CS 577:
NATURAL LANGUAGE
PROCESSING

Abulhair Saparov

Lecture 11: Efficiency Il

PREVIOUSLY: COST OF NLP MODELS

* We discussed how to compute the cost of running NLP models,
* Both in terms of memory and time,
* For training and inference.

* We talked about how we can make models run faster via parallelization.

* And how to use hardware that is better suited for highly-parallel
computation, such as GPUs.

* GPUs have many cores compared to CPUs, even though each core is
slower/more limited.

MORE SPECIALIZED HARDWARE?

* Google developed Tensor Processing Units (TPUs) specifically to accelerate
common operations in deep learning, such as matrix multiplication.

16x TPU vs 16x GPU on MLPerf-train
Performance is B 16xTPU [16x GPU
slightly better. 1.25

1.00
0.75

0.50

Normalized Performance

0.25

0.00
ResNet-50 v1.5 SSD w/ ResNet-34 Mask-R-CNN NMT Transformer

[Mahmoud Khairy, TPU vs GPU vs Cerebras vs Graphcore: A Fair Comparison between ML Hardware, 2020]

MORE SPECIALIZED HARDWARE?

* Many companies are currently developing application-specific integrated

circuits (ASICs) which are specifically designed to accelerate transformer
computations.

TECHP(@WERUP &

Tuesday, June 25th 2024

Al Startup Etched Unveils Transformer ASIC
Claiming 20x Speed-up Over NVIDIA H100

by AleksandarK | Jun 25th, 2024 13:30 | Discuss (37 Comments) @

MORE SPECIALIZED HARDWARE

* A similar trajectory occurred with Bitcoin mining hardware.

Bitcoin Mining Difficulty

100,000,000,000,000
ASIC 10 nm chip
1,000,000,000,000 I
ASIC 20 nm chip ASIC 7 nm chip
10,000,000,000 [
ASIC 110 nm chip ASIC 14 nm chip
. ASIC 16 nm chip
ASIC 130 nm chip
100,000,000 .
FPGA ASIC 28 nm chip
1,000,000
ASIC 55 nm chip
10,000 GIU
100
CPU
! J .
2009 2010 201 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

[Austin Lyons, ASICs: Custom Chips to Improve Performance, 2024]

HOW TO MAKE TRANSFORMERS FASTER?

NLP models can be very expensive, in terms of time and memory.

* Especially as they are scaled up.
Better hardware, such as GPUs, can really help to improve the performance of
such models.

* Transformers especially benefit from parallelization.

Can we modify the transformer architecture to run faster?
* Without sacrificing accuracy?
* How small/fast can we make the model if we do tradeoff some accuracy?
* Parameter-efficient fine-tuning
 Model compression (quantization, distillation)

What if the models/matrices can’t fit in the memory of one GPU?

BATCHING

Batch size is an important hyperparameter during training.

If the (mini-)batch size is too small, the gradient is too noisy,
* And learning can be unstable.
As we observe from scaling laws, larger models require larger batch sizes for
optimal training.
What about during inference?
* Batching doesn’t make the model behave any differently,
* But it can help to perform inference faster.

BATCHING

vLLM: Batch Size vs Input/Output Length
of LLaMA-3-8B on a One A100 (fp16)

& B

Input/Output Length
® 128 256 ¢ 512 MW 1024 V 2048

ol

S B N B O
o il

A

Throughput (Tokens/sec)

1 16 32 64
Batch Size

[Chitty-Venkata et al., 2024] 8

e But how does this work?

e There is a linear amount of

additional input.

(i.e., a linear amount of work to do)

* Shouldn’t the total computation time

also increase linearly?

* If we performed each forward pass
one after the other, then yes.

[Horton et al., 2024]

BATCHING

Time to First Token (s)

TTFT
_.®
I.‘/ -9
10 —: ’..’," ,'.‘/
,.o”, ,0/’ Pa
..f". ”.‘f” ’,.#
._a'” ".,¢”
] = ’o"
.—-"“'.-
(e
T T T 1 T
04 128 256 512 1024
Prompt Tokens

BATCHING

* Instead, we leverage the parallel processing ability of the hardware (GPU).

* Consider the forward pass of an RNN for some input.
* The hidden state is a d-dimensional vector.

* If we run separate forward passes for each of the three example inputs,
we will have three different d-dimensional hidden state vectors at time t.

embeddings for
batch size = 1:

“The quick brown” —>|

“7 +12 =" ——>

“How to bake cake?” — > .

10

BATCHING

* Each of these hidden states are then processed at each step in the RNN'’s
forward pass.

* Recall from last lecture: The most computationally-intensive part of this is
the matrix multiplication in the linear layers.

* If we perform the forward passes separately, each matrix multiplication will
compute the product of a 1 x d vector and a d x d matrix.

embeddings for
batch size = 1:

“The quick brown” —>|

“7 +12 =" ——>

“How to bake cake?” — > .

11

BATCHING

So we need 2d? FLOPs to compute the matrix product.

If we have d threads, we can compute it in 2d time, using block matrix
multiplication.

But if we have even more threads, we won’t see much more of a speedup.

What there are more than d available threads? More than 2d??

embeddings for
batch size = 1:

“The quick brown”

“7 + 12 ="

“How to bake cake?” []

12

BATCHING

* If dis not too large, if batch size = 1, we are underutilizing parallel compute
resources.

* Instead, we can concatenate the hidden state vectors across multiple forward
passes into a single matrix with dimension B x d, where Bis the batch size.

* Then each linear layer in the RNN involves a product of a B x d matrix with a
d x d matrix.

embeddings for

“The quick brown” batch size = 3:
“T7T+ 12 =7 —>

/

“How to bake cake?”
13

BATCHING

* The other operations in the RNN (e.g., softmax) are performed on each row of
this matrix.

* In general, increasing batch size causes greater utilization of the hardware’s
“parallelization capacity.”

* A more common measure of “parallelization capacity” is memory bandwidth.
* How quickly can you write data to the GPU’s high bandwidth memory?

embeddings for
“The quick brown” batch size = 3:

“7+12 =" ——>

“How to bake cake?” /

14

BATCHING

We can easily apply batching to other models as well.

For transformers, recall that the embedding is a matrix with dimension
n X d

model*

When batch size > 1, the embedding becomes a tensor with dimension
B x nx d

model*
(conventionally, the batch is typically the first index)
vector with size 7 matrix with size 3 x 7 tensor with size 4 x 3 x 7

(order-1 tensor) (order-2 tensor) (order-3 tensor)

15

BATCHING

* Once the batch size is sufficiently large, the memory bandwidth of the GPU
will become the bottleneck,

* And the overall throughput will stop increasing.

vLLM: Batch Size vs Input/Output Length Input/Output Length
‘0 of LLaMA-3-8B on a One A100 (fp16) ® 128 ® 256 ¢ 512 W 1024 V 2048

= 1 16 32 64
Batch Size
[Chitty-Venkata et al., 2024]

16

GPU MEMORY IS THE BOTTLENECK

* In GPUs, the processors can process data faster than data can be written to

high bandwidth memory (HBM).

Scaling of Peak hardware FLOPS, and Memory/Interconnect Bandwidth

H100
A100 b4
1000000 HW FLOPS: GOOOOXI 20 yrs (3-0x’2yr5) TPUV3
DRAM BW: 100x / 20 yrs (1.6x/2yrs) e ® TPUV4
Interconnect BW: 30x / 20 yrs (1.4x/2yrs)
10000
()]
£
©
o
w
o
@ HBM2E
TEU 100 Itanium 2 e e-®
5 ° * o
z GDDR5 o e
‘e NVLink 4.0
GDDR4 @ ® .\ [J ink 4.
L]
R10 prum—— o NVLink 1.0 PGle 5.0
1 e o
0 ol 2.0 PCle 3.0
Pentium Il Xeon PCle 1.0a
0.01 V\\II\I"lIII\If'|\ITII\IVII’\I!||\IIII\"\II'I\I’IV\"Vllr\lIF|\lrl|\rrl|"\l¥lr\\\lTI|\"IfII|'\I\l"l\l\lll\||\lll‘¥\\III\I\
199 1999 2002 2005 2008 2011 2014 2017 2020 2023
YEAR

[Gholami et al., 2024]

17

CAN WE MAKE TRANSFORMERS FASTER?

Since transformers are ubiquitous in NLP today, maybe we can find ways to
make transformers faster.

One way is to optimize the attention mechanism.

GPU memory is divided into two sections:
* All GPU cores have shared access to high bandwidth memory (HBM).
* Each GPU core has exclusive access to static random access memory
(SRAM), which is smaller but faster than HBM.
Example:
* On an A100, there are 108 cores (i.e., “streaming multiprocessors”).
e 40 or 80GB of HBM, with a bandwidth of 1.5-2.0 TB/s.
e 192KB of SRAM per core, with a bandwidth of 19 TB/s.

[Dao et al., 2022] 18

CAN WE MAKE TRANSFORMERS FASTER?

* Recall that, given matrices K, §, and V, the output of the attention layer is:
(for one head)

0 = softmax(QKT/Vd) V

* Implementing this in PyTorch naively is easy:

attention_scores = query @ key.T
attention_scores = attention_scores / math.sqrt(d_k)
attention_weights = F.softmax(attention_scores, dim=-1)

context_vector = attention_weights @ value
print(context_vector)

CAN WE MAKE TRANSFORMERS FASTER?

* Recall that, given matrices K, §, and V, the output of the attention layer is:
(for one head)

0 = softmax(QKT/Vd) V
e But recall that each of these operations (matrix product, softmax) are
executed as GPU kernels.

* GPU kernels are dispatched to GPU cores along with an assigned tile or block
of the input.

* The memory needed by that kernel is copied from HBM into the core’s SRAM.

20

CAN WE MAKE TRANSFORMERS FASTER?

* Recall that, given matrices K, §, and V, the output of the attention layer is:

(for one head)
0 = softmax(QKT/Vd) V

Algorithm 0 Standard Attention Implementation

Require: Matrices Q,K,V € RV*4 in HBM.
1: Load Q, K by blocks from HBM, compute S = QKT, write S to HBM.
2: Read S from HBM, compute P = softmax(S), write P to HBM.
3: Load P and V by blocks from HBM, compute O = PV, write O to HBM.
4: Return O.

* The naive implementation involves three kernels:
* A matrix product, followed by a softmax, followed by matrix product.
e (there may also be a mask kernel, if using a causal mask)

21

CAN WE MAKE TRANSFORMERS FASTER?

* Recall that, given matrices K, §, and V, the output of the attention layer is:
(for one head)

0 = softmax(QKT/Vd) V

Algorithm 0 Standard Attention Implementation

Require: Matrices Q,K,V € RV*4 in HBM.
1: Load Q, K by blocks from HBM, compute S = QKT, write S to HBM.
2: Read S from HBM, compute P = softmax(S), write P to HBM.
3: Load P and V by blocks from HBM, compute O = PV, write O to HBM.
4: Return O.

* So the naive implementation requires 3-4 reads from HBM and 3-4 writes to
HBM, which is the primary bottleneck.

22

KERNEL FUSION

* If we write the attention operation as a single kernel, as opposed to 3-4
separate kernels, we can avoid unnecessary reads/writes from HBM.

* We can keep the memory in SRAM and the registers of GPU cores for

longer.
* The idea of combining multiple distinct kernels into a single kernel is called
kernel fusion. Attention on GPT-2

15 JMatmuI

Dropout

Softmax

Time (ms)

Fused

Mask Kernel
—

j Matmul

[Doo et al., 2022] PyTorch FlashAttention

KERNEL FUSION

Inference on V100 with Batch Size=1

* Kernel fusion can be done automatically.

B without compile()
e with compile()

* PyTorch performs kernel fusion automatically:

80 1

* torch.compile(...)

60

* XLA is a compiler that works with multiple
frameworks, including PyTorch and TensorFlow.

Inference Duration in ms

20 A

= = = = o et = = = — a
u = o [1¥] @ Q @

= E 2 & L % z £ g =z 2 W

5 2 a £ g 5 5 £ g ©

5 £ 5 ¥ £ 2 @

=] Y] w =

= B

&

(]

[Hugging Face Documentation, Optimize inference using torch.compile()]

KERNEL FUSION FOR ATTENTION

* But kernel fusion alone doesn’t magically get rid of all unnecessary
reads/writes to HBM.

* In the first step of the attention computation, we compute the product K.

* We perform this product block-wise, where each GPU core is assigned to a
submatrix of QK.

lo ol lo ol io ol lo ol 0 0 o olioc o o o o oo o le e{lio o
Lom—d Lo L———a L —_-—1 L __ 1 Lo __ i Lo e Lo o= -2
lo ol lo ol lo ol lo ol 0 0 0o ollo o o ol o oo o l|le elio o
Lo L L—__a - _"a Lo __—__ O L ____ 1 Lo a4 L
o ol lo ol lo ol o ol 0 0 o ol o o ol o ol io o le e]lio o
bemmd Lmmed Lmemd Lm—eed L= S R A 1 Lmed e e L1
o ol lo o le e 10 ol I 1 o o o o le el o o
2_G e, 2. sl .l — O % & 0% 0 o ‘] P ol oL e .o
IO ol lo ol 1o ol 1o ol — o o0 o ollo o o ol 0 ol o ol e elio ol
Lemed Lemod Leeed Le—ed Lo __ 0 L _C 1 L e o4 -
o o1 o o1 1o ol o ol lo o o ollo o o ol 0 o1 10 ol |le efio o
Leeed Leeed Lo d L4 i - - - Leeed Lo b L1
0O Ol 10 ol i0 ol 10 ol lo o o ollo o o ol 0 ol 10 ol e e]io ol
L———d L———_d L—o—_1 L___41 R d b - L d L e L _1
O o1 10 o110 ol o o lo o o ollo o o ol 0 o1 10 Ol |le efio o
Leeed Leoeed Lo d Lo d L 4 L - Leeed Lo d o L——d

25

KERNEL FUSION FOR ATTENTION

* The next step is to compute the softmax over each row of gK*/Vd.

* But notice that the softmax requires access to the full row,
 Whereas each core only has information about one block/tile.

o ol lo ol lo ol lo ol 0 0 o oilio o o ol o ol o o |le efilo o
Lemeed e ed Lo d Lo d S O | | I [I I | S D |
lo ol lo ol lo ol lo ol 0 0 o olio o o ol io ol lo ol |le e]lio ol
L———41 L___1 L___1 L___41 N A e e e o | | I [A I | SN I |
0 ol o ol o ol lo ol 0 0 o olloc o o ol o o o ol |le elioc o
ke ed e ed Lo d L d O | e e [| I |

1 1 i I 1 o o o o le e io o
fo oo o le e 0 o — © o o oo o o o lo ol io ol le e]io o
0 ol iIo ol io ol 1o ol — lo o o ollo o o ol io o io o le e|lioc o
Lmeed e ed Lo d Lo d L e = O - | I (R AR [| S R I
o 9Ol io G0 oo o o o o ollo o o ol o ol io ol |le ef o o
Leeed Leed Lo d Lo d ke [I S . - Leeeed L d e L1
0O Ol 10 Ol 10 ol 10 Ol lo o o ollo o o ol io o 0o o e e|io o
Le——d L—o——d L—o——d L_—__41 [T T - Leeed L d e L___1
O 01 0o o110 oo o lo o o ollo o o ol 0 o1 i0 ol |le e 0 ©i
Leeed Lmeed Leeed L d R B - L d L o [

KERNEL FUSION FOR ATTENTION

* The next step is to compute the softmax over each row of gK*/Vd.

* But notice that the softmax requires access to the full row,
 Whereas each core only has information about one block/tile.

* So how can we divide the softmax operation across GPU cores?

TAC)

softmax(x) := T8

m(x) = m?x X;, f(x) — [e)q—m(X) . exB—m(x)] , '5(.7(?) — Zf(x)i’

27

KERNEL FUSION FOR ATTENTION

« Suppose for simplicity, the row z is divided into two blocks: £ and z?.
* We can compute the numerator f and denominator 1 for each these blocks.

* After fand 1 have been computed for both blocks, we can aggregate them to
compute the full softmax with the below formulas:

TAC)

softmax(x) := T8

m(x) = m([x(l) x(g)]) = max(m(x™M), m(x?)), f(x)= em(x(”)—m(X)f(x(l)) em(x(Q))—m(X)f(x@))] ,

£00) = £([x D x@]) = G (D) 4 D)= (),

[Dao et al., 2022] 28

FLASHATTENTION

» After we have computed a block of softmax (GK*/vVd),

e The same GPU core can perform block matrix multiplication (with the
corresponding rows of 1) to compute the block of the final output:
softmax (QKT/Vd) V.

* This method is called FlashAttention (Dao et al., 2022).

Model implementations OpenWebText (ppl) Training time (speedup)
GPT-2 small - Huggingface [87 18.2 9.5 days (1.0x)
GPT-2 small - Megatron-LM [77] 18.2 4.7 days (2.0x)
GPT-2 small - FLASHATTENTION 18.2 2.7 days (3.5%)
GPT-2 medium - Huggingface [87] 14.2 21.0 days (1.0x)
GPT-2 medium - Megatron-LM |77 14.3 11.5 days (1.8X)
GPT-2 medium - FLASHATTENTION 14.3 6.9 days (3.0x)

29

FLASHATTENTION

* Further optimizations have further improved the performance of the kernel.

Attention forward + backward speed (A100 80GB SXM4) Attention forward + backward speed (A100 80GB SXM4)

B Pytorch B Pytorch
I FlashAttention I FlashAttention 201 203
200 - 200 - 196
Bl xformers 176 Bl xformers
v B FlashAttention Triton 171 e v B FlashAttention Triton
Lt BN FlashAttention-2 & B FlashAttention-2
O 150 O 150
— —
[N L
= E
o 100 T ho] 100 N
Q Q
) Q
) &
50 - 50
512 1k 2k 4k 8k 16k 512 1k 2k ak 8k 16k
Sequence length Sequence length
(a) Without causal mask, head dimension 64 (b) Without causal mask, head dimension 128

[Dao et al., 2023] 30

FLASHATTENTION 2

* Further optimizations have further improved the performance of the kernel.

Attention forward + backward speed (A100 80GB SXM4) Attention forward + backward speed (A100 80GB SXM4)
Bl Pytorch Bl Pytorch
B FlashAttention I FlashAttention
200 1 B xformers 200 1 Bl xformers 182 189
0 B FlashAttention Triton 165 171 v B FlashAttention Triton
8 B FlashAttention-2 a8 Bmm FlashAttention-2
O 150 A [®) 150 A
- —
[N L
s £
- 100 - - 100 -
)]
0])]
))
50 50 A
512 1k 2k 4k 8k 16k 512 1k 2k 4k 8k 16k
Sequence length Sequence length
(c) With causal mask, head dimension 64 (d) With causal mask, head dimension 128

[Dao et al., 2023] 31

FLASHATTENTION 3

* Further optimizations have further improved the performance of the kernel.

Attention forward speed, head dim 64 (H100 80GB SXM5) Attention forward speed, head dim 64 (H100 80GB SXM5)

B Standard attention B Standard attention

P FlashAttention-2 P FlashAttention-2

B Triton Bl Triton
17,: 600 { mmm cuDNN :J,: 600 1 mmm cuDNN
& I FlashAttention-3 206 197 & I FlashAttention-3
O O
™ ™
= 400 A — 400
© ©
()] Q
[} Q
o o
Wy 200 A W) 200 A

512 1k 2k 4k 8k 16k 512 1k 2k 4k 8k 16k
Sequence length Sequence length

32

[Shah and Bikshandi et al., 2024]

CAN WE MAKE TRANSFORMERS FASTER?

We have discussed kernel-level and hardware-aware optimizations that help
to speed up transformers.

* Block matrix multiplication, FlashAttention.
Are there higher-level optimizations that we can do?
Let’s focus on decoder-only transformer models.

Recall that in decoder-only models, a causal mask prevents each token from
attending to any token that comes after it.

During inference, we generate tokens one after the other.

Is there any redundant computation that we can remove?

33

CAN WE MAKE TRANSFORMERS FASTER?

* Consider the attention computation while generating a sequence of 4 tokens:

Q KT QK" v Attention
Query Token 1 ~ QK Value Token 1 Token 1
p
X % = X =
m
=
(1, emb_size) (emb_size, 1) (1, 1) (1, emb_size) (1, emb_size)

[Jodo Lages, Transformers KV Caching Explained, 2023] 34

CAN WE MAKE TRANSFORMERS FASTER?

* Consider the attention computation while generating a sequence of 4 tokens:

Q KT QK' Y% Attention
Query Token 1 ~ | = ok | ok Value Token 1 Token 1
1] D
Query Token 2 T QK | QK Value Token 2 Token 2
X o o = X =
3| p
3 -}
- N
(2, emb_size) (emb_size, 2) (2, 2) (2, emb_size) (2, emb_size)

[Jodo Lages, Transformers KV Caching Explained, 2023] 35

CAN WE MAKE TRANSFORMERS FASTER?

* Consider the attention computation while generating a sequence of 4 tokens:

Q KT QK' v Attention
uery Token 1
Query ~ | = | = ok | ok | qx Value Token 1 Token 1
Query Token 2 SIS oK | oK | oK Value Token 2 Token 2
x |2|2|¢g - X =
Query Token 3 ooz i Value Token 3 Token 3
—_ \] w
(3, emb_size) (emb_size, 3) (3,3) (3, emb_size) (3, emb_size)

[Jodo Lages, Transformers KV Caching Explained, 2023] 36

CAN WE MAKE TRANSFORMERS FASTER?

* Consider the attention computation while generating a sequence of 4 tokens:

* Notice that with each forward pass, we are redundantly computing the key,
query, and value vectors for all tokens except the last one.

Q KT QK' Y% Attention
ue oKken

ry (§ ?'S g; ?"S Q, K, Q. | ok |fak Value Token 1 Token 1

Query Token 2 SUS1S oK | ok | ok [lax Value Token 2 Token 2
x[|E28 (2[5 = x -
Query Token 3 DolD e Al I J ke Value Token 3 Token 3
= v e & QK QK QK QK \ >

Query Token 4 N N I I Ml Value Token 4 Token 4
(4, emb_size) (emb_size, 4) (4, 4) (4, emb_size) (4, emb_size)

[Jodo Lages, Transformers KV Caching Explained, 2023] 37

CAN WE MAKE TRANSFORMERS FASTER?

* We can instead store these old key and value vectors in a cache, and instead
compute the query vector for only the latest token.

Q KT QK" % Attention
Query Token 1 QK Value Token 1 Token 1
&
. |2 _ N -
[g]
-]
(1, emb_size) (emb_size, 1) (1, 1) (1, emb_size) (1, emb_size)

D Values that will be masked |:| Values that will be taken from cache

[Jodo Lages, Transformers KV Caching Explained, 2023] 38

KEY-VALUE CACHING

* We can instead store these old key and value vectors in a cache, and instead

compute the query vector for only the latest token.

Q KT QK'
| o
Query Token 2 ‘% = ok | ax
5 3
- | N
(1, emb_size) (emb_size, 2) (1, 2)

D Values that will be masked |:| Values that will be taken from cache

[Jodo Lages, Transformers KV Caching Explained, 2023]

\' Attention
Value Token 1
Value Token 2 Token 2

(2, emb_size)

(1, emb_size)

39

KEY-VALUE CACHING

* We can instead store these old key and value vectors in a cache, and instead
compute the query vector for only the latest token.

Query Token 3

(1, emb_size)

KT
-~ -~ ?D<
e (e &
RS
~ ~ ~
m M (1]
> 3 -]
— N w
(emb_size, 3)

[Jodo Lages, Transformers KV Caching Explained, 2023]

QK"

(1,3)

\' Attention
Value Token 1
Value Token 2
Value Token 3 Token 3

(3, emb_size)

D Values that will be masked |:| Values that will be taken from cache

(1, emb_size)

40

KEY-VALUE CACHING

* We can instead store these old key and value vectors in a cache, and instead

compute the query vector for only the latest token.

Query Token 4

D Values that will be masked . Values that will be taken from cache

[Jodo Lages, Transformers KV Caching Explained, 2023]

KT

7 uaxoL Ao

(1, emb_size) (emb_size, 4)

QK'

QLK | QK

(1, 4)

Value Token 4

Attention

Token 4

(4, emb_size)

(1, emb_size)

41

KEY-VALUE CACHING

* This approach is called key-value caching (KV caching).

* Since this method relies on tokens in a sequence being generated one after
the other, the KV cache is only used during inference.

e KV caching only works for decoder-only models (i.e., with a causal mask).

e KV caching reduces the cost of the forward pass from O(n?d?) to O(nd?)
where n is the sequence length and d is the model dimension.

* Some benchmarks: Perform 10 generation steps with GPT-2 on Tesla T4 GPU.
* Without KV caching: 56.197 + 1.855 seconds
* With KV caching: 11.885 + 0.272 seconds

[Jodo Lages, Transformers KV Caching Explained, 2023] 42

KEY-VALUE CACHING

* But the KV cache requires additional memory to store the cache.

* For each attention layer, and for each attention head, we must store n key
and value vectors, each with dimension d.

* So the total memory requirement is: 2BndH.
* Where Bis batch size and His number of attention heads.

43

REDUCING MEMORY FOOTPRINT OF KV CACHE

Can we reduce the memory requirements of KV caching?

In standard multi-head attention, for each attention layer,
* We compute Hquery vectors, Hkey vectors, and H value vectors.

What if each attention head did not have its own key and value vectors?

* What if we only compute a single key vector and a single value vector to
use across all attention heads?

* So the only difference between attention heads is the query vector.
This approach is called multi-query attention (MQA; Shazeer, 2019).
Note that this is an architectural modification of the transformer.

So the model needs to be trained using MQA.

44

MULTI-QUERY ATTENTION

* MQA reduces the expressivity of the standard (MHA) transformer.

* There is a cost in how well the model can fit to data (i.e., accuracy).

[Shazeer, 2019]

Table 3: Billion-Word LM Benchmark Results.

Attention h dg,d, dfs | dev-PPL
multi-head 8 128 8192 29.9
multi-query 8 128 9088 30.2
multi-head 1 128 9984 31.2
multi-head 2 64 9984 31.1
multi-head 4 32 9984 31.0
multi-head 8 16 9984 30.9

45

MULTI-QUERY ATTENTION

Is there some middle-ground between MQA and MHA that is not as memory-
intensive as MHA but is more accurate than MQA?

In MHA, we have a 1:1 correspondence between key/value vectors and
attention heads.

In MQA, we have a 1:Hcorrespondence between key/value vectors and
attention heads.

What if we instead have a 1:7r correspondence where ris between 1 and H?
* This is analogous to grouping the H attention heads into H/r groups.
* Each group of attention heads computes a single key and value vector.

46

GROUPED QUERY ATTENTION

* This approach is called grouped query attention (GQA; Ainslie, Lee-Thorp, de
Jong et al.,

Values

Keys

Queries

J |

2023).
Multi-head

e e ol adih o

I B S

J |

J |

'
=

o —

Grouped-query

r——

]

—

—
e

pr——

]

]

Multi-query

s

J |

........

‘‘‘‘‘‘‘‘

10000000 DGOO0EEE

a7

GROUPED QUERY ATTENTION

* GQA is similar to MQA in terms of inference speed, but more similar to MHA
in terms of accuracy.

I |
@
- .GQ aoxx) MHA-XXL
3
s
£ e
E 46.5 MQA-XXL
5
al
46
.MHA—Large
| | |
0 0.5 1 1.5

Time per sample (ms)
[Ainslie, Lee-Thorp, de Jong et al., 2023]

GROUPED QUERY ATTENTION

* GQA is similar to MQA in terms of inference speed, but more similar to MHA
in terms of accuracy.

LIIIIIIIIIIIIIIIIIIllIIIlllllllll|lllll

E 2

=y |

:

2

o 1 N

E

- IIIII|IIIIIII
1 4 8 16 32 64

GQA groups

[Ainslie, Lee-Thorp, de Jong et al., 2023] 49

NEXT: WORKING WITH LARGE MODELS

* We discussed how to make transformers faster,
* For both training and inference.

* But memory is often a limiting factor.
* What do we do if a model is larger than the available GPU memory?
* What if the batch during training won’t fit in memory?
* Different ways to parallelize training and inference of large models.

* Can we trade model size for accuracy?
* Model compression:
* Parameter efficient fine-tuning (PEFT) such as LoRA
* Quantization
* Distillation

50

QUESTIONS?

	Slide 1: CS 577: Natural Language Processing
	Slide 2: Previously: Cost of NLP MOdels
	Slide 3: More Specialized Hardware?
	Slide 4: More Specialized Hardware?
	Slide 5: More Specialized Hardware
	Slide 6: How to make Transformers Faster?
	Slide 7: Batching
	Slide 8: Batching
	Slide 9: Batching
	Slide 10: Batching
	Slide 11: Batching
	Slide 12: Batching
	Slide 13: Batching
	Slide 14: Batching
	Slide 15: Batching
	Slide 16: Batching
	Slide 17: GPU Memory is the bottleneck
	Slide 18: Can we make transformers faster?
	Slide 19: Can we make transformers faster?
	Slide 20: Can we make transformers faster?
	Slide 21: Can we make transformers faster?
	Slide 22: Can we make transformers faster?
	Slide 23: Kernel Fusion
	Slide 24: Kernel Fusion
	Slide 25: Kernel Fusion for Attention
	Slide 26: Kernel Fusion for Attention
	Slide 27: Kernel Fusion for Attention
	Slide 28: Kernel Fusion for Attention
	Slide 29: FlashAttention
	Slide 30: FlashAttention
	Slide 31: FlashAttention 2
	Slide 32: FlashAttention 3
	Slide 33: Can we make transformers faster?
	Slide 34: Can we make transformers faster?
	Slide 35: Can we make transformers faster?
	Slide 36: Can we make transformers faster?
	Slide 37: Can we make transformers faster?
	Slide 38: Can we make transformers faster?
	Slide 39: Key-Value Caching
	Slide 40: Key-Value Caching
	Slide 41: Key-Value Caching
	Slide 42: Key-Value Caching
	Slide 43: Key-Value Caching
	Slide 44: Reducing Memory footprint of KV Cache
	Slide 45: Multi-Query Attention
	Slide 46: Multi-Query Attention
	Slide 47: Grouped Query Attention
	Slide 48: Grouped Query Attention
	Slide 49: Grouped Query Attention
	Slide 50: Next: Working with Large Models
	Slide 60: Questions?

