

Lecture 11: Efficiency II

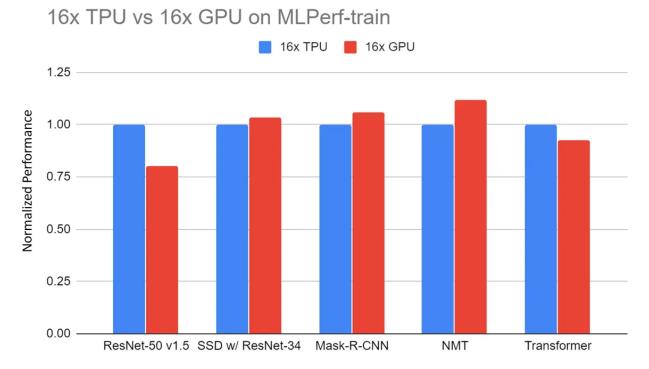
PREVIOUSLY: COST OF NLP MODELS

- We discussed how to compute the cost of running NLP models,
 - Both in terms of memory and time,
 - For training and inference.
- We talked about how we can make models run faster via parallelization.
 - And how to use hardware that is better suited for highly-parallel computation, such as GPUs.
 - GPUs have many cores compared to CPUs, even though each core is slower/more limited.

MORE SPECIALIZED HARDWARE?

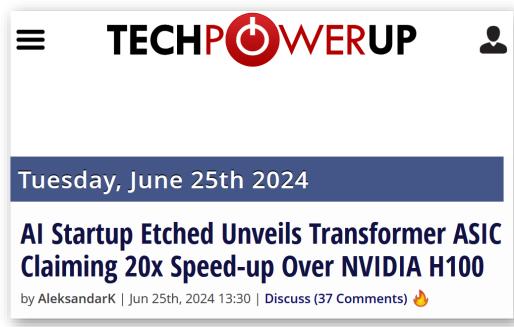
• Google developed Tensor Processing Units (TPUs) specifically to accelerate common operations in deep learning, such as matrix multiplication.

Performance is slightly better.



MORE SPECIALIZED HARDWARE?

 Many companies are currently developing application-specific integrated circuits (ASICs) which are specifically designed to accelerate transformer computations.



MORE SPECIALIZED HARDWARE

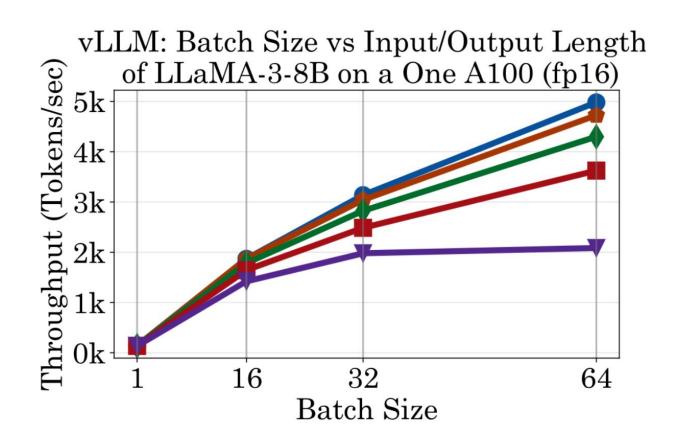
• A similar trajectory occurred with Bitcoin mining hardware.



HOW TO MAKE TRANSFORMERS FASTER?

- NLP models can be very expensive, in terms of time and memory.
 - Especially as they are scaled up.
- Better hardware, such as GPUs, can really help to improve the performance of such models.
 - Transformers especially benefit from parallelization.
- Can we modify the transformer architecture to run faster?
 - Without sacrificing accuracy?
 - How small/fast can we make the model if we do tradeoff some accuracy?
 - Parameter-efficient fine-tuning
 - Model compression (quantization, distillation)
- What if the models/matrices can't fit in the memory of one GPU?

- Batch size is an important hyperparameter during training.
- If the (mini-)batch size is too small, the gradient is too noisy,
 - And learning can be unstable.
- As we observe from scaling laws, larger models require larger batch sizes for optimal training.
- What about during inference?
 - Batching doesn't make the model behave any differently,
 - But it can help to perform inference faster.

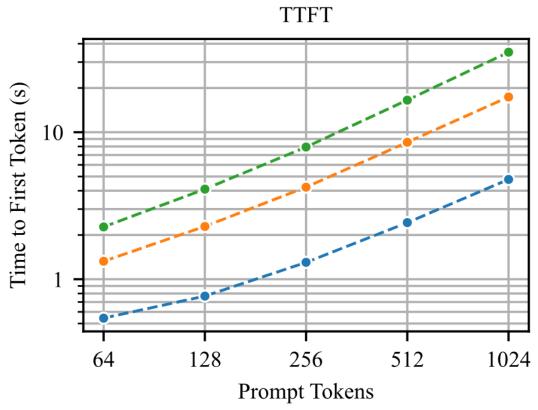


BS1
BS4
BS8

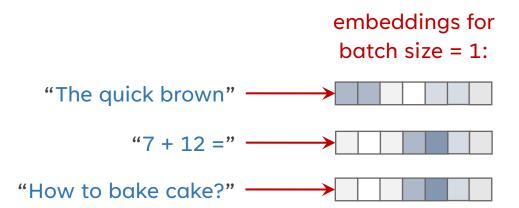
- But how does this work?
- There is a linear amount of additional input.

(i.e., a linear amount of work to do)

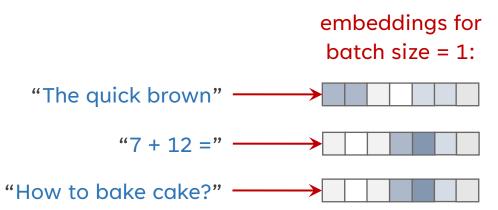
- Shouldn't the total computation time also increase linearly?
- If we performed each forward pass one after the other, then yes.



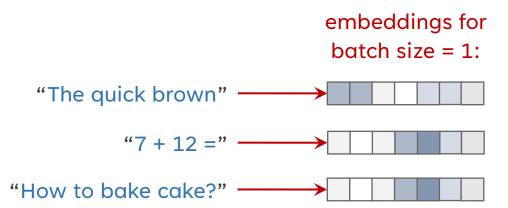
- Instead, we leverage the parallel processing ability of the hardware (GPU).
- Consider the forward pass of an RNN for some input.
 - The hidden state is a d-dimensional vector.
 - If we run separate forward passes for each of the three example inputs, we will have three different d-dimensional hidden state vectors at time t.



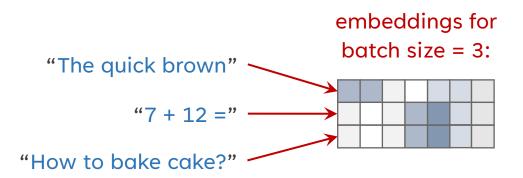
- Each of these hidden states are then processed at each step in the RNN's forward pass.
- Recall from last lecture: The most computationally-intensive part of this is the matrix multiplication in the linear layers.
- If we perform the forward passes separately, each matrix multiplication will compute the product of a $1 \times d$ vector and a $d \times d$ matrix.



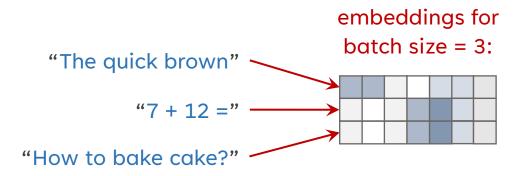
- So we need $2d^2$ FLOPs to compute the matrix product.
- If we have d threads, we can compute it in 2d time, using block matrix multiplication.
- But if we have even more threads, we won't see much more of a speedup.
- What there are more than d available threads? More than $2d^2$?



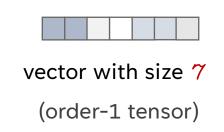
- If d is not too large, if batch size = 1, we are underutilizing parallel compute resources.
- Instead, we can concatenate the hidden state vectors across multiple forward passes into a single matrix with dimension $B \times d$, where B is the batch size.
- Then each linear layer in the RNN involves a product of a $B \times d$ matrix with a $d \times d$ matrix.

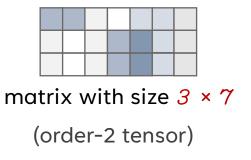


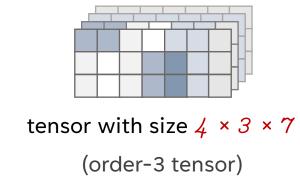
- The other operations in the RNN (e.g., softmax) are performed on each row of this matrix.
- In general, increasing batch size causes greater utilization of the hardware's "parallelization capacity."
- A more common measure of "parallelization capacity" is memory bandwidth.
 - How quickly can you write data to the GPU's high bandwidth memory?



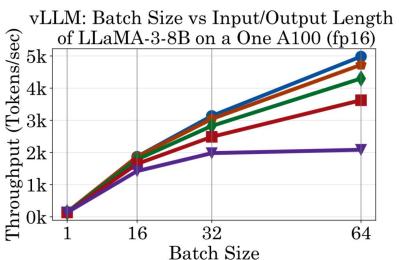
- We can easily apply batching to other models as well.
- For transformers, recall that the embedding is a matrix with dimension $n \times d_{model}$.
- When batch size > 1, the embedding becomes a tensor with dimension $B \times n \times d_{model}$.
- (conventionally, the batch is typically the first index)







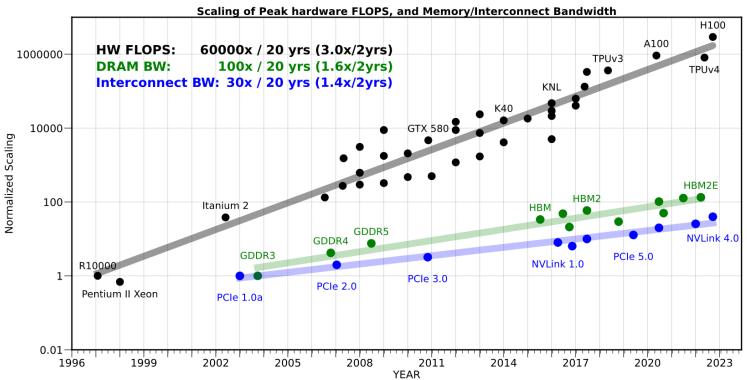
- Once the batch size is sufficiently large, the memory bandwidth of the GPU will become the bottleneck,
- And the overall throughput will stop increasing.



[Chitty-Venkata et al., 2024]

GPU MEMORY IS THE BOTTLENECK

• In GPUs, the processors can process data faster than data can be written to high bandwidth memory (HBM).



[Gholami et al., 2024]

- Since transformers are ubiquitous in NLP today, maybe we can find ways to make transformers faster.
- One way is to optimize the attention mechanism.
- GPU memory is divided into two sections:
 - All GPU cores have shared access to high bandwidth memory (HBM).
 - Each GPU core has exclusive access to static random access memory (SRAM), which is smaller but faster than HBM.
- Example:
 - On an A100, there are 108 cores (i.e., "streaming multiprocessors").
 - 40 or 80GB of HBM, with a bandwidth of 1.5-2.0 TB/s.
 - 192KB of SRAM per core, with a bandwidth of 19 TB/s.

18

• Recall that, given matrices K, Q, and V, the output of the attention layer is: (for one head)

$$O = \operatorname{softmax}(QK^{\mathrm{T}}/\sqrt{d}) V$$

Implementing this in PyTorch naively is easy:

```
import math
import torch.nn.functional as F

attention_scores = query @ key.T
  attention_scores = attention_scores / math.sqrt(d_k)
  attention_weights = F.softmax(attention_scores, dim=-1)
context_vector = attention_weights @ value
print(context_vector)
```

• Recall that, given matrices K, Q, and V, the output of the attention layer is: (for one head)

$$O = \operatorname{softmax}(QK^{\mathrm{T}}/\sqrt{d})V$$

- But recall that each of these operations (matrix product, softmax) are executed as GPU kernels.
- GPU kernels are dispatched to GPU cores along with an assigned tile or block of the input.
- The memory needed by that kernel is copied from HBM into the core's SRAM.

• Recall that, given matrices K, Q, and V, the output of the attention layer is: (for one head)

$$O = \operatorname{softmax}(QK^{\mathrm{T}}/\sqrt{d}) V$$

Algorithm 0 Standard Attention Implementation

Require: Matrices $\mathbf{Q}, \mathbf{K}, \mathbf{V} \in \mathbb{R}^{N \times d}$ in HBM.

- 1: Load \mathbf{Q}, \mathbf{K} by blocks from HBM, compute $\mathbf{S} = \mathbf{Q}\mathbf{K}^{\mathsf{T}}$, write \mathbf{S} to HBM.
- 2: Read **S** from HBM, compute P = softmax(S), write **P** to HBM.
- 3: Load **P** and **V** by blocks from HBM, compute $\mathbf{O} = \mathbf{PV}$, write **O** to HBM.
- 4: Return **O**.
- The naïve implementation involves three kernels:
 - A matrix product, followed by a softmax, followed by matrix product.
 - (there may also be a mask kernel, if using a causal mask)

• Recall that, given matrices K, Q, and V, the output of the attention layer is: (for one head)

$$O = \operatorname{softmax}(QK^{\mathrm{T}}/\sqrt{d}) V$$

Algorithm 0 Standard Attention Implementation

Require: Matrices $\mathbf{Q}, \mathbf{K}, \mathbf{V} \in \mathbb{R}^{N \times d}$ in HBM.

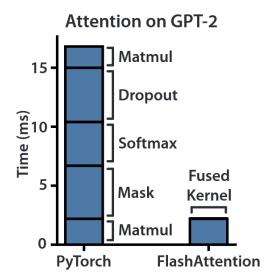
- 1: Load \mathbf{Q}, \mathbf{K} by blocks from HBM, compute $\mathbf{S} = \mathbf{Q}\mathbf{K}^{\mathsf{T}}$, write \mathbf{S} to HBM.
- 2: Read **S** from HBM, compute P = softmax(S), write **P** to HBM.
- 3: Load **P** and **V** by blocks from HBM, compute $\mathbf{O} = \mathbf{PV}$, write **O** to HBM.
- 4: Return **O**.
- So the naïve implementation requires 3-4 reads from HBM and 3-4 writes to HBM, which is the primary bottleneck.

KERNEL FUSION

- If we write the attention operation as a single kernel, as opposed to 3-4 separate kernels, we can avoid unnecessary reads/writes from HBM.
 - We can keep the memory in SRAM and the registers of GPU cores for longer.

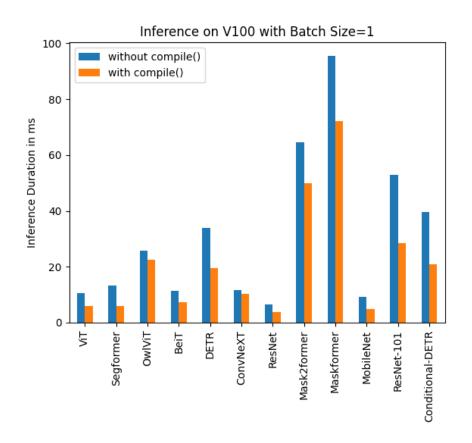
• The idea of combining multiple distinct kernels into a single kernel is called

kernel fusion.

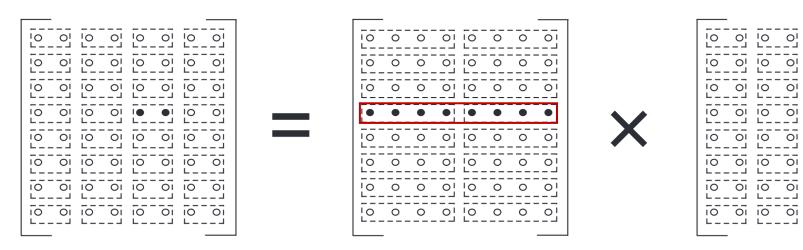


KERNEL FUSION

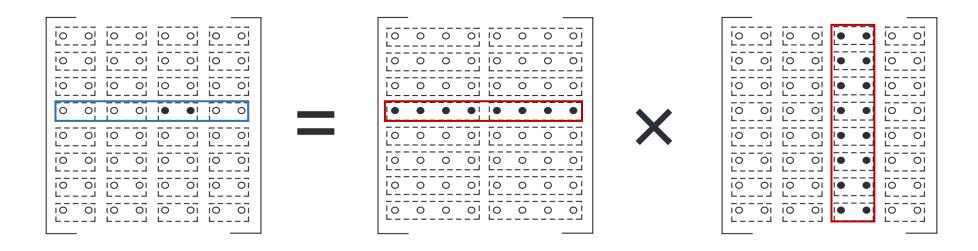
- Kernel fusion can be done automatically.
- PyTorch performs kernel fusion automatically:
 - torch.compile(...)
- XLA is a compiler that works with multiple frameworks, including PyTorch and TensorFlow.



- But kernel fusion alone doesn't magically get rid of all unnecessary reads/writes to HBM.
- In the first step of the attention computation, we compute the product QK^{T} .
- We perform this product block-wise, where each GPU core is assigned to a submatrix of QK^T .



- The next step is to compute the softmax over each row of QK^T/\sqrt{d} .
- But notice that the softmax requires access to the full row,
 - Whereas each core only has information about one block/tile.



- The next step is to compute the softmax over each row of QK^T/\sqrt{d} .
- But notice that the softmax requires access to the full row,
 - Whereas each core only has information about one block/tile.
- So how can we divide the softmax operation across GPU cores?

$$\operatorname{softmax}(x) := \frac{f(x)}{\ell(x)}.$$

$$m(x) := \max_{i} x_{i}, \quad f(x) := [e^{x_{1}-m(x)} \dots e^{x_{B}-m(x)}], \quad \ell(x) := \sum_{i} f(x)_{i},$$

- Suppose for simplicity, the row x is divided into two blocks: $x^{(1)}$ and $x^{(2)}$.
- We can compute the numerator f and denominator l for each these blocks.
- After f and l have been computed for both blocks, we can aggregate them to compute the full softmax with the below formulas:

$$\operatorname{softmax}(x) := \frac{f(x)}{\ell(x)}.$$

$$m(x) = m(\left[x^{(1)} \ x^{(2)}\right]) = \max(m(x^{(1)}), m(x^{(2)})), \quad f(x) = \left[e^{m(x^{(1)}) - m(x)} f(x^{(1)}) \quad e^{m(x^{(2)}) - m(x)} f(x^{(2)})\right],$$

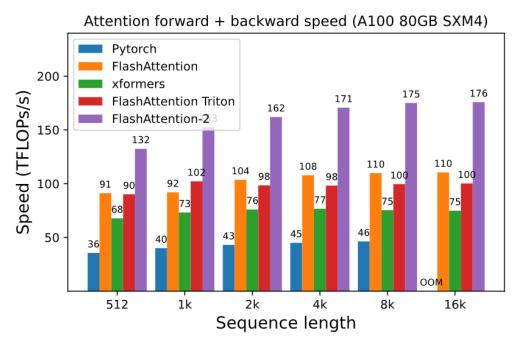
$$\ell(x) = \ell(\left[x^{(1)} \ x^{(2)}\right]) = e^{m(x^{(1)}) - m(x)} \ell(x^{(1)}) + e^{m(x^{(2)}) - m(x)} \ell(x^{(2)}),$$

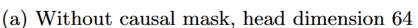
28

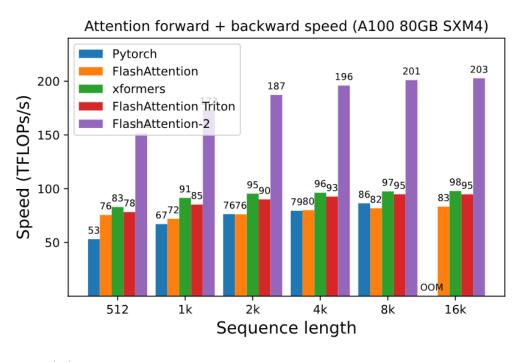
- After we have computed a block of softmax (QK^T/\sqrt{d}) ,
 - The same GPU core can perform block matrix multiplication (with the corresponding rows of V) to compute the block of the final output: softmax $(QK^T/\sqrt{d}) V$.
- This method is called FlashAttention (Dao et al., 2022).

Model implementations	OpenWebText (ppl)	Training time (speedup)
GPT-2 small - Huggingface [87]	18.2	$9.5 \text{ days } (1.0 \times)$
GPT-2 small - Megatron-LM [77]	18.2	$4.7 \text{ days } (2.0 \times)$
GPT-2 small - FlashAttention	18.2	$\textbf{2.7 days} \textbf{(3.5} \times \textbf{)}$
GPT-2 medium - Huggingface [87]	14.2	$21.0 \text{ days } (1.0\times)$
GPT-2 medium - Megatron-LM [77]	14.3	$11.5 \text{ days } (1.8 \times)$
GPT-2 medium - FlashAttention	14.3	$\textbf{6.9 days} \textbf{(3.0} \times \textbf{)}$

• Further optimizations have further improved the performance of the kernel.

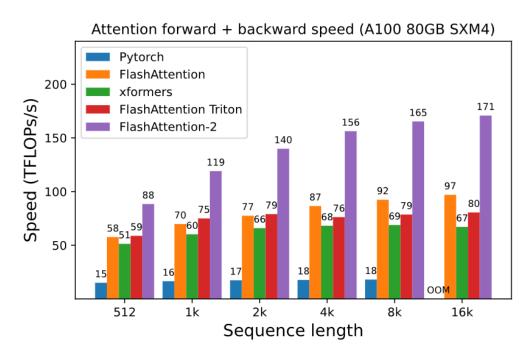


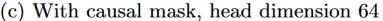


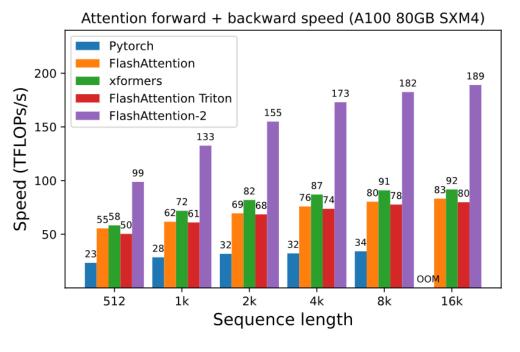


(b) Without causal mask, head dimension 128

• Further optimizations have further improved the performance of the kernel.

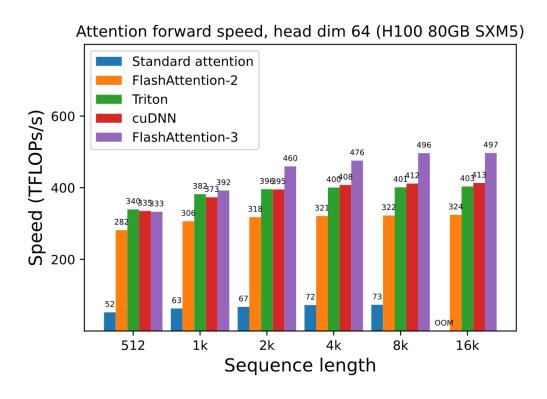


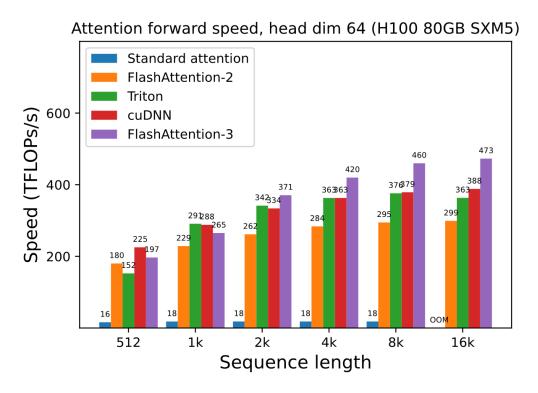




(d) With causal mask, head dimension 128

• Further optimizations have further improved the performance of the kernel.

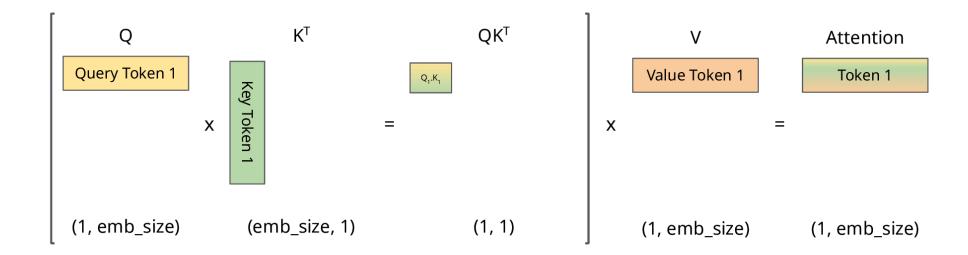




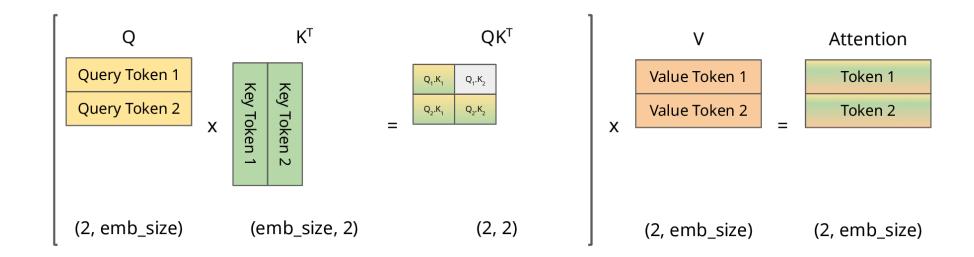
[Shah and Bikshandi et al., 2024]

- We have discussed kernel-level and hardware-aware optimizations that help to speed up transformers.
 - Block matrix multiplication, FlashAttention.
- Are there higher-level optimizations that we can do?
- Let's focus on decoder-only transformer models.
- Recall that in decoder-only models, a causal mask prevents each token from attending to any token that comes after it.
- During inference, we generate tokens one after the other.
- Is there any redundant computation that we can remove?

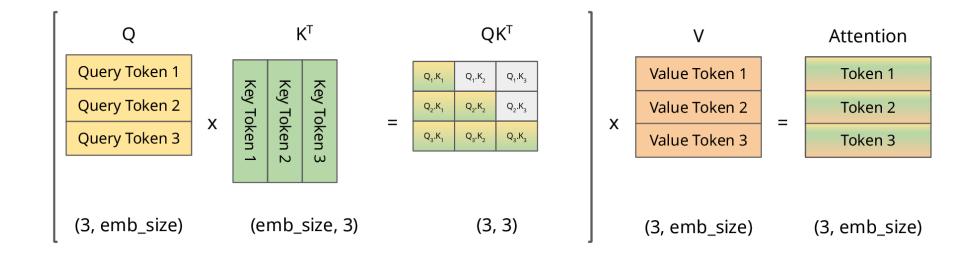
• Consider the attention computation while generating a sequence of 4 tokens:



• Consider the attention computation while generating a sequence of 4 tokens:

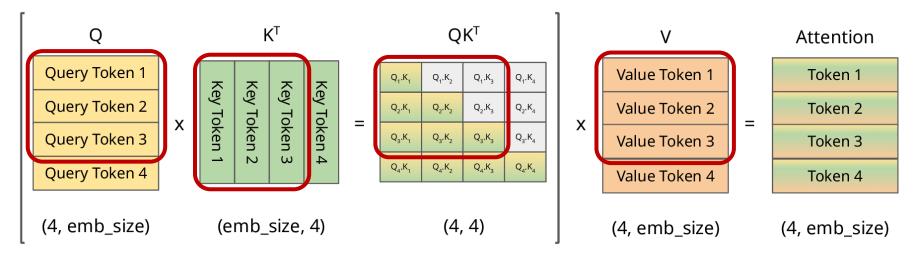


• Consider the attention computation while generating a sequence of 4 tokens:



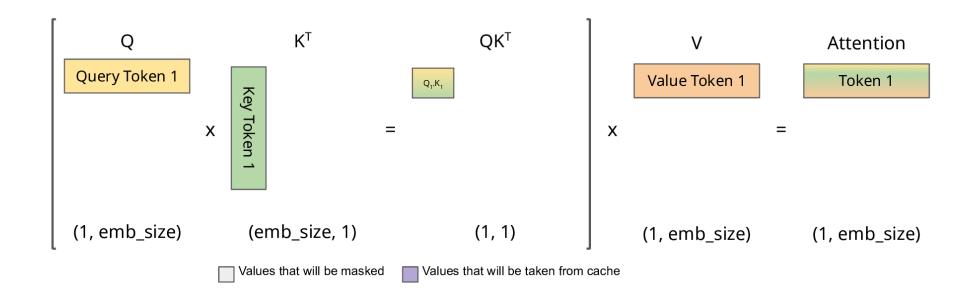
CAN WE MAKE TRANSFORMERS FASTER?

- Consider the attention computation while generating a sequence of 4 tokens:
- Notice that with each forward pass, we are redundantly computing the key, query, and value vectors for all tokens except the last one.

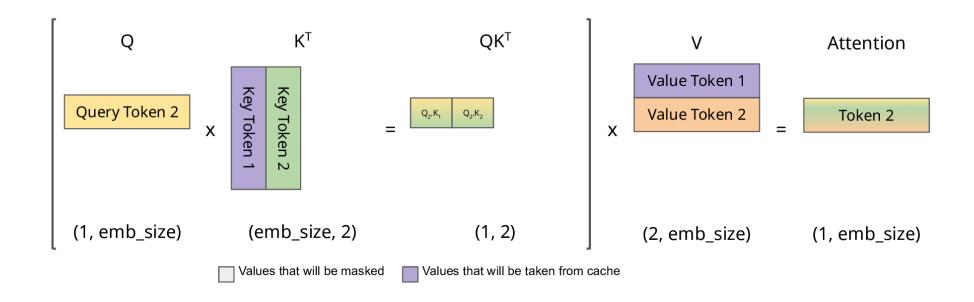


CAN WE MAKE TRANSFORMERS FASTER?

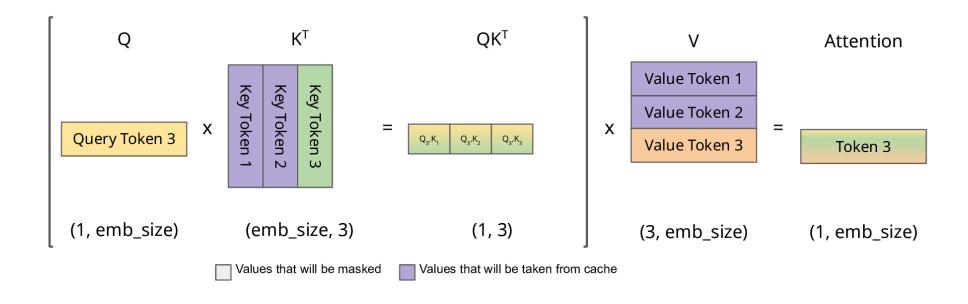
 We can instead store these old key and value vectors in a cache, and instead compute the query vector for only the latest token.



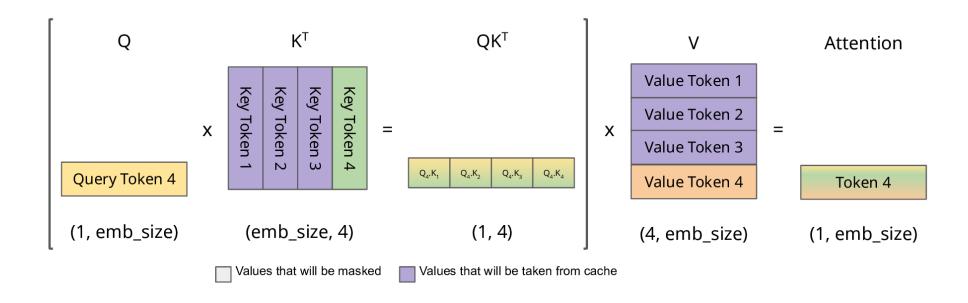
• We can instead store these old key and value vectors in a cache, and instead compute the query vector for only the latest token.



• We can instead store these old key and value vectors in a cache, and instead compute the query vector for only the latest token.



 We can instead store these old key and value vectors in a cache, and instead compute the query vector for only the latest token.



- This approach is called key-value caching (KV caching).
- Since this method relies on tokens in a sequence being generated one after the other, the KV cache is only used during inference.
- KV caching only works for decoder-only models (i.e., with a causal mask).
- KV caching reduces the cost of the forward pass from $O(n^2d^2)$ to $O(nd^2)$ where n is the sequence length and d is the model dimension.
- Some benchmarks: Perform 10 generation steps with GPT-2 on Tesla T4 GPU.
 - Without KV caching: 56.197 ± 1.855 seconds
 - With KV caching: 11.885 ± 0.272 seconds

- But the KV cache requires additional memory to store the cache.
 - For each attention layer, and for each attention head, we must store n key and value vectors, each with dimension d.
 - So the total memory requirement is: *2BndH*.
 - Where B is batch size and H is number of attention heads.

REDUCING MEMORY FOOTPRINT OF KV CACHE

- Can we reduce the memory requirements of KV caching?
- In standard multi-head attention, for each attention layer,
 - We compute H query vectors, H key vectors, and H value vectors.
- What if each attention head did not have its own key and value vectors?
 - What if we only compute a single key vector and a single value vector to use across all attention heads?
 - So the only difference between attention heads is the query vector.
- This approach is called multi-query attention (MQA; Shazeer, 2019).
- Note that this is an architectural modification of the transformer.
- So the model needs to be trained using MQA.

MULTI-QUERY ATTENTION

- MQA reduces the expressivity of the standard (MHA) transformer.
- There is a cost in how well the model can fit to data (i.e., accuracy).

Table 3: Billion-Word LM Benchmark Results.

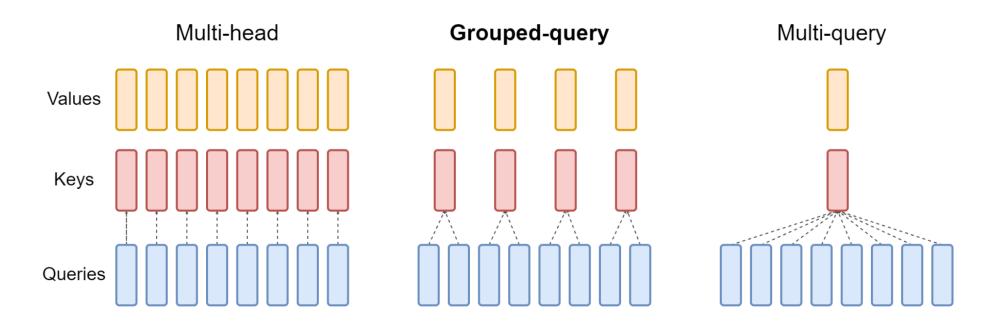
Attention	h	d_k, d_v	d_{ff}	dev-PPL
multi-head	8	128	8192	29.9
multi-query	8	128	9088	30.2
multi-head	1	128	9984	31.2
multi-head	2	64	9984	31.1
multi-head	4	32	9984	31.0
multi-head	8	16	9984	30.9

MULTI-QUERY ATTENTION

- Is there some middle-ground between MQA and MHA that is not as memory-intensive as MHA but is more accurate than MQA?
- In MHA, we have a 1:1 correspondence between key/value vectors and attention heads.
- In MQA, we have a 1:H correspondence between key/value vectors and attention heads.
- What if we instead have a 1:r correspondence where r is between 1 and H?
 - This is analogous to grouping the H attention heads into H/r groups.
 - Each group of attention heads computes a single key and value vector.

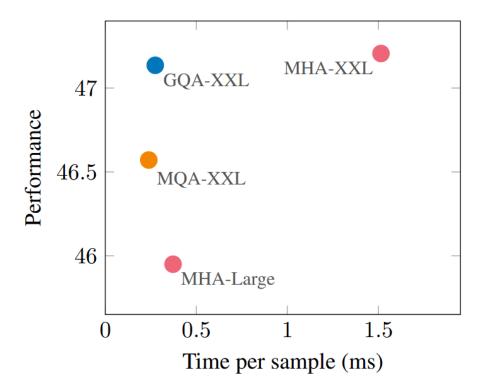
GROUPED QUERY ATTENTION

• This approach is called grouped query attention (GQA; Ainslie, Lee-Thorp, de Jong et al., 2023).



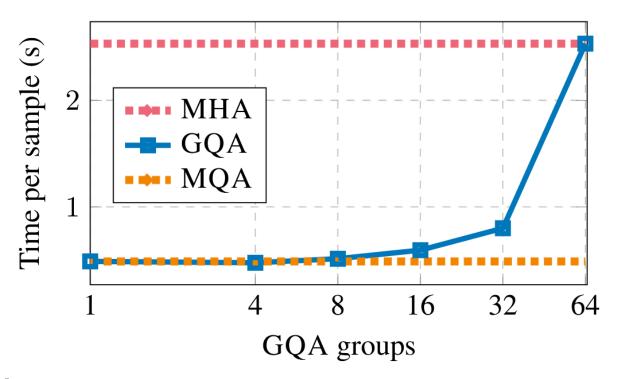
GROUPED QUERY ATTENTION

• GQA is similar to MQA in terms of inference speed, but more similar to MHA in terms of accuracy.



GROUPED QUERY ATTENTION

• GQA is similar to MQA in terms of inference speed, but more similar to MHA in terms of accuracy.



NEXT: WORKING WITH LARGE MODELS

- We discussed how to make transformers faster,
 - For both training and inference.
- But memory is often a limiting factor.
 - What do we do if a model is larger than the available GPU memory?
 - What if the batch during training won't fit in memory?
 - Different ways to parallelize training and inference of large models.
- Can we trade model size for accuracy?
 - Model compression:
 - Parameter efficient fine-tuning (PEFT) such as LoRA
 - Quantization
 - Distillation

