
CS 577:
NATURAL LANGUAGE
PROCESSING

Abulhair Saparov

Lecture 10: Efficiency

PREVIOUSLY: PROMPTING

2

• Last lecture, we discussed how model performance is sensitive to the prompt.

• Perturbations such as spacing, newlines, paraphrasing, etc. can cause
significant differences in model accuracy/performance.

• Few-shot prompting and in-context learning can help improve task accuracy.

• The model is still sensitive to things like:

• Number of few-shot examples

• The order of the few-shot examples

• The diversity/coverage of the few-shot examples

CHAIN-OF-THOUGHT PROMPTING

3

• We can design the prompt to induce the model to output its step-by-step
reasoning.

[Wei et al., 2022]

CHAIN-OF-THOUGHT PROMPTING

4

• This is called chain-of-thought (CoT) prompting.

• CoT prompting can be done zero-shot:

[Kojima et al., 2022]

CHAIN-OF-THOUGHT PROMPTING

5

• CoT prompting can significantly improve performance on reasoning tasks.

[Wei et al., 2022]

CHAIN-OF-THOUGHT PROMPTING

6[Wei et al., 2022]

EMERGENT ABILITIES

7

• Only larger models seem to benefit from few-shot prompting (are capable of
in-context learning) or benefit from chain-of-thought prompting.

• Is this a consequence of scaling?

• If so, shouldn’t scaling laws predict this ability?

• Few-shot prompting, ICL, and CoT seem to “emerge” suddenly in sufficiently
large models.

• Cross-entropy still seems to be decreasing following a power law.

• There is no sudden/unexpected “drop” in the loss function.

EMERGENT ABILITIES

8[Wei et al., 2023]

EMERGENT ABILITIES?

9

• Schaeffer et al. (2023) showed that if you change the performance metric, the
“sudden” increase in performance becomes much smoother/linear.

EMERGENT ABILITIES?

10[Schaeffer et al., 2023]

EMERGENT ABILITIES?

11

• Schaeffer et al. (2023) showed that if you change the performance metric, the
“sudden” increase in performance becomes much smoother/linear.

• “Emergent abilities” become predictable when using a different metric.

• For example, consider a task that requires performing 10 reasoning steps.

• Suppose the model’s probability of correctly performing 1 step increases
linearly with scale.

• Then the probability that the model will perform all 10 steps correctly will
increase exponentially.

• So overall accuracy will seem sudden/emergent, even if per-step accuracy
improves predictably.

EFFICIENCY

COST OF TRAINING AND INFERENCE

13

• How expensive is it to train and use ML models?

• Consider the forward pass of a model (e.g., transformer, RNN, etc).

• The forward pass consists of multiple operations of different types:

• Matrix multiplication

• Softmax

• Vector addition

• Vector-scalar operations

• Activation functions

• etc…

COST OF VECTOR OPERATIONS

14

• Some operations, such as vector operations, are relatively cheap.

• Adding two vectors of dimension takes floating-point operations.

• Multiplying a -dimensional vector with a scalar (or dividing) takes FLOPs.

• What about memory?

• If computing , where is a learnable vector parameter,

• There is a total of parameters we need to store in memory.

MATRIX MULTIPLICATION

15

• Matrix multiplication is significantly more expensive.

• Consider multiplying two matrices ∈ ℝ × and ∈ ℝ × .

= ෍ .

• We must compute each element in the destination matrix.

• The destination matrix has dimension × .

• Each element is computed using a dot product with length .

• The dot product requires multiplications, followed by additions.

• Thus the total cost (in terms of time) is: ⋅ ⋅ ⋅ .

• For memory: Suppose we have where is learnable.

• We need to store ⋅ parameters in memory.

SOFTMAX

16

• Transformers perform a softmax operation in every attention layer.

• Each layer has softmax operations, where is the number of attention
heads.

𝛼 =
α

σ α
.

• Suppose 𝛼 is has dimension .

• Softmax requires computing exponential operations,

• Followed by a sum (operations),

• Followed by division operations.

• Softmax requires no additional memory.

SOFTMAX

17

• Transformers perform a softmax operation in every attention layer.

• Each layer has softmax operations, where is the number of attention
heads.

𝛼 =
α

σ α
.

• The exponential function is expensive to compute.

• The exponential function is transcendental,

• Meaning we can not write it down as a finite sequence of addition,
subtraction, multiplication, or division operations.

• It is approximated by computing terms in an infinite series.

ACTIVATION FUNCTIONS

18

• The cost of an activation function depends on the choice of function.

• Some activation functions require the computation of transcendental
functions,

• E.g., sigmoid, tanh.

• ⋅ where is the CDF for the normal distribution.

• σ ⋅ where is a learnable parameter.

• Others are much cheaper:

• 𝟙 ⋅

• These functions cost operations,

• But each operation may be more expensive due to transcendental functions.

• Trivia: GPT-2 used GELU.

ACTIVATION FUNCTIONS

19

• The cost of an activation function depends on the choice of function.

• Others contain matrix multiplications:

• σ ☉ where are learnable

• ☉

• Due to the additional matrix products, these functions cost .

• Trivia: Llama-2, Llama-3, Deepseek, OLMO, PaLM use SwiGLU.

• For memory, the simpler activation functions require no additional
parameters.

• But SwiGLU requires parameters.

COST OF FORWARD PASS

20

• Given the cost of each component, we can now compute the total cost of the forward pass
for a given ML model.

• Let’s take the decoder-only transformer for example.

[Adam Casson, Transformer FLOPs, 2023]

COST OF FORWARD PASS

21

• Total number of non-embedding parameters for decoder-only transformer:

• Total number of FLOPs per token for the forward pass of a decoder-only transformer:

• In most modern LLMs, , and is set to a multiple of (is a common
choice).

• Assuming these choices, we can re-write the above:

[Adam Casson, Transformer FLOPs, 2023]

COST OF FORWARD PASS

22

• Note that depends on the square of , whereas the term
is linear in .

• Thus, if is large, the term will dominate in the forward pass cost.

• Take GPT-3 as an example: .

• The first term makes up of the total FLOPs.

[Adam Casson, Transformer FLOPs, 2023]

COST OF FORWARD PASS

23[Adam Casson, Transformer FLOPs, 2023]

COST OF TRAINING

24

• We now know how much it costs to perform a forward pass for a decoder-
only transformer.

• But how much does it cost to train?

• Recall that the cost of the transformer is dominated by matrix products.

• Let’s examine a single matrix product that happens in the middle of a neural
network:

• where is the input activations (from the previous layer),

• is the weight matrix,

• and is the output activations (for the next layer).

COST OF TRAINING

25

• We want to compute
𝜕

𝜕
 , where is the loss function.

• By the chain rule:

𝜕

𝜕

𝜕

𝜕

𝜕

𝜕
T 𝜕

𝜕

• But we also need to compute
𝜕

𝜕
 , in order to compute the gradients for the

previous layer (backpropagation).

• Again we use the chain rule:

𝜕

𝜕

𝜕

𝜕

𝜕

𝜕

𝜕

𝜕
T

• So we need 2 matrix multiplications for each linear layer in the network.

COST OF TRAINING

26

𝜕

𝜕

𝜕

𝜕

𝜕

𝜕
T 𝜕

𝜕
𝜕

𝜕

𝜕

𝜕

𝜕

𝜕

𝜕

𝜕
T

• Notice we also need to have computed in the above formula for
𝜕

𝜕
.

• This is why we perform a forward pass before each backward pass.

• The forward pass computes for all linear layers.

• The backward pass computes gradients with respect to for all linear
layers

• The forward pass requires 1 matrix multiplication for each linear layer.

• So computing the gradient requires 3 times as many matrix products.

COST OF TRAINING

27

• For a transformer, since the forward pass costs FLOPs per token, where is
the number of parameters,

• That would imply that each step of training costs FLOPs per token.

• How much memory do we need?

• We need memory to store the model parameters:

• We need to store the gradient with respect to each parameter:

• The optimizer may also require additional memory:

• Adam (Kingma and Ba, 2014) stores 2 values per parameter:

• The activations require additional memory,

• But this is not a simple function of .

• This grows linearly with respect to batch size!

COST OF TRAINING

28

• Example memory usage for training GPT-2 Small:

Batch size =

Total =

[Edward Rees, Transformer Memory Arithmetic: Understanding all the Bytes in nanoGPT, 2023]

COST OF TRAINING

29

• What is more expensive for LLMs? Training or inference?

• What about for deployed models (e.g., ChatGPT)?

• How long do they need to be deployed before inference cost exceeds
training cost?

• GPT-3 was trained on tokens.

• So the number of training FLOPs was roughly .

• How many inference forward passes is this equivalent to?

• Divide the number of training FLOPs by :

• forward passes

• Suppose each prompt generates 10000 tokens.

• million prompts would match the cost of training.

COST OF TRAINING

30[Patel and Ahmad, The Inference Cost Of Search Disruption – Large Language Model Cost Analysis, 2023]

COST OF RNNS

31

• We can perform the same analysis for RNNs:

• Assume a “vanilla” RNN with just a single linear layer between hidden
states.

• Each step in the RNN requires computing two linear layers:

• One to compute the new hidden state from the old one.

• One to compute the output from the hidden state.

COST OF RNNS

32

• We can perform the same analysis for RNNs:

• Each linear layer has a × weight matrix and a bias vector with
dimension .

• Time: Requires ≈ FLOPs.

• Memory: Requires ≈ parameters.

COST OF RNNS

33

• We can perform the same analysis for RNNs:

• So if we have an input sequence length of and layers,

• The total number of parameters is:

 , (since parameters are shared)

• And the total number of FLOPs per forward pass is:

 .

• Similar to the transformer, most of the computation is dominated by matrix
multiplications.

• So the cost of each training step is .

TRANSFORMERS VS RNNS

34

• RNN: ,

• Transformer: per token,

• So if we have tokens in the input, then .

• The two models have the same computational cost, asymptotically.

• So why are transformers better?

• Their operations are much more parallelizable.

• For an RNN, we have to wait for the previous hidden state before we can
compute the next one.

PARALLELIZATION

35

• But how do we parallelize matrix multiplication?

• Suppose we have many available threads.

• And we want to compute: .

[Li et al., GPU Matrix Multiplication, Multi- and Many-Core Technologies: Architectures, Programming, Algorithms and Applications, 2013]

PARALLELIZATION

36

• We can tile the matrices into submatrices.

• For example, we can assign the task of computing the highlighted
submatrix in to one thread.

• It multiplies the submatrix in with the submatrix in .

[Li et al., GPU Matrix Multiplication, Multi- and Many-Core Technologies: Architectures, Programming, Algorithms and Applications, 2013]

PARALLELIZATION

37

• We can tile the matrices into submatrices.

• With this approach, if ∈ ℝ × and ∈ ℝ × , and we have threads,

• The matrix multiplication can be completed in operations.

[Li et al., GPU Matrix Multiplication, Multi- and Many-Core Technologies: Architectures, Programming, Algorithms and Applications, 2013]

PARALLELIZATION

38

• We can break the matrices down even further:
• Have one thread multiply the left portion of the highlighted submatrix in () with

the top portion of the highlighted submatrix in ().

• Have a different thread multiply the right submatrix in with the bottom portion in .

• Then the two resulting matrices would be summed to produce the result in .

[Li et al., GPU Matrix Multiplication, Multi- and Many-Core Technologies: Architectures, Programming, Algorithms and Applications, 2013]

GPUS VS CPUS

39

• GPUs are much better than CPUs at parallel processing.

[Huang et al., GPU computing performance analysis on matrix multiplication, 2019]

GPUS VS CPUS

40

• GPUs are much better than CPUs at parallel processing.

[Huang et al., GPU computing performance analysis on matrix multiplication, 2019]

GPU PROGRAMMING

41

• In order to maximize the benefit from using GPUs, we need to keep all our
matrices in GPU memory.

• So for ML applications, that requires that all operations required by the
model forward/backward pass are implemented on the GPU.

• It is (relatively) expensive to transfer data to/from GPU memory and system
memory.

• If you develop a new model that uses a novel operation, and you want to be
able to run your model on the GPU,

• You will need to implement that operation in the GPU.

• How can we do this?

GPU PROGRAMMING

42

• GPUs were initially designed to accelerate 3D rendering.

• Initially, they were not programmable.

• In 2001, the first GPUs were released that supported programmable shaders.

• Developers could write shaders to better customize the rendering process
(e.g., how to color each pixel, calculate lighting, etc).

• In 2007, general-purpose GPU programming languages were released to
allow GPUs to be used for non-graphics applications.

• There are a number of GPU programming languages that can be used to
implement functions on the GPU.

• CUDA, OpenCL, etc…

• A GPU program that implements a specific routine is called a kernel.

GPU PROGRAMMING

43

• Example of a matrix-vector product kernel in OpenCL:

[https://en.wikipedia.org/wiki/OpenCL]

GPU PROGRAMMING

44

• Example of element-wise product kernel in CUDA:

[https://en.wikipedia.org/wiki/CUDA]

GPU PROGRAMMING

45

• What would a matrix multiplication kernel look like?

[Simon Boehm, How to Optimize a CUDA Matmul Kernel for cuBLAS-like Performance: a Worklog, 2022]

GPU PROGRAMMING

46

• What would a matrix multiplication kernel look like?

• This simple implementation runs at GFLOPs/s on an A6000 GPU.

• Nvidia’s proprietary implementation (in the cuBLAS library) performs the
same operation at 23249.6 GFLOPs/s!

• The naïve implementation is 1.3% as fast as the proprietary one.

• What accounts for this huge performance difference?

• Optimizations!

[Simon Boehm, How to Optimize a CUDA Matmul Kernel for cuBLAS-like Performance: a Worklog, 2022]

GPU PROGRAMMING

47

• Matrix multiplication optimizations:

[Simon Boehm, How to Optimize a CUDA Matmul Kernel for cuBLAS-like Performance: a Worklog, 2022]

GPU PROGRAMMING

48

• Linear algebra optimizations can provide significant speedups.

• However, they are tedious to implement.

• Some optimizations must be aware of the hardware architectural details.

• Cache structure, scheduling, number and types of cores, etc.

• Optimizations are frequently updated for new generations of hardware.

GPU PROGRAMMING

49

• Thanks to modern ML libraries such as TensorFlow and PyTorch, much of this
complexity is abstracted away from us.

• These libraries will call the GPU kernels to execute this operation quickly.

• These libraries also implement automatic differentiation.

• We only need to write code for the forward pass.

• TensorFlow/PyTorch will automatically compute the gradient (autograd).

GPU PROGRAMMING

50

• But if you develop a new model that requires a new operation that is not
provided by existing CUDA or OpenCL libraries, then you will need to write a
kernel that implements this operation.

• You may also need to write code that automatically differentiates this
operation so that TensorFlow/PyTorch can correctly do so when running the
backward pass.

MORE SPECIALIZED HARDWARE

51

• Google developed Tensor Processing Units (TPUs) specifically to accelerate
common operations in deep learning, such as matrix multiplication.

Performance is

slightly better.

[Mahmoud Khairy, TPU vs GPU vs Cerebras vs Graphcore: A Fair Comparison between ML Hardware, 2020]

MORE SPECIALIZED HARDWARE

52

• Many companies are currently developing application-specific integrated
circuits (ASICs) which are specifically designed to accelerate transformer
computations.

MORE SPECIALIZED HARDWARE

53

• A similar trajectory occurred with Bitcoin mining hardware.

[Austin Lyons, ASICs: Custom Chips to Improve Performance, 2024]

NEXT TIME:
HOW TO MAKE TRANSFORMERS FASTER?

54

• NLP models can be very expensive, in terms of time and memory.

• Especially as they are scaled up.

• Better hardware, such as GPUs, can really help to improve the performance of
such models.

• Transformers especially benefit from parallelization.

• But what if the models/matrices can’t fit in the memory of one GPU?

• Can we modify the transformer architecture to run faster?

• Without sacrificing accuracy?

• How small/fast can we make the model if we do tradeoff some accuracy?

• Parameter-efficient fine-tuning

• Model compression (quantization, distillation)

QUESTIONS?

	Slide 1: CS 577: Natural Language Processing
	Slide 2: Previously: Prompting
	Slide 3: Chain-of-thought Prompting
	Slide 4: Chain-of-thought Prompting
	Slide 5: Chain-of-thought Prompting
	Slide 6: Chain-of-thought Prompting
	Slide 7: Emergent abilities
	Slide 8: Emergent Abilities
	Slide 9: Emergent abilities?
	Slide 10: Emergent abilities?
	Slide 11: Emergent abilities?
	Slide 12: Efficiency
	Slide 13: Cost of Training and Inference
	Slide 14: Cost of Vector operations
	Slide 15: Matrix multiplication
	Slide 16: Softmax
	Slide 17: Softmax
	Slide 18: Activation Functions
	Slide 19: Activation Functions
	Slide 20: Cost of Forward Pass
	Slide 21: Cost of Forward Pass
	Slide 22: Cost of Forward Pass
	Slide 23: Cost of Forward Pass
	Slide 24: Cost of Training
	Slide 25: Cost of Training
	Slide 26: Cost of Training
	Slide 27: Cost of Training
	Slide 28: Cost of Training
	Slide 29: Cost of Training
	Slide 30: Cost of Training
	Slide 31: Cost of RNNs
	Slide 32: Cost of RNNs
	Slide 33: Cost of RNNs
	Slide 34: Transformers vs RNNs
	Slide 35: Parallelization
	Slide 36: Parallelization
	Slide 37: Parallelization
	Slide 38: Parallelization
	Slide 39: GPUs vs CPUs
	Slide 40: GPUs vs CPUs
	Slide 41: GPU Programming
	Slide 42: GPU Programming
	Slide 43: GPU Programming
	Slide 44: GPU Programming
	Slide 45: GPU Programming
	Slide 46: GPU Programming
	Slide 47: GPU Programming
	Slide 48: GPU Programming
	Slide 49: GPU Programming
	Slide 50: GPU Programming
	Slide 51: More Specialized Hardware
	Slide 52: More Specialized Hardware
	Slide 53: More Specialized Hardware
	Slide 54: Next time: How to make Transformers Faster?
	Slide 55: Questions?

