that the cost of the transformer is dominated by matrix products.

Let’s examine a single matrix product that happens in the middle of a neural
network:

Y = XA

 where Xis the input activations (from the previous layer),
* Ais the weight matrix,

e and Yis the output activations (for the next layer).

24



COST OF TRAINING

Y = XA

oL : :
* We want to compute YL where L Is the loss function.

* By the chain rule:
oL _ oL oY _ ol
0A oY 94 © aY

oL . :
* But we also need to compute —;, In order to compute the gradients for the

previous layer (bockpropagatiao)g\).
* Again we use the chain rule:

oL _ oL aY _ oL

oX o0Y oX oY

* So we need 2 matrix multiplications for each linear layer in the network. .

AT .




COST OF TRAINING

Y = XA
oL _ oL oY _ ol
04 oY 94 oY

oL 9L aY _ oL
0X ~ 9Y aX oY
oL

Notice we also need to have computed X in the above formula for PV

This is why we perform a forward pass before each backward pass.
* The forward pass computes X for all linear layers.

* The backward pass computes gradients with respect to 4 for all linear
layers

The forward pass requires 1 matrix multiplication for each linear layer.
So computing the gradient requires 3 times as many matrix products.

26



COST OF TRAINING

* For a transformer, since the forward pass costs 2V FLOPs per token, where Nis
the number of parameters,
* That would imply that each step of training costs 6V FLOPs per token.

* How much memory do we need?
* We need memory to store the model parameters: N

* We need to store the gradient with respect to each parameter: IV
* The optimizer may also require additional memory:
 Adam (Kingma and Ba, 2014) stores 2 values per parameter: 2V
* The activations require additional memory,
* But this is not a simple function of I.
* This grows linearly with respect to batch size! .



COST OF TRAINING

* Example memory usage for training GPT-2 Small:

GPT2 Small Predicted Actual Diff

N Parameters 124,373,760 124,373,760 0

Model Memory (bytes) 547,826,688 547,826,688 0

Gradients (bytes) 497,495,040 497,495,040 0

Adam buffers (bytes)1 994,990,080 994,990,380 300

CuBLAS workspace (bytes)2 17,039,360 17,039,360 0

Gaps (bytes) 6,855,368 = Batch size = 12
Inputs / Targets (bytes) 196,608 Not visible - Total =~16. 5N
Others not visble on segment (bytes) 196,620 -

Total (bytes)3 2,057,547,776 2,064,403,456 6,855,680

[Edward Rees, Transformer Memory Arithmetic: Understanding all the Bytes in nanoGPT, 2023] 28



COST OF TRAINING

* What is more expensive for LLMs? Training or inference?
 What about for deployed models (e.g., ChatGPT)?

* How long do they need to be deployed before inference cost exceeds
training cost?

e GPT-3 was trained on 300(10°) tokens.

e So the number of training FLOPs was roughly 6(300) (10°)N = 1.8(10*?)N.
* How many inference forward passes is this equivalent to?
* Divide the number of training FLOPs by 2V

* 900(10°) forward passes

* Suppose each prompt generates 10000 tokens.

* 90 million prompts would match the cost of training.
29



COST OF TRAINING

Disruption and innovation in search don't come for free. The costs to train an LLM, as
we detailed here, are high. More importantly, inference costs far exceed training costs
when deploying a model at any reasonable scale. In fact, the costs to inference

ChatGPT exceed the training costs on a weekly basis. If ChatGPT-like LLMs are
deployed into search, that represents a direct transfer of $30 billion of Google's profit
into the hands of the picks and shovels of the computing industry.

[Patel and Ahmad, The Inference Cost Of Search Disruption — Large Language Model Cost Analysis, 2023] 30



COST OF RNNS

* We can perform the same analysis for RNNs:

* Assume a “vanilla” RNN with just a single linear layer between hidden
states.

* Each step in the RNN requires computing two linear layers:
* One to compute the new hidden state from the old one.
* One to compute the output from the hidden state.

31



COST OF RNNS

* We can perform the same analysis for RNNs:
* Each linear layer hasa @, .., X 4. ,.; Wweight matrix and a bias vector with

dimension d_,.;-
* Time: Requires 4(d_ ;.,°
* Memory: Requires 2(d_ ,.;* + d_ ;.;

model) ~ 4 odelz FLOPs.
) = 2d_...° parameters.

32



COST OF RNNS

* We can perform the same analysis for RNNs:
* So if we have an input sequence length of n.,, and n,, .. layers,
* The total number of parameters is:

—_ 2 1
N = 20,0840 (Since parameters are shared)

* And the total number of FLOPs per forward pass is:
C

— 2 =
forward 4nctmnlaye'r‘dmodel - chtm]v'

* Similar to the transformer, most of the computation is dominated by matrix
multiplications.

* So the cost of each training step is 6n,, M.

33



TRANSFORMERS VS RNNS

RNN: Cforward = 4nctmnlayerdmodelz’
Transformer: N = 12nlayerdmod612 per token,
* So if we have n_,_ tokens in the input, then C

forward

d ...°

model

= 24N

The two models have the same computational cost, asymptotically.

ct:z:nlaye'r*

So why are transformers better?
* Their operations are much more parallelizable.

* For an RNN, we have to wait for the previous hidden state before we can
compute the next one.

34



PARALLELIZATION

* But how do we parallelize matrix multiplication?
* Suppose we have many available threads.

* And we want to compute: C = AB.
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e e e | O | e [ [ e |
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| IS R A [ A N S — L e = O S | L [ e - |
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o 9Ol io G0 oo o o o o ollo o o ol 0 Ol 0 O e e 10 ol
Leeed Leed Lo d Lo d ke [ I S . ] Leeeed Leeed bememed Lo
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Leeed Leoeed Leeed Loood L R - Leemed bemmed Leeed L d

[Li et al., GPU Matrix Multiplication, Multi- and Many-Core Technologies: Architectures, Programming, Algorithms and Applications, 2013]
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PARALLELIZATION

e \We can tile the matrices into submatrices.

* For example, we can assign the task of computing the highlighted 1 x 2
submatrix in C'to one thread.

* It multiplies the 1 x 8 submatrix in 4 with the 8 x 2 submatrix in B.

o ol lo ol lo ol lo ol 0 0 o oiic o o ol o ol o o |le eflo o
Lom—d L———d L———d L———1 Lo __ S R i Lommd Lo e—— "4 -2
lo ol lo ol lo ol lo ol 0 0O 0o ollo o o ol o oo o l|le elio o
Lo L L—__a - _"a Lo ____ O L ____ 1 Lo a4 L
o ol lo ol lo ol o ol o 0 o olio o o ol o ol io o le e]lic o
bemmd Lmmmd Lo d Lm—emd L= S R A 1 Lmed e oo L1
o ol lo o le e 1o ol I 1 o o o o le el o o
2_S e 2.l .l — © & & 6% 0 o ‘] P ol . oe.sge .o
0O ol lo ol 1o ol 1o ol — o o0 o ollo o o ol 0 ol 0o ol e elio ol
Lemed Lemod Leeed Le—ed Lo __ 0 L _C 1 L e o4 -
o o1 o o1 1o ol o ol lo o o ollo o o ol 0 o1 10 ol |le efio o
Leeed Leeed Lo d L4 i - - B Leeed Lo b L1
0O Ol 10 ol i0 ol 10 ol lo o o ollo o o ol 0 ol 10 ol e e]io ol
L———d L———_d L—o—_1 L___41 R d b - L d L e L _1
O o1 10 o110 ol o o lo o o ollo o o ol 0 o1 10 Ol |le efio o
Leeed Leoeed Lo d Lo d L 4 b - Leeed L4 L——d

[Li et al., GPU Matrix Multiplication, Multi- and Many-Core Technologies: Architectures, Programming, Algorithms and Applications, 2013] 36



PARALLELIZATION

e \We can tile the matrices into submatrices.

» With this approach, if 4 € R™ % and B € R¥*™ and we have nmthreads,

* The matrix multiplication can be completed in 2k operations.
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[Li et al., GPU Matrix Multiplication, Multi- and Many-Core Technologies: Architectures, Programming, Algorithms and Applications, 2013]
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PARALLELIZATION

e \We can break the matrices down even further:

* Have one thread multiply the left portion of the highlighted submatrix in 4 (1 x 4) with
the top portion of the highlighted submatrix in B(4 x 2).

* Have a different thread multiply the right submatrix in 4 with the bottom portion in B.
* Then the two resulting 1 x 2 matrices would be summed to produce the result in C.
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[Li et al., GPU Matrix Multiplication, Multi- and Many-Core Technologies: Architectures, Programming, Algorithms and Applications, 2013]
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GPUS VS CPUS

* GPUs are much better than CPUs at parallel processing.
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[Huang et al., GPU computing performance analysis on matrix multiplication, 2019]
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GPUS VS CPUS

* GPUs are much better than CPUs at parallel processing.
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[Huang et al., GPU computing performance analysis on matrix multiplication, 2019]
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GPU PROGRAMMING

In order to maximize the benefit from using GPUs, we need to keep all our
matrices in GPU memory.

So for ML applications, that requires that all operations required by the
model forward/backward pass are implemented on the GPU.

It is (relatively) expensive to transfer data to/from GPU memory and system
memory.

If you develop a new model that uses a novel operation, and you want to be
able to run your model on the GPU,

* You will need to implement that operation in the GPU.
* How can we do this?
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GPU PROGRAMMING

GPUs were initially designed to accelerate 3D rendering.
Initially, they were not programmable.

In 2001, the first GPUs were released that supported programmable shaders.
* Developers could write shaders to better customize the rendering process
(e.g., how to color each pixel, calculate lighting, etc).

In 2007, general-purpose GPU programming languages were released to
allow GPUs to be used for non-graphics applications.

There are a number of GPU programming languages that can be used to
implement functions on the GPU.

* CUDA, OpenCL, etc...

A GPU program that implements a specific routine is called a kernel. .



GPU PROGRAMMING

* Example of a matrix-vector product kernel in OpenCL.:

// Multiplies A*x, Lleaving the result 1in y.

// A is a row-major matrix, meaning the (i,j) element is at A[i*ncols+j].

__kernel void matvec(__global const float *A, _ global const float *x,
uint ncols, _ global float *y)

{
size t i = get_global id(9); // Global id, used as the row index
__global float const *a = &A[i*ncols]; // Pointer to the i'th row
float sum = 0.°; // Accumulator for dot product
for (size_t j = 0; j < ncols; j++) {
sum += a[j] * x[3];
}
y[i] = sum;
}

[https://en.wikipedia.org/wiki/OpenCL]
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GPU PROGRAMMING

* Example of element-wise product kernel in CUDA:

import pycuda.compiler as comp
import pycuda.driver as drv
import numpy

import pycuda.autoinit

mod = comp.SourceModule(
__global__ void multiply_them(float *dest, float *a, float *b)
{
const int 1 = threadIdx.x;
dest[i] = a[i] * b[1];
}

)

multiply_them = mod.get_function("multiply_them")

numpy . random. randn(4ee) .astype(numpy.float32)
numpy . random. randn(40@) .astype(numpy.float32)

o
nn

dest = numpy.zeros_like(a)
multiply_them(drv.Out(dest), drv.In(a), drv.In(b), block=(4e0, 1, 1))

print(dest - a * b)

[https://en.wikipedia.org/wiki/CUDA]



GPU PROGRAMMING

* What would a matrix multiplication kernel look like?

__global__ void sgemm_naive(int M, int N, int K, float alpha, const float *A,
const float *B, float beta, float *C) {
// compute position in C that this thread is responsible for
const uint x = blockIdx.x * blockDim.x + threadIdx.x;
const uint y = blockIdx.y * blockDim.y + threadIdx.y;

// ~1f condition 1s necessary for when M or N aren't multiples of 32.
if (x <M& y < N) {
float tmp = 0.0;
for (int 1 = 6; 1 < K; ++1i) {
tmp += A[x * K + i] * B[1i * N + y];
}
// C = a*(A@B)+6*C
C[x * N + y] = alpha * tmp + beta * C[x * N + y];
}
}

[Simon Boehm, How to Optimize a CUDA Matmul Kernel for cuBLAS-like Performance: a Worklog, 2022]



GPU PROGRAMMING

What would a matrix multiplication kernel look like?
This simple implementation runs at 309.0 GFLOPs/s on an A6000 GPU.

Nvidia’s proprietary implementation (in the cuBLAS library) performs the
same operation at 23249.6 GFLOPs/s!

The naive implementation is 1.3% as fast as the proprietary one.

What accounts for this huge performance difference?
* Optimizations!

[Simon Boehm, How to Optimize a CUDA Matmul Kernel for cuBLAS-like Performance: a Worklog, 2022]
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GPU PROGRAMMING

* Matrix multiplication optimizations:

Kernel GFLOPs/s Performance relative to cuBLAS ge
1: Naive 309.0 1.3% 29 line® of

2: GMEM Coalescing 1986.5 8.5%

3: SMEM Caching 2980.3 12.8%

4: 1D Blocktiling 8474.7 36.5%

5: 2D Blocktiling 15971.7 68.7%

6: Vectorized Mem Access 18237.3 78.4%

9: Autotuning 19721.0 84.8% ode
10: Warptiling 21779.3  93.7% 187 \ine> ot ¢

0: cuBLAS 23249.6 100.0%

[Simon Boehm, How to Optimize a CUDA Matmul Kernel for cuBLAS-like Performance: a Worklog, 2022]
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GPU PROGRAMMING

Linear algebra optimizations can provide significant speedups.
However, they are tedious to implement.

Some optimizations must be aware of the hardware architectural details.
* Cache structure, scheduling, number and types of cores, etc.

Optimizations are frequently updated for new generations of hardware.
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GPU PROGRAMMING

* Thanks to modern ML libraries such as TensorFlow and PyTorch, much of this
complexity is abstracted away from us.

>>> matl = torch.randn(2, 3)

>>> mat2 = torch.randn(3, 3)

>>> torch.mm(matl, mat2)

tensor([[ ©.4851, 0.5037, -0.3633],
[-0.0760, -3.6705, 2.4784]1)

* These libraries will call the GPU kernels to execute this operation quickly.

* These libraries also implement automatic differentiation.
* We only need to write code for the forward pass.

e TensorFlow/PyTorch will automatically compute the gradient (autograd).
49



GPU PROGRAMMING

* But if you develop a new model that requires a new operation that is not
provided by existing CUDA or OpenCL libraries, then you will need to write a

kernel that implements this operation.

* You may also need to write code that automatically differentiates this
operation so that TensorFlow/PyTorch can correctly do so when running the

backward pass.
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MORE SPECIALIZED HARDWARE

* Google developed Tensor Processing Units (TPUs) specifically to accelerate
common operations in deep learning, such as matrix multiplication.

16x TPU vs 16x GPU on MLPerf-train
Performance is B 16xTPU [ 16x GPU
slightly better. 1.25

1.00
0.75

0.50

Normalized Performance

0.25

0.00
ResNet-50 v1.5 SSD w/ ResNet-34 Mask-R-CNN NMT Transformer

[Mahmoud Khairy, TPU vs GPU vs Cerebras vs Graphcore: A Fair Comparison between ML Hardware, 2020]
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MORE SPECIALIZED HARDWARE

* Many companies are currently developing application-specific integrated

circuits (ASICs) which are specifically designed to accelerate transformer
computations.

TECHP(@WERUP &

Tuesday, June 25th 2024

Al Startup Etched Unveils Transformer ASIC
Claiming 20x Speed-up Over NVIDIA H100

by AleksandarK | Jun 25th, 2024 13:30 | Discuss (37 Comments) @




MORE SPECIALIZED HARDWARE

* A similar trajectory occurred with Bitcoin mining hardware.

Bitcoin Mining Difficulty

100,000,000,000,000
ASIC 10 nm chip
1,000,000,000,000 I
ASIC 20 nm chip ASIC 7 nm chip
10,000,000,000 [
ASIC 110 nm chip ASIC 14 nm chip
. ASIC 16 nm chip
ASIC 130 nm chip
100,000,000 .
FPGA ASIC 28 nm chip
1,000,000
ASIC 55 nm chip
10,000 GIU
100
CPU
! J .
2009 2010 201 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

[Austin Lyons, ASICs: Custom Chips to Improve Performance, 2024]



NEXT TIME:
HOW TO MAKE TRANSFORMERS FASTER?

NLP models can be very expensive, in terms of time and memory.

* Especially as they are scaled up.
Better hardware, such as GPUs, can really help to improve the performance of
such models.

* Transformers especially benefit from parallelization.

But what if the models/matrices can’t fit in the memory of one GPU?

Can we modify the transformer architecture to run faster?
* Without sacrificing accuracy?
 How small/fast can we make the model if we do tradeoff some accuracy?
* Parameter-efficient fine-tuning

* Model compression (quantization, distillation) 54



QUESTIONS?
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