
CS 577:
NATURAL LANGUAGE
PROCESSING

Abulhair Saparov

Lecture 11: Efficiency II

PREVIOUSLY: COST OF NLP MODELS

2

• We discussed how to compute the cost of running NLP models,

• Both in terms of memory and time,

• For training and inference.

• We talked about how we can make models run faster via parallelization.

• And how to use hardware that is better suited for highly-parallel
computation, such as GPUs.

• GPUs have many cores compared to CPUs, even though each core is
slower/more limited.

MORE SPECIALIZED HARDWARE?

3

• Google developed Tensor Processing Units (TPUs) specifically to accelerate
common operations in deep learning, such as matrix multiplication.

Performance is

slightly better.

[Mahmoud Khairy, TPU vs GPU vs Cerebras vs Graphcore: A Fair Comparison between ML Hardware, 2020]

MORE SPECIALIZED HARDWARE?

4

• Many companies are currently developing application-specific integrated
circuits (ASICs) which are specifically designed to accelerate transformer
computations.

MORE SPECIALIZED HARDWARE

5

• A similar trajectory occurred with Bitcoin mining hardware.

[Austin Lyons, ASICs: Custom Chips to Improve Performance, 2024]

HOW TO MAKE TRANSFORMERS FASTER?

6

• NLP models can be very expensive, in terms of time and memory.

• Especially as they are scaled up.

• Better hardware, such as GPUs, can really help to improve the performance of
such models.

• Transformers especially benefit from parallelization.

• Can we modify the transformer architecture to run faster?

• Without sacrificing accuracy?

• How small/fast can we make the model if we do tradeoff some accuracy?

• Parameter-efficient fine-tuning

• Model compression (quantization, distillation)

• What if the models/matrices can’t fit in the memory of one GPU?

BATCHING

7

• Batch size is an important hyperparameter during training.

• If the (mini-)batch size is too small, the gradient is too noisy,

• And learning can be unstable.

• As we observe from scaling laws, larger models require larger batch sizes for
optimal training.

• What about during inference?

• Batching doesn’t make the model behave any differently,

• But it can help to perform inference faster.

BATCHING

8[Chitty-Venkata et al., 2024]

BATCHING

9

• But how does this work?

• There is a linear amount of
additional input.

(i.e., a linear amount of work to do)

• Shouldn’t the total computation time
also increase linearly?

• If we performed each forward pass
one after the other, then yes.

[Horton et al., 2024]

BATCHING

10

• Instead, we leverage the parallel processing ability of the hardware (GPU).

• Consider the forward pass of an RNN for some input.

• The hidden state is a -dimensional vector.

• If we run separate forward passes for each of the three example inputs,
we will have three different -dimensional hidden state vectors at time .

embeddings for

batch size = 1:

“The quick brown”

“7 + 12 =”

“How to bake cake?”

BATCHING

11

• Each of these hidden states are then processed at each step in the RNN’s
forward pass.

• Recall from last lecture: The most computationally-intensive part of this is
the matrix multiplication in the linear layers.

• If we perform the forward passes separately, each matrix multiplication will
compute the product of a vector and a matrix.

embeddings for

batch size = 1:

“The quick brown”

“7 + 12 =”

“How to bake cake?”

BATCHING

12

• So we need FLOPs to compute the matrix product.

• If we have d threads, we can compute it in time, using block matrix
multiplication.

• But if we have even more threads, we won’t see much more of a speedup.

• What there are more than available threads? More than ?

embeddings for

batch size = 1:

“The quick brown”

“7 + 12 =”

“How to bake cake?”

BATCHING

13

• If is not too large, if batch size = 1, we are underutilizing parallel compute
resources.

• Instead, we can concatenate the hidden state vectors across multiple forward
passes into a single matrix with dimension , where is the batch size.

• Then each linear layer in the RNN involves a product of a matrix with a
 matrix.

embeddings for

batch size = 3:
“The quick brown”

“7 + 12 =”

“How to bake cake?”

BATCHING

14

• The other operations in the RNN (e.g., softmax) are performed on each row of
this matrix.

• In general, increasing batch size causes greater utilization of the hardware’s
“parallelization capacity.”

• A more common measure of “parallelization capacity” is memory bandwidth.

• How quickly can you write data to the GPU’s high bandwidth memory?

embeddings for

batch size = 3:
“The quick brown”

“7 + 12 =”

“How to bake cake?”

BATCHING

15

• We can easily apply batching to other models as well.

• For transformers, recall that the embedding is a matrix with dimension
.

• When batch size > 1, the embedding becomes a tensor with dimension
.

• (conventionally, the batch is typically the first index)

vector with size matrix with size tensor with size

(order-1 tensor) (order-2 tensor) (order-3 tensor)

BATCHING

16

• Once the batch size is sufficiently large, the memory bandwidth of the GPU
will become the bottleneck,

• And the overall throughput will stop increasing.

[Chitty-Venkata et al., 2024]

GPU MEMORY IS THE BOTTLENECK

17

• In GPUs, the processors can process data faster than data can be written to
high bandwidth memory (HBM).

[Gholami et al., 2024]

CAN WE MAKE TRANSFORMERS FASTER?

18

• Since transformers are ubiquitous in NLP today, maybe we can find ways to
make transformers faster.

• One way is to optimize the attention mechanism.

• GPU memory is divided into two sections:

• All GPU cores have shared access to high bandwidth memory (HBM).

• Each GPU core has exclusive access to static random access memory
(SRAM), which is smaller but faster than HBM.

• Example:

• On an A100, there are 108 cores (i.e., “streaming multiprocessors”).

• 40 or 80GB of HBM, with a bandwidth of 1.5-2.0 TB/s.

• 192KB of SRAM per core, with a bandwidth of 19 TB/s.
[Dao et al., 2022]

CAN WE MAKE TRANSFORMERS FASTER?

19

• Recall that, given matrices , , and , the output of the attention layer is:
(for one head)

• Implementing this in PyTorch naively is easy:

CAN WE MAKE TRANSFORMERS FASTER?

20

• Recall that, given matrices , , and , the output of the attention layer is:
(for one head)

• But recall that each of these operations (matrix product, softmax) are
executed as GPU kernels.

• GPU kernels are dispatched to GPU cores along with an assigned tile or block
of the input.

• The memory needed by that kernel is copied from HBM into the core’s SRAM.

CAN WE MAKE TRANSFORMERS FASTER?

21

• Recall that, given matrices , , and , the output of the attention layer is:
(for one head)

• The naïve implementation involves three kernels:

• A matrix product, followed by a softmax, followed by matrix product.

• (there may also be a mask kernel, if using a causal mask)

CAN WE MAKE TRANSFORMERS FASTER?

22

• Recall that, given matrices , , and , the output of the attention layer is:
(for one head)

• So the naïve implementation requires 3-4 reads from HBM and 3-4 writes to
HBM, which is the primary bottleneck.

KERNEL FUSION

23

• If we write the attention operation as a single kernel, as opposed to 3-4
separate kernels, we can avoid unnecessary reads/writes from HBM.

• We can keep the memory in SRAM and the registers of GPU cores for
longer.

• The idea of combining multiple distinct kernels into a single kernel is called
kernel fusion.

[Dao et al., 2022]

KERNEL FUSION

24

• Kernel fusion can be done automatically.

• PyTorch performs kernel fusion automatically:

•

• XLA is a compiler that works with multiple
frameworks, including PyTorch and TensorFlow.

[Hugging Face Documentation, Optimize inference using torch.compile()]

KERNEL FUSION FOR ATTENTION

25

• But kernel fusion alone doesn’t magically get rid of all unnecessary
reads/writes to HBM.

• In the first step of the attention computation, we compute the product .

• We perform this product block-wise, where each GPU core is assigned to a
submatrix of .

KERNEL FUSION FOR ATTENTION

26

• The next step is to compute the softmax over each row of .

• But notice that the softmax requires access to the full row,

• Whereas each core only has information about one block/tile.

KERNEL FUSION FOR ATTENTION

27

• The next step is to compute the softmax over each row of .

• But notice that the softmax requires access to the full row,

• Whereas each core only has information about one block/tile.

• So how can we divide the softmax operation across GPU cores?

KERNEL FUSION FOR ATTENTION

28

• Suppose for simplicity, the row is divided into two blocks: and .

• We can compute the numerator and denominator for each these blocks.

• After and have been computed for both blocks, we can aggregate them to
compute the full softmax with the below formulas:

[Dao et al., 2022]

FLASHATTENTION

29

• After we have computed a block of ,

• The same GPU core can perform block matrix multiplication (with the
corresponding rows of) to compute the block of the final output:

 .

• This method is called FlashAttention (Dao et al., 2022).

FLASHATTENTION

30

• Further optimizations have further improved the performance of the kernel.

[Dao et al., 2023]

FLASHATTENTION 2

31

• Further optimizations have further improved the performance of the kernel.

[Dao et al., 2023]

FLASHATTENTION 3

32

• Further optimizations have further improved the performance of the kernel.

[Shah and Bikshandi et al., 2024]

CAN WE MAKE TRANSFORMERS FASTER?

33

• We have discussed kernel-level and hardware-aware optimizations that help
to speed up transformers.

• Block matrix multiplication, FlashAttention.

• Are there higher-level optimizations that we can do?

• Let’s focus on decoder-only transformer models.

• Recall that in decoder-only models, a causal mask prevents each token from
attending to any token that comes after it.

• During inference, we generate tokens one after the other.

• Is there any redundant computation that we can remove?

CAN WE MAKE TRANSFORMERS FASTER?

34

• Consider the attention computation while generating a sequence of 4 tokens:

[João Lages, Transformers KV Caching Explained, 2023]

CAN WE MAKE TRANSFORMERS FASTER?

35

• Consider the attention computation while generating a sequence of 4 tokens:

[João Lages, Transformers KV Caching Explained, 2023]

CAN WE MAKE TRANSFORMERS FASTER?

36

• Consider the attention computation while generating a sequence of 4 tokens:

[João Lages, Transformers KV Caching Explained, 2023]

CAN WE MAKE TRANSFORMERS FASTER?

37

• Consider the attention computation while generating a sequence of 4 tokens:

• Notice that with each forward pass, we are redundantly computing the key,
query, and value vectors for all tokens except the last one.

[João Lages, Transformers KV Caching Explained, 2023]

CAN WE MAKE TRANSFORMERS FASTER?

38

• We can instead store these old key and value vectors in a cache, and instead
compute the query vector for only the latest token.

[João Lages, Transformers KV Caching Explained, 2023]

KEY-VALUE CACHING

39

• We can instead store these old key and value vectors in a cache, and instead
compute the query vector for only the latest token.

[João Lages, Transformers KV Caching Explained, 2023]

KEY-VALUE CACHING

40

• We can instead store these old key and value vectors in a cache, and instead
compute the query vector for only the latest token.

[João Lages, Transformers KV Caching Explained, 2023]

KEY-VALUE CACHING

41

• We can instead store these old key and value vectors in a cache, and instead
compute the query vector for only the latest token.

[João Lages, Transformers KV Caching Explained, 2023]

KEY-VALUE CACHING

42

• This approach is called key-value caching (KV caching).

• Since this method relies on tokens in a sequence being generated one after
the other, the KV cache is only used during inference.

• KV caching only works for decoder-only models (i.e., with a causal mask).

• KV caching reduces the cost of the forward pass from O to O
where is the sequence length and is the model dimension.

• Some benchmarks: Perform 10 generation steps with GPT-2 on Tesla T4 GPU.

• Without KV caching: seconds

• With KV caching: seconds

[João Lages, Transformers KV Caching Explained, 2023]

KEY-VALUE CACHING

43

• But the KV cache requires additional memory to store the cache.

• For each attention layer, and for each attention head, we must store key
and value vectors, each with dimension .

• So the total memory requirement is: .

• Where is batch size and is number of attention heads.

REDUCING MEMORY FOOTPRINT OF KV CACHE

44

• Can we reduce the memory requirements of KV caching?

• In standard multi-head attention, for each attention layer,

• We compute query vectors, key vectors, and value vectors.

• What if each attention head did not have its own key and value vectors?

• What if we only compute a single key vector and a single value vector to
use across all attention heads?

• So the only difference between attention heads is the query vector.

• This approach is called multi-query attention (MQA; Shazeer, 2019).

• Note that this is an architectural modification of the transformer.

• So the model needs to be trained using MQA.

MULTI-QUERY ATTENTION

45

• MQA reduces the expressivity of the standard (MHA) transformer.

• There is a cost in how well the model can fit to data (i.e., accuracy).

[Shazeer, 2019]

MULTI-QUERY ATTENTION

46

• Is there some middle-ground between MQA and MHA that is not as memory-
intensive as MHA but is more accurate than MQA?

• In MHA, we have a correspondence between key/value vectors and
attention heads.

• In MQA, we have a correspondence between key/value vectors and
attention heads.

• What if we instead have a correspondence where is between and ?

• This is analogous to grouping the attention heads into groups.

• Each group of attention heads computes a single key and value vector.

GROUPED QUERY ATTENTION

47

• This approach is called grouped query attention (GQA; Ainslie, Lee-Thorp, de
Jong et al., 2023).

GROUPED QUERY ATTENTION

48

• GQA is similar to MQA in terms of inference speed, but more similar to MHA
in terms of accuracy.

[Ainslie, Lee-Thorp, de Jong et al., 2023]

GROUPED QUERY ATTENTION

49

• GQA is similar to MQA in terms of inference speed, but more similar to MHA
in terms of accuracy.

[Ainslie, Lee-Thorp, de Jong et al., 2023]

NEXT: WORKING WITH LARGE MODELS

50

• We discussed how to make transformers faster,

• For both training and inference.

• But memory is often a limiting factor.

• What do we do if a model is larger than the available GPU memory?

• What if the batch during training won’t fit in memory?

• Different ways to parallelize training and inference of large models.

• Can we trade model size for accuracy?

• Model compression:

• Parameter efficient fine-tuning (PEFT) such as LoRA

• Quantization

• Distillation

QUESTIONS?

	Slide 1: CS 577: Natural Language Processing
	Slide 2: Previously: Cost of NLP MOdels
	Slide 3: More Specialized Hardware?
	Slide 4: More Specialized Hardware?
	Slide 5: More Specialized Hardware
	Slide 6: How to make Transformers Faster?
	Slide 7: Batching
	Slide 8: Batching
	Slide 9: Batching
	Slide 10: Batching
	Slide 11: Batching
	Slide 12: Batching
	Slide 13: Batching
	Slide 14: Batching
	Slide 15: Batching
	Slide 16: Batching
	Slide 17: GPU Memory is the bottleneck
	Slide 18: Can we make transformers faster?
	Slide 19: Can we make transformers faster?
	Slide 20: Can we make transformers faster?
	Slide 21: Can we make transformers faster?
	Slide 22: Can we make transformers faster?
	Slide 23: Kernel Fusion
	Slide 24: Kernel Fusion
	Slide 25: Kernel Fusion for Attention
	Slide 26: Kernel Fusion for Attention
	Slide 27: Kernel Fusion for Attention
	Slide 28: Kernel Fusion for Attention
	Slide 29: FlashAttention
	Slide 30: FlashAttention
	Slide 31: FlashAttention 2
	Slide 32: FlashAttention 3
	Slide 33: Can we make transformers faster?
	Slide 34: Can we make transformers faster?
	Slide 35: Can we make transformers faster?
	Slide 36: Can we make transformers faster?
	Slide 37: Can we make transformers faster?
	Slide 38: Can we make transformers faster?
	Slide 39: Key-Value Caching
	Slide 40: Key-Value Caching
	Slide 41: Key-Value Caching
	Slide 42: Key-Value Caching
	Slide 43: Key-Value Caching
	Slide 44: Reducing Memory footprint of KV Cache
	Slide 45: Multi-Query Attention
	Slide 46: Multi-Query Attention
	Slide 47: Grouped Query Attention
	Slide 48: Grouped Query Attention
	Slide 49: Grouped Query Attention
	Slide 50: Next: Working with Large Models
	Slide 60: Questions?

