CS 577:
NATURAL LANGUAGE
PROCESSING

Abulhair Saparov

Lecture 11: Efficiency Il



PREVIOUSLY: COST OF NLP MODELS

* We discussed how to compute the cost of running NLP models,
* Both in terms of memory and time,
* For training and inference.

* We talked about how we can make models run faster via parallelization.

* And how to use hardware that is better suited for highly-parallel
computation, such as GPUs.

* GPUs have many cores compared to CPUs, even though each core is
slower/more limited.



MORE SPECIALIZED HARDWARE?

* Google developed Tensor Processing Units (TPUs) specifically to accelerate
common operations in deep learning, such as matrix multiplication.

16x TPU vs 16x GPU on MLPerf-train
Performance is B 16xTPU [ 16x GPU
slightly better. 1.25

1.00
0.75

0.50

Normalized Performance

0.25

0.00
ResNet-50 v1.5 SSD w/ ResNet-34 Mask-R-CNN NMT Transformer

[Mahmoud Khairy, TPU vs GPU vs Cerebras vs Graphcore: A Fair Comparison between ML Hardware, 2020]



MORE SPECIALIZED HARDWARE?

* Many companies are currently developing application-specific integrated

circuits (ASICs) which are specifically designed to accelerate transformer
computations.
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MORE SPECIALIZED HARDWARE

* A similar trajectory occurred with Bitcoin mining hardware.
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HOW TO MAKE TRANSFORMERS FASTER?

NLP models can be very expensive, in terms of time and memory.

* Especially as they are scaled up.
Better hardware, such as GPUs, can really help to improve the performance of
such models.

* Transformers especially benefit from parallelization.

Can we modify the transformer architecture to run faster?
* Without sacrificing accuracy?
* How small/fast can we make the model if we do tradeoff some accuracy?
* Parameter-efficient fine-tuning
 Model compression (quantization, distillation)

What if the models/matrices can’t fit in the memory of one GPU?



BATCHING

Batch size is an important hyperparameter during training.

If the (mini-)batch size is too small, the gradient is too noisy,
* And learning can be unstable.
As we observe from scaling laws, larger models require larger batch sizes for
optimal training.
What about during inference?
* Batching doesn’t make the model behave any differently,
* But it can help to perform inference faster.



BATCHING
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e But how does this work?

e There is a linear amount of

additional input.

(i.e., a linear amount of work to do)

* Shouldn’t the total computation time

also increase linearly?

* If we performed each forward pass
one after the other, then yes.

[Horton et al., 2024]
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BATCHING

* Instead, we leverage the parallel processing ability of the hardware (GPU).

* Consider the forward pass of an RNN for some input.
* The hidden state is a d-dimensional vector.

* If we run separate forward passes for each of the three example inputs,
we will have three different d-dimensional hidden state vectors at time t.

embeddings for
batch size = 1:

“The quick brown” —>|

“7 +12 =" ——>

“How to bake cake?” — > .
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BATCHING

* Each of these hidden states are then processed at each step in the RNN'’s
forward pass.

* Recall from last lecture: The most computationally-intensive part of this is
the matrix multiplication in the linear layers.

* If we perform the forward passes separately, each matrix multiplication will
compute the product of a 1 x d vector and a d x d matrix.

embeddings for
batch size = 1:

“The quick brown” —>|

“7 +12 =" ——>

“How to bake cake?” — > .
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BATCHING

So we need 2d? FLOPs to compute the matrix product.

If we have d threads, we can compute it in 2d time, using block matrix
multiplication.

But if we have even more threads, we won’t see much more of a speedup.

What there are more than d available threads? More than 2d??

embeddings for
batch size = 1:

“The quick brown”

“7 + 12 ="

“How to bake cake?” [ ]
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BATCHING

* If dis not too large, if batch size = 1, we are underutilizing parallel compute
resources.

* Instead, we can concatenate the hidden state vectors across multiple forward
passes into a single matrix with dimension B x d, where Bis the batch size.

* Then each linear layer in the RNN involves a product of a B x d matrix with a
d x d matrix.

embeddings for

“The quick brown” batch size = 3:
“T7T+ 12 =7 —>

/

“How to bake cake?”
13



BATCHING

* The other operations in the RNN (e.g., softmax) are performed on each row of
this matrix.

* In general, increasing batch size causes greater utilization of the hardware’s
“parallelization capacity.”

* A more common measure of “parallelization capacity” is memory bandwidth.
* How quickly can you write data to the GPU’s high bandwidth memory?

embeddings for
“The quick brown” batch size = 3:

“7+12 =" ——>

“How to bake cake?” /
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BATCHING

We can easily apply batching to other models as well.

For transformers, recall that the embedding is a matrix with dimension
n X d

model*

When batch size > 1, the embedding becomes a tensor with dimension
B x nx d

model*
(conventionally, the batch is typically the first index)
vector with size 7 matrix with size 3 x 7 tensor with size 4 x 3 x 7

(order-1 tensor) (order-2 tensor) (order-3 tensor)
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BATCHING

* Once the batch size is sufficiently large, the memory bandwidth of the GPU
will become the bottleneck,

* And the overall throughput will stop increasing.
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GPU MEMORY IS THE BOTTLENECK

* In GPUs, the processors can process data faster than data can be written to

high bandwidth memory (HBM).
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CAN WE MAKE TRANSFORMERS FASTER?

Since transformers are ubiquitous in NLP today, maybe we can find ways to
make transformers faster.

One way is to optimize the attention mechanism.

GPU memory is divided into two sections:
* All GPU cores have shared access to high bandwidth memory (HBM).
* Each GPU core has exclusive access to static random access memory
(SRAM), which is smaller but faster than HBM.
Example:
* On an A100, there are 108 cores (i.e., “streaming multiprocessors”).
e 40 or 80GB of HBM, with a bandwidth of 1.5-2.0 TB/s.
e 192KB of SRAM per core, with a bandwidth of 19 TB/s.

[Dao et al., 2022] 18



CAN WE MAKE TRANSFORMERS FASTER?

* Recall that, given matrices K, §, and V, the output of the attention layer is:
(for one head)

0 = softmax(QKT/Vd) V

* Implementing this in PyTorch naively is easy:

attention_scores = query @ key.T
attention_scores = attention_scores / math.sqrt(d_k)
attention_weights = F.softmax(attention_scores, dim=-1)

context_vector = attention_weights @ value
print(context_vector)



CAN WE MAKE TRANSFORMERS FASTER?

* Recall that, given matrices K, §, and V, the output of the attention layer is:
(for one head)

0 = softmax(QKT/Vd) V
e But recall that each of these operations (matrix product, softmax) are
executed as GPU kernels.

* GPU kernels are dispatched to GPU cores along with an assigned tile or block
of the input.

* The memory needed by that kernel is copied from HBM into the core’s SRAM.

20



CAN WE MAKE TRANSFORMERS FASTER?

* Recall that, given matrices K, §, and V, the output of the attention layer is:

(for one head)
0 = softmax(QKT/Vd) V

Algorithm 0 Standard Attention Implementation

Require: Matrices Q,K,V € RV*4 in HBM.
1: Load Q, K by blocks from HBM, compute S = QKT, write S to HBM.
2: Read S from HBM, compute P = softmax(S), write P to HBM.
3: Load P and V by blocks from HBM, compute O = PV, write O to HBM.
4: Return O.

* The naive implementation involves three kernels:
* A matrix product, followed by a softmax, followed by matrix product.
e (there may also be a mask kernel, if using a causal mask)

21



CAN WE MAKE TRANSFORMERS FASTER?

* Recall that, given matrices K, §, and V, the output of the attention layer is:
(for one head)

0 = softmax(QKT/Vd) V

Algorithm 0 Standard Attention Implementation

Require: Matrices Q,K,V € RV*4 in HBM.
1: Load Q, K by blocks from HBM, compute S = QKT, write S to HBM.
2: Read S from HBM, compute P = softmax(S), write P to HBM.
3: Load P and V by blocks from HBM, compute O = PV, write O to HBM.
4: Return O.

* So the naive implementation requires 3-4 reads from HBM and 3-4 writes to
HBM, which is the primary bottleneck.
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KERNEL FUSION

* If we write the attention operation as a single kernel, as opposed to 3-4
separate kernels, we can avoid unnecessary reads/writes from HBM.

* We can keep the memory in SRAM and the registers of GPU cores for

longer.
* The idea of combining multiple distinct kernels into a single kernel is called
kernel fusion. Attention on GPT-2

15 JMatmuI

Dropout

Softmax

Time (ms)

Fused

Mask Kernel
—

j Matmul

[Doo et al., 2022] PyTorch FlashAttention



KERNEL FUSION

Inference on V100 with Batch Size=1

* Kernel fusion can be done automatically.

B without compile()
e with compile()

* PyTorch performs kernel fusion automatically:

80 1

* torch.compile(...)

60

* XLA is a compiler that works with multiple
frameworks, including PyTorch and TensorFlow.
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[Hugging Face Documentation, Optimize inference using torch.compile()]



KERNEL FUSION FOR ATTENTION

* But kernel fusion alone doesn’t magically get rid of all unnecessary
reads/writes to HBM.

* In the first step of the attention computation, we compute the product K.

* We perform this product block-wise, where each GPU core is assigned to a
submatrix of QK.
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KERNEL FUSION FOR ATTENTION

* The next step is to compute the softmax over each row of gK*/Vd.

* But notice that the softmax requires access to the full row,
 Whereas each core only has information about one block/tile.
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KERNEL FUSION FOR ATTENTION

* The next step is to compute the softmax over each row of gK*/Vd.

* But notice that the softmax requires access to the full row,
 Whereas each core only has information about one block/tile.

* So how can we divide the softmax operation across GPU cores?

TAC)

softmax(x) := T8

m(x) = m?x X;, f(x) — [e)q—m(X) . exB—m(x)] , '5(.7(?) — Zf(x)i’
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KERNEL FUSION FOR ATTENTION

« Suppose for simplicity, the row z is divided into two blocks: £ and z?.
* We can compute the numerator f and denominator 1 for each these blocks.

* After fand 1 have been computed for both blocks, we can aggregate them to
compute the full softmax with the below formulas:

TAC)

softmax(x) := T8

m(x) = m([x(l) x(g)]) = max(m(x™M), m(x?)), f(x)= em(x(”)—m(X)f(x(l)) em(x(Q))—m(X)f(x@))] ,

£00) = £([x D x@]) = G (D) 4 D)= (),

[Dao et al., 2022] 28



FLASHATTENTION

» After we have computed a block of softmax (GK*/vVd),

e The same GPU core can perform block matrix multiplication (with the
corresponding rows of 1) to compute the block of the final output:
softmax (QKT/Vd) V.

* This method is called FlashAttention (Dao et al., 2022).

Model implementations OpenWebText (ppl) Training time (speedup)
GPT-2 small - Huggingface [87 18.2 9.5 days (1.0x)
GPT-2 small - Megatron-LM [77] 18.2 4.7 days (2.0x)
GPT-2 small - FLASHATTENTION 18.2 2.7 days (3.5%)
GPT-2 medium - Huggingface [87] 14.2 21.0 days (1.0x)
GPT-2 medium - Megatron-LM |77 14.3 11.5 days (1.8X)
GPT-2 medium - FLASHATTENTION 14.3 6.9 days (3.0x)
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FLASHATTENTION

* Further optimizations have further improved the performance of the kernel.

Attention forward + backward speed (A100 80GB SXM4) Attention forward + backward speed (A100 80GB SXM4)
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[Dao et al., 2023] 30



FLASHATTENTION 2

* Further optimizations have further improved the performance of the kernel.

Attention forward + backward speed (A100 80GB SXM4) Attention forward + backward speed (A100 80GB SXM4)
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[Dao et al., 2023] 31



FLASHATTENTION 3

* Further optimizations have further improved the performance of the kernel.

Attention forward speed, head dim 64 (H100 80GB SXM5) Attention forward speed, head dim 64 (H100 80GB SXM5)

B Standard attention B Standard attention
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CAN WE MAKE TRANSFORMERS FASTER?

We have discussed kernel-level and hardware-aware optimizations that help
to speed up transformers.

* Block matrix multiplication, FlashAttention.
Are there higher-level optimizations that we can do?
Let’s focus on decoder-only transformer models.

Recall that in decoder-only models, a causal mask prevents each token from
attending to any token that comes after it.

During inference, we generate tokens one after the other.

Is there any redundant computation that we can remove?

33



CAN WE MAKE TRANSFORMERS FASTER?

* Consider the attention computation while generating a sequence of 4 tokens:

Q KT QK" v Attention
Query Token 1 ~ QK Value Token 1 Token 1
p
X % = X =
m
=
(1, emb_size) (emb_size, 1) (1, 1) (1, emb_size) (1, emb_size)

[Jodo Lages, Transformers KV Caching Explained, 2023] 34



CAN WE MAKE TRANSFORMERS FASTER?

* Consider the attention computation while generating a sequence of 4 tokens:

Q KT QK' Y% Attention
Query Token 1 ~ | = ok | ok Value Token 1 Token 1
1] D
Query Token 2 T QK | QK Value Token 2 Token 2
X o o = X =
3| p
3 -}
- N
(2, emb_size) (emb_size, 2) (2, 2) (2, emb_size) (2, emb_size)

[Jodo Lages, Transformers KV Caching Explained, 2023] 35



CAN WE MAKE TRANSFORMERS FASTER?

* Consider the attention computation while generating a sequence of 4 tokens:

Q KT QK' v Attention
uery Token 1
Query ~ | = | = ok | ok | qx Value Token 1 Token 1
Query Token 2 SIS oK | oK | oK Value Token 2 Token 2
x |2|2|¢g - X =
Query Token 3 ooz i Value Token 3 Token 3
—_ \] w
(3, emb_size) (emb_size, 3) (3,3) (3, emb_size) (3, emb_size)

[Jodo Lages, Transformers KV Caching Explained, 2023] 36



CAN WE MAKE TRANSFORMERS FASTER?

* Consider the attention computation while generating a sequence of 4 tokens:

* Notice that with each forward pass, we are redundantly computing the key,
query, and value vectors for all tokens except the last one.

Q KT QK' Y% Attention
ue oKken

ry (§ ?'S g; ?"S Q, K, Q. | ok |fak Value Token 1 Token 1

Query Token 2 SUS1S oK | ok | ok [lax Value Token 2 Token 2
x[|E28 (2[5 = x -
Query Token 3 DolD e Al I J ke Value Token 3 Token 3
= v e & QK QK QK QK \ >

Query Token 4 N N I I Ml Value Token 4 Token 4
(4, emb_size) (emb_size, 4) (4, 4) (4, emb_size) (4, emb_size)

[Jodo Lages, Transformers KV Caching Explained, 2023] 37



CAN WE MAKE TRANSFORMERS FASTER?

* We can instead store these old key and value vectors in a cache, and instead
compute the query vector for only the latest token.

Q KT QK" % Attention
Query Token 1 QK Value Token 1 Token 1
&
. |2 _ N -
[g]
-]
(1, emb_size) (emb_size, 1) (1, 1) (1, emb_size) (1, emb_size)

D Values that will be masked |:| Values that will be taken from cache

[Jodo Lages, Transformers KV Caching Explained, 2023] 38



KEY-VALUE CACHING

* We can instead store these old key and value vectors in a cache, and instead

compute the query vector for only the latest token.

Q KT QK'
| o
Query Token 2 ‘% = ok | ax
5 3
- | N
(1, emb_size) (emb_size, 2) (1, 2)

D Values that will be masked |:| Values that will be taken from cache

[Jodo Lages, Transformers KV Caching Explained, 2023]

\' Attention
Value Token 1
Value Token 2 Token 2

(2, emb_size)

(1, emb_size)
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KEY-VALUE CACHING

* We can instead store these old key and value vectors in a cache, and instead
compute the query vector for only the latest token.

Query Token 3

(1, emb_size)

KT
-~ -~ ?D<
e (e &
RS
~ ~ ~
m M (1]
> 3 -]
— N w
(emb_size, 3)

[Jodo Lages, Transformers KV Caching Explained, 2023]

QK"

(1,3)

\' Attention
Value Token 1
Value Token 2
Value Token 3 Token 3

(3, emb_size)

D Values that will be masked |:| Values that will be taken from cache

(1, emb_size)
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KEY-VALUE CACHING

* We can instead store these old key and value vectors in a cache, and instead

compute the query vector for only the latest token.

Query Token 4

D Values that will be masked . Values that will be taken from cache

[Jodo Lages, Transformers KV Caching Explained, 2023]
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(1, emb_size) (emb_size, 4)
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QLK | QK

(1, 4)

Value Token 4

Attention

Token 4

(4, emb_size)

(1, emb_size)
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KEY-VALUE CACHING

* This approach is called key-value caching (KV caching).

* Since this method relies on tokens in a sequence being generated one after
the other, the KV cache is only used during inference.

e KV caching only works for decoder-only models (i.e., with a causal mask).

e KV caching reduces the cost of the forward pass from O(n?d?) to O(nd?)
where n is the sequence length and d is the model dimension.

* Some benchmarks: Perform 10 generation steps with GPT-2 on Tesla T4 GPU.
* Without KV caching: 56.197 + 1.855 seconds
* With KV caching: 11.885 + 0.272 seconds

[Jodo Lages, Transformers KV Caching Explained, 2023] 42



KEY-VALUE CACHING

* But the KV cache requires additional memory to store the cache.

* For each attention layer, and for each attention head, we must store n key
and value vectors, each with dimension d.

* So the total memory requirement is: 2BndH.
* Where Bis batch size and His number of attention heads.

43



REDUCING MEMORY FOOTPRINT OF KV CACHE

Can we reduce the memory requirements of KV caching?

In standard multi-head attention, for each attention layer,
* We compute Hquery vectors, Hkey vectors, and H value vectors.

What if each attention head did not have its own key and value vectors?

* What if we only compute a single key vector and a single value vector to
use across all attention heads?

* So the only difference between attention heads is the query vector.
This approach is called multi-query attention (MQA; Shazeer, 2019).
Note that this is an architectural modification of the transformer.

So the model needs to be trained using MQA.
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MULTI-QUERY ATTENTION

* MQA reduces the expressivity of the standard (MHA) transformer.

* There is a cost in how well the model can fit to data (i.e., accuracy).

[Shazeer, 2019]

Table 3: Billion-Word LM Benchmark Results.

Attention h  dg,d, dfs | dev-PPL
multi-head 8 128 8192 29.9
multi-query 8 128 9088 30.2
multi-head 1 128 9984 31.2
multi-head 2 64 9984 31.1
multi-head 4 32 9984 31.0
multi-head 8 16 9984 30.9
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MULTI-QUERY ATTENTION

Is there some middle-ground between MQA and MHA that is not as memory-
intensive as MHA but is more accurate than MQA?

In MHA, we have a 1:1 correspondence between key/value vectors and
attention heads.

In MQA, we have a 1:Hcorrespondence between key/value vectors and
attention heads.

What if we instead have a 1:7r correspondence where ris between 1 and H?
* This is analogous to grouping the H attention heads into H/r groups.
* Each group of attention heads computes a single key and value vector.
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GROUPED QUERY ATTENTION

* This approach is called grouped query attention (GQA; Ainslie, Lee-Thorp, de
Jong et al.,
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GROUPED QUERY ATTENTION

* GQA is similar to MQA in terms of inference speed, but more similar to MHA
in terms of accuracy.
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GROUPED QUERY ATTENTION

* GQA is similar to MQA in terms of inference speed, but more similar to MHA
in terms of accuracy.
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NEXT: WORKING WITH LARGE MODELS

* We discussed how to make transformers faster,
* For both training and inference.

* But memory is often a limiting factor.
* What do we do if a model is larger than the available GPU memory?
* What if the batch during training won’t fit in memory?
* Different ways to parallelize training and inference of large models.

* Can we trade model size for accuracy?
* Model compression:
* Parameter efficient fine-tuning (PEFT) such as LoRA
* Quantization
* Distillation
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QUESTIONS?
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