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PREVIOUSLY: COST OF NLP MODELS
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• We discussed how to compute the cost of running NLP models,

• Both in terms of memory and time,

• For training and inference.

• We talked about how we can make models run faster via parallelization.

• And how to use hardware that is better suited for highly-parallel 
computation, such as GPUs.

• GPUs have many cores compared to CPUs, even though each core is 
slower/more limited.



MORE SPECIALIZED HARDWARE?
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• Google developed Tensor Processing Units (TPUs) specifically to accelerate 
common operations in deep learning, such as matrix multiplication.

Performance is 

slightly better.

[Mahmoud Khairy, TPU vs GPU vs Cerebras vs Graphcore: A Fair Comparison between ML Hardware, 2020]



MORE SPECIALIZED HARDWARE?
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• Many companies are currently developing application-specific integrated 
circuits (ASICs) which are specifically designed to accelerate transformer 
computations.



MORE SPECIALIZED HARDWARE
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• A similar trajectory occurred with Bitcoin mining hardware.

[Austin Lyons, ASICs: Custom Chips to Improve Performance, 2024]



HOW TO MAKE TRANSFORMERS FASTER?
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• NLP models can be very expensive, in terms of time and memory.

• Especially as they are scaled up.

• Better hardware, such as GPUs, can really help to improve the performance of 
such models.

• Transformers especially benefit from parallelization.

• Can we modify the transformer architecture to run faster?

• Without sacrificing accuracy?

• How small/fast can we make the model if we do tradeoff some accuracy?

• Parameter-efficient fine-tuning

• Model compression (quantization, distillation)

• What if the models/matrices can’t fit in the memory of one GPU?



BATCHING
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• Batch size is an important hyperparameter during training.

• If the (mini-)batch size is too small, the gradient is too noisy,

• And learning can be unstable.

• As we observe from scaling laws, larger models require larger batch sizes for 
optimal training.

• What about during inference?

• Batching doesn’t make the model behave any differently,

• But it can help to perform inference faster.



BATCHING

8[Chitty-Venkata et al., 2024]



BATCHING
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• But how does this work?

• There is a linear amount of 
additional input.

(i.e., a linear amount of work to do)

• Shouldn’t the total computation time 
also increase linearly?

• If we performed each forward pass 
one after the other, then yes.

[Horton et al., 2024]



BATCHING
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• Instead, we leverage the parallel processing ability of the hardware (GPU).

• Consider the forward pass of an RNN for some input.

• The hidden state is a -dimensional vector.

• If we run separate forward passes for each of the three example inputs, 
we will have three different -dimensional hidden state vectors at time .

embeddings for 

batch size = 1:

“The quick brown”

“7 + 12 =”

“How to bake cake?”



BATCHING
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• Each of these hidden states are then processed at each step in the RNN’s 
forward pass.

• Recall from last lecture: The most computationally-intensive part of this is 
the matrix multiplication in the linear layers.

• If we perform the forward passes separately, each matrix multiplication will 
compute the product of a    vector and a    matrix.

embeddings for 

batch size = 1:

“The quick brown”

“7 + 12 =”

“How to bake cake?”



BATCHING
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• So we need  FLOPs to compute the matrix product.

• If we have d threads, we can compute it in  time, using block matrix 
multiplication.

• But if we have even more threads, we won’t see much more of a speedup.

• What there are more than  available threads? More than ?

embeddings for 

batch size = 1:

“The quick brown”

“7 + 12 =”

“How to bake cake?”



BATCHING
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• If  is not too large, if batch size = 1, we are underutilizing parallel compute 
resources.

• Instead, we can concatenate the hidden state vectors across multiple forward 
passes into a single matrix with dimension   , where  is the batch size.

• Then each linear layer in the RNN involves a product of a    matrix with a  
  matrix.

embeddings for 

batch size = 3:
“The quick brown”

“7 + 12 =”

“How to bake cake?”



BATCHING
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• The other operations in the RNN (e.g., softmax) are performed on each row of 
this matrix.

• In general, increasing batch size causes greater utilization of the hardware’s 
“parallelization capacity.”

• A more common measure of “parallelization capacity” is memory bandwidth.

• How quickly can you write data to the GPU’s high bandwidth memory?

embeddings for 

batch size = 3:
“The quick brown”

“7 + 12 =”

“How to bake cake?”



BATCHING
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• We can easily apply batching to other models as well.

• For transformers, recall that the embedding is a matrix with dimension          
.

• When batch size > 1, the embedding becomes a tensor with dimension           
.

• (conventionally, the batch is typically the first index)

vector with size matrix with size  tensor with size   

(order-1 tensor) (order-2 tensor) (order-3 tensor)



BATCHING
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• Once the batch size is sufficiently large, the memory bandwidth of the GPU 
will become the bottleneck,

• And the overall throughput will stop increasing.

[Chitty-Venkata et al., 2024]



GPU MEMORY IS THE BOTTLENECK
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• In GPUs, the processors can process data faster than data can be written to 
high bandwidth memory (HBM).

[Gholami et al., 2024]



CAN WE MAKE TRANSFORMERS FASTER?
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• Since transformers are ubiquitous in NLP today, maybe we can find ways to 
make transformers faster.

• One way is to optimize the attention mechanism.

• GPU memory is divided into two sections:

• All GPU cores have shared access to high bandwidth memory (HBM).

• Each GPU core has exclusive access to static random access memory 
(SRAM), which is smaller but faster than HBM.

• Example:

• On an A100, there are 108 cores (i.e., “streaming multiprocessors”).

• 40 or 80GB of HBM, with a bandwidth of 1.5-2.0 TB/s.

• 192KB of SRAM per core, with a bandwidth of 19 TB/s.
[Dao et al., 2022]



CAN WE MAKE TRANSFORMERS FASTER?
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• Recall that, given matrices , , and , the output of the attention layer is: 
(for one head)

• Implementing this in PyTorch naively is easy:

 



CAN WE MAKE TRANSFORMERS FASTER?
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• Recall that, given matrices , , and , the output of the attention layer is: 
(for one head)

• But recall that each of these operations (matrix product, softmax) are 
executed as GPU kernels.

• GPU kernels are dispatched to GPU cores along with an assigned tile or block 
of the input.

• The memory needed by that kernel is copied from HBM into the core’s SRAM.

 



CAN WE MAKE TRANSFORMERS FASTER?
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• Recall that, given matrices , , and , the output of the attention layer is: 
(for one head)

• The naïve implementation involves three kernels:

• A matrix product, followed by a softmax, followed by matrix product.

• (there may also be a mask kernel, if using a causal mask)

 



CAN WE MAKE TRANSFORMERS FASTER?
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• Recall that, given matrices , , and , the output of the attention layer is: 
(for one head)

• So the naïve implementation requires 3-4 reads from HBM and 3-4 writes to 
HBM, which is the primary bottleneck.

 



KERNEL FUSION
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• If we write the attention operation as a single kernel, as opposed to 3-4 
separate kernels, we can avoid unnecessary reads/writes from HBM.

• We can keep the memory in SRAM and the registers of GPU cores for 
longer.

• The idea of combining multiple distinct kernels into a single kernel is called 
kernel fusion.

[Dao et al., 2022]



KERNEL FUSION
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• Kernel fusion can be done automatically.

• PyTorch performs kernel fusion automatically:

•

• XLA is a compiler that works with multiple 
frameworks, including PyTorch and TensorFlow.

[Hugging Face Documentation, Optimize inference using torch.compile()]



KERNEL FUSION FOR ATTENTION
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• But kernel fusion alone doesn’t magically get rid of all unnecessary 
reads/writes to HBM.

• In the first step of the attention computation, we compute the product  .

• We perform this product block-wise, where each GPU core is assigned to a 
submatrix of  .



KERNEL FUSION FOR ATTENTION
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• The next step is to compute the softmax over each row of  .

• But notice that the softmax requires access to the full row,

• Whereas each core only has information about one block/tile.



KERNEL FUSION FOR ATTENTION
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• The next step is to compute the softmax over each row of  .

• But notice that the softmax requires access to the full row,

• Whereas each core only has information about one block/tile.

• So how can we divide the softmax operation across GPU cores?



KERNEL FUSION FOR ATTENTION

28

• Suppose for simplicity, the row  is divided into two blocks:  and .

• We can compute the numerator  and denominator  for each these blocks.

• After  and  have been computed for both blocks, we can aggregate them to 
compute the full softmax with the below formulas:

[Dao et al., 2022]



FLASHATTENTION
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• After we have computed a block of  ,

• The same GPU core can perform block matrix multiplication (with the 
corresponding rows of ) to compute the block of the final output: 

 .

• This method is called FlashAttention (Dao et al., 2022).



FLASHATTENTION
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• Further optimizations have further improved the performance of the kernel.

[Dao et al., 2023]



FLASHATTENTION 2
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• Further optimizations have further improved the performance of the kernel.

[Dao et al., 2023]



FLASHATTENTION 3
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• Further optimizations have further improved the performance of the kernel.

[Shah and Bikshandi et al., 2024]



CAN WE MAKE TRANSFORMERS FASTER?
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• We have discussed kernel-level and hardware-aware optimizations that help 
to speed up transformers.

• Block matrix multiplication, FlashAttention.

• Are there higher-level optimizations that we can do?

• Let’s focus on decoder-only transformer models.

• Recall that in decoder-only models, a causal mask prevents each token from 
attending to any token that comes after it.

• During inference, we generate tokens one after the other.

• Is there any redundant computation that we can remove?



CAN WE MAKE TRANSFORMERS FASTER?
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• Consider the attention computation while generating a sequence of 4 tokens:

[João Lages, Transformers KV Caching Explained, 2023]



CAN WE MAKE TRANSFORMERS FASTER?
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• Consider the attention computation while generating a sequence of 4 tokens:

[João Lages, Transformers KV Caching Explained, 2023]



CAN WE MAKE TRANSFORMERS FASTER?
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• Consider the attention computation while generating a sequence of 4 tokens:

[João Lages, Transformers KV Caching Explained, 2023]



CAN WE MAKE TRANSFORMERS FASTER?
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• Consider the attention computation while generating a sequence of 4 tokens:

• Notice that with each forward pass, we are redundantly computing the key, 
query, and value vectors for all tokens except the last one.

[João Lages, Transformers KV Caching Explained, 2023]



CAN WE MAKE TRANSFORMERS FASTER?
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• We can instead store these old key and value vectors in a cache, and instead 
compute the query vector for only the latest token.

[João Lages, Transformers KV Caching Explained, 2023]



KEY-VALUE CACHING
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• We can instead store these old key and value vectors in a cache, and instead 
compute the query vector for only the latest token.

[João Lages, Transformers KV Caching Explained, 2023]



KEY-VALUE CACHING
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• We can instead store these old key and value vectors in a cache, and instead 
compute the query vector for only the latest token.

[João Lages, Transformers KV Caching Explained, 2023]



KEY-VALUE CACHING
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• We can instead store these old key and value vectors in a cache, and instead 
compute the query vector for only the latest token.

[João Lages, Transformers KV Caching Explained, 2023]



KEY-VALUE CACHING
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• This approach is called key-value caching (KV caching).

• Since this method relies on tokens in a sequence being generated one after 
the other, the KV cache is only used during inference.

• KV caching only works for decoder-only models (i.e., with a causal mask).

• KV caching reduces the cost of the forward pass from O  to O  
where  is the sequence length and  is the model dimension.

• Some benchmarks: Perform 10 generation steps with GPT-2 on Tesla T4 GPU.

• Without KV caching:  seconds

• With KV caching:  seconds

[João Lages, Transformers KV Caching Explained, 2023]



KEY-VALUE CACHING
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• But the KV cache requires additional memory to store the cache.

• For each attention layer, and for each attention head, we must store  key 
and value vectors, each with dimension .

• So the total memory requirement is: .

• Where  is batch size and  is number of attention heads.



REDUCING MEMORY FOOTPRINT OF KV CACHE
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• Can we reduce the memory requirements of KV caching?

• In standard multi-head attention, for each attention layer,

• We compute  query vectors,  key vectors, and  value vectors.

• What if each attention head did not have its own key and value vectors?

• What if we only compute a single key vector and a single value vector to 
use across all attention heads?

• So the only difference between attention heads is the query vector.

• This approach is called multi-query attention (MQA; Shazeer, 2019).

• Note that this is an architectural modification of the transformer.

• So the model needs to be trained using MQA.



MULTI-QUERY ATTENTION
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• MQA reduces the expressivity of the standard (MHA) transformer.

• There is a cost in how well the model can fit to data (i.e., accuracy).

[Shazeer, 2019]



MULTI-QUERY ATTENTION
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• Is there some middle-ground between MQA and MHA that is not as memory-
intensive as MHA but is more accurate than MQA?

• In MHA, we have a  correspondence between key/value vectors and 
attention heads.

• In MQA, we have a  correspondence between key/value vectors and 
attention heads.

• What if we instead have a  correspondence where  is between  and ?

• This is analogous to grouping the  attention heads into  groups.

• Each group of attention heads computes a single key and value vector.



GROUPED QUERY ATTENTION
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• This approach is called grouped query attention (GQA; Ainslie, Lee-Thorp, de 
Jong et al., 2023).



GROUPED QUERY ATTENTION
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• GQA is similar to MQA in terms of inference speed, but more similar to MHA 
in terms of accuracy.

[Ainslie, Lee-Thorp, de Jong et al., 2023]



GROUPED QUERY ATTENTION
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• GQA is similar to MQA in terms of inference speed, but more similar to MHA 
in terms of accuracy.

[Ainslie, Lee-Thorp, de Jong et al., 2023]



NEXT: WORKING WITH LARGE MODELS
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• We discussed how to make transformers faster,

• For both training and inference.

• But memory is often a limiting factor.

• What do we do if a model is larger than the available GPU memory?

• What if the batch during training won’t fit in memory?

• Different ways to parallelize training and inference of large models.

• Can we trade model size for accuracy?

• Model compression:

• Parameter efficient fine-tuning (PEFT) such as LoRA

• Quantization

• Distillation



QUESTIONS?
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