CS 577:
NATURAL LANGUAGE
PROCESSING

Abulhair Saparov

Lecture 12: Efficiency llI

WORKING WITH LARGE MODELS

NLP models benefit from increasing scale.
GPT-3, for example, has ~175 billion parameters.
Each parameter and activation is stored as a 16-bit floating point number.

Thus, you need 350 GB of VRAM just to load the model parameters.

* You need more memory to store (batched) activations and KV cache for
inference.

* You need a lot more to do any training or fine-tuning.

The H200 GPU has 192 GB of VRAM.
* Consumer GPUs have 16 or 24 GB.

So in order to work with models that don’t fit in one GPU’s VRAM, we need to
find ways to distribute inference/training across multiple GPUs. 5

DISTRIBUTED INFERENCE/TRAINING

* If a model is too big to fit in a single GPU’s VRAM, one idea is to split the
model into smaller portions.

* Assign each portion of the model to a GPU.
* This general idea is known as model parallelism.

* For example, if a model consists of many layers, we can divide the layers
among the available GPUs.

Device 3 F.
Device 2 F.

Device 1 =

Device O F. Time >

[Huang et al., 2019]

PIPELINE PARALLELISM

* For example, if our model has 100 layers, we assign 25 to each of 4 GPUs.

* In the forward pass, device O first computes the activations after the first 25
layers.

Device 3 F.
Device 2 F.

Device 1 =

Device O F. Time >

[Huang et al., 2019]

PIPELINE PARALLELISM

* The activations are then copied from device 0O to device 1,
* And device 1 computes the activations after the first 50 layers.

* We repeat until device 3 compute the activations after all 100 layers.

* Note that we can easily combine this approach with batching to improve
throughput. (memory permitting)

Device 3 F.
Device 2 F.

Device 1 =

Device O F. Time >

[Huang et al., 2019]

PIPELINE PARALLELISM

* The same idea can be used for training, too.

* After device 3 finishes the forward pass, it performs a backward pass on
layers 75-100.

* The gradients are copied from device 3 to device 2, which then performs a
backward pass on layers 50-75.

* And so on.

Device 3 F, B,

Device 2 = B.

Device 1 F. B.

Device 0 F. Time > B,

[Huang et al., 2019] 6

* In order to perform the backward pass, each device needs to keep the
activations from the forward pass in memory.

PIPELINE PARALLELISM

* In each backward pass, each device computes the gradients for only the

weights of the layers that are assigned to that device.

[Huang et al., 2019]

Device 3
Device 2
Device 1

Device O

Fo B.

Fo

Fo

B.

Fo

—F

Time

B.

B.

PIPELINE PARALLELISM

* In order to perform the backward pass, each device needs to keep the
activations from the forward pass in memory.

* In each backward pass, each device computes the gradients for only the
weights of the layers that are assigned to that device.

* Once we have computed the gradients on all devices, the gradient update
step is performed simultaneously.

Device 3 F, B, > Update
Device 2 = > B, > Update
Device 1 = p > B, > Update
Device 0O F. Time |> > B, | update

[Huang et al., 2019]

PIPELINE PARALLELISM

* One disadvantage of this approach is idle time:

* Most devices are spending most of their time doing nothing.
* Hardware utilization is low.

* An idea to address this is to process multiple inputs simultaneously.

* If using batches, we would process multiple input batches simultaneously.

[Huang et al., 2019]

Device 3
Device 2
Device 1

Device O

Fo B.

Fo

Fo

Fo

B.

Time >

B.

Update

Update

Update

B.

Update

* Device O processes batch O first, then passes the activations to device 1,

PIPELINE PARALLELISM

and immediately begins processing batch 1, etc.

* This is called pipeline parallelism or inter-layer parallelism.

* Since we can apply it to any model that contains sequential computation
(i.e., a pipeline), such as the layers of a transformer.

[Huang et al., 2019]

Device
Device
Device

Device

F3,1

F3.2

F3,3

B3.3

Ba,z

BS.1

BS.O

F2,0

F2 2,

F2,3

F1.1

F0.0

F0,2

BZ,S

BZ,Z

BZ,1

BZ .0

B1,3

B1,2

B1,1

B1,0

Update

Update

Update

BO,3

BD,Z

BO.1

B0.0

Update

10

* During training, in the example below, the training batch is split into 4

“minibatches.”

PIPELINE PARALLELISM

* Gradients are accumulated across the backward passes, so that we correctly

compute the gradient over the full training batch.

* The gradient update is performed with the accumulated gradients.

[Huang et al., 2019]

Device 3
Device 2
Device 1

Device O

F3,1

F3,2

F3,3

B3.3

Ba,z

BS.1

BS.O

F2,0

F2 2,

F2,3

F1,1

F0.0

F0,2

BZ,S

BZ,Z

BZ,1

BZ .0

B1,3

B1,2

B1,1

B1,0

Update

Update

Update

BO,3

BD,2

BO.1

B0.0

Update

11

PIPELINE PARALLELISM

* Even with pipelining, there is still considerable idle time for each device,

* Especially during training when device O has to wait for all other devices
to finish their forward and backward passes.

* What if we divide each individual layer across GPUs?

[Huang et al., 2019]

Device
Device
Device

Device

F3,1

F3,2

F3,3

B3.3

Ba,z

BS.1

BS.O

F2,0

F2 2,

F2,3

F1,1

F0.0

F0,2

BZ,S

BZ,Z

BZ,1

BZ .0

B1,3

B1,2

B1,1

B1,0

Update

Update

Update

BO,3

BD,2

BO.1

B0.0

Update

12

TENSOR PARALLELISM

Let’s take a closer look at the feedforward layer in the transformer:
* Xour = FAXWS + b)) W' + by

Recall that X has dimension n x d, where n is the sequence length and d is the
model dimension.

What if we divided the weight matrix I/, and X along their columns?
For simplicity, let’s assume we just have two machines/GPUs.
X =[x x@)] and Wy =W w2

Then F(X W7 + b,) = Fax@ " + x@y@R" +p),

13

TENSOR PARALLELISM

FXWT + b)) = fa@yid? + x@y27 4+ p)

* So we can imagine giving the left d/2 columns of I/, and X to the first
machine, and give the remaining d/2 columns to the second machine.

e The first machine computes x(Z/ W1(1)T and the second computes x(2/ WI(Z)T.
* But the problem is the nonlinear activation function f(..).

* We can’t simply apply f to each portion of the product, since it’s not
linear.

FO@PDT w x@y@% 4 b) 2 fa@y) + Fx@yP + b))
* Instead, we would need to synchronize the machines:

* Have them share information about the first matrix product before
computing the activation function.

14

TENSOR PARALLELISM

* So let’s try the other approach: Divide I/, along its rows.
* The first machine has the first d;./2 rows of I,.
* The second machine has the last d../2rows of ,.

* Then f(XW,” + b)) = f([xw®"

= [f(X

W§1)T

Wy

+ ¢

Wl(l)

W

27, ,2)),

+b1

L) rav@ 6@,

15

TENSOR PARALLELISM

To compute the linear layer, we divide I/, along its columns:
* The first machine has the first d/2 columns of .
* The second machine has the last d/2 columns of Iv..

vy =[WS? WP

Then [f(xwl(l)T+ bl(l)), f(XWl(Z)T+ bI(Z))] W' + b,

= rawi? e s) Wi+ st e 2B WP + b,

So each machine computes one term of this sum.

We simply need to sum them together to get the correct output.

16

TENSOR PARALLELISM

* Below is an example where the activation function is GeLU.

* The f block is an identity in the forward pass, whereas the g block is an all-
reduce operation.

* All-reduce involves all machines sharing their tensor portions with each other,
so each machine can reconstruct the full tensor.

P e e ——

— ‘
|
S |
=X |2 XA4; P& [#pﬂ&@ =

C I| U |

- I =
X|= > N =8 [=|Z] |
]) N = I
G) || (= |
@ |
= |
= |
~— l
|
|
/

:ill:=b)QBZ=$II=¢

——————————————————— 17

[

T e,

R e e e e i s s e s s i TR

[Shoeybi et al., 2020]

TENSOR PARALLELISM

* All-reduce operations are required if the next operation needs the full tensor
(e.g., LayerNorm, RMSNorm, softmax, dropout, etc).

* In the backward pass, the g block is an identity, whereas the g block is an all-
reduce operation.

P e e ——

y Y = GeLU(XA) h 4 Z = Dropout(Y B) \\\
:’ - = ¥ - .
' (@) | |
I =| X [X4; P|2 =M= | 1B 24| = }
| c | o |
X |= i | =8 |=|Z] |
l m N 2 I
| @ | | — |
! = | X = XA, -:v‘,B.-:»I'T——b Y2B, -:vl-:» :
|
| || & U | L |
I R I
[l Bl '
A = [41, 4] = [le

R e e e e i s s e s s i TR

[Shoeybi et al., 20200 T,/ T 18

TENSOR PARALLELISM

* What about the attention layer?

* Luckily, the attention heads provide a natural way to divide the work across
multiple machines.

[Shoeybi et al., 2020]

\

\
\

1/

I

[

i

!)
| S
I K=|5 =
' ()
| -[E B
b=

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

= ~

4 Y = Self-Attention(X) Y

=V |
=X =@ |5]

[nodoug J
g
03¢
4
[=]

BEE i
Q=5 =18 :>®=>
~x|-amT [B] & J
=% |
Q= [Q1,Q2]
split attention heads — ¢ K = [K;, K]
V_ [‘/11‘/2] >

e S L

e
2o

!

=

/

o T e e

Z = Dropout(Y B)

Y1B,

:>l:>

Y>B,

—

nodouq

S oo ee——

19

TENSOR PARALLELISM

This approach is called tensor parallelism, as we are dividing the weight and
activation tensors across available GPUs.

* This is a type of intra-layer model parallelism.
But there are some operations that require the full input tensor, rather than
one term in a sum:

* E.g., LayerNorm, RMSNorm, softmax, dropout.

Notice that these operations are all applied on each row of the input.

So we could divide the rows of the input across machines, and each machine
would compute the operation only on its assigned rows.
This approach is called sequence parallelism (Korthikanti et al., 2022).

* Since the rows correspond to tokens in the input sequence.
20

SEQUENCE PARALLELISM

* This approach is often combined with tensor parallelism:

_____ \ ﬁ“\\ //_— i __\\ m G\
[|
w0l [g | I | = R
1 L A I 5 10N | @ 30,
ted HEARGH REESERY KRR iR
1M B 1 BE 3| ' 1 BE
! 1S | | | l : :
| I | | | [| |
Sequence: : Tensor : : Sequence ' : Tensor | | Sequence
Parallel _ Parallel) _Parallel /} _ Parallel) . Parallel
_____ - PR S Py e e e s e e T et L

[Korthikanti et al., 2020]

SEQUENCE PARALLELISM

e Zooming into the FF (i.e., MLP) layer:

* Notice that g needs to convert from sequence to tensor parallelism.
* |t performs an all-reduce to reconstruct the full input to the FF layer.

e —— S S —

— \ / — \\ [o
1Y) | [) | o
3 ! ' o) , | 3
= 2 [= B = =5 SN = = — W = =|g =
=
§ | | : I =
| | — | | —__
—~ B
' |
| | — | —
1 I ' i l o
o | | () [P
=2 |= 8= W= 8= 2= = 8=g = =l = B=3 =
(=
S | | | | 5
3 | , | |
\ ’ |
Sequence Parallel ,’ % Tensor Parallel i \ Sequence Parallel
s N o ~

—— ———————— — SNSN—_————e—eee e —— —— — —— —— ————————

[Korthikanti et al., 2020]

SEQUENCE PARALLELISM

* g needs to convert from tensor to sequence parallelism:

* Perform an all-reduce to compute the sum of the terms from each
machine.

* Then “scatter” the rows of the resulting matrix across machines.

e ——

[uuoNJaAe'|] [wJoNJIaART]

Sequence Parallel ,
4

| ———————————

[Korthikanti et al., 2020]

23

TENSOR/SEQUENCE PARALLELISM

* Korthikanti et al., 2022, combined tensor and sequence parallelism with
pipeline parallelism and were able to fit a 1T-parameter model on 512 GPUs.

Model Attention | Hidden Tensor | Pipeline | Number | Global | Micro
Size Heads Size Layers | Parallel | Parallel of Batch | Batch
Size Size GPUs Size Size
228 64 6144 48 8 1 8 4 4
175B (GPT-3) 96 12288 96 8 8 64 64 1
530B (MT-NLG) 128 20480 105 8 35 280 280 1
1T 160 25600 128 8 64 512 512 1

* Compared to pipeline parallelism, there is much less idle time in
tensor/sequence parallelism.

* However, the all-reduce operations require a lot of inter-device
communication, which can be expensive.

24

INTER-DEVICE COMMUNICATION

* A node is a machine that has one motherboard, CPU, etc.

* Each node can have multiple GPUs
* Which are connected to each other with some GPU interconnect.
* PCle is the most typical interconnect, but there are others.

e PCle bandwidth is shared across all PCle devices.
* E.g., PCle 6.0 has a total bandwidth of 242 GB/s.

e So if GPU 1 is transferring data to GPU 2 at a rate of 200 GB/s,
(hypothetically)

* There will only be 42 GB/s of bandwidth remaining for any other transfers.

25

INTER-DEVICE COMMUNICATION

NVLink is a proprietary interconnect developed by Nvidia.

Infinity Fabric is a competing interconnect by AMD.

Both technologies enable point-to-point communication between devices,
and so bandwidth doesn’t need to be shared.

As you might expect, it is faster to read/write data on the GPU’s high-
bandwidth memory than it is to read/write data on another GPU.
e E.g., For a P100 GPU, HBM bandwidth is 720 GB/s.

* NVLink 1.0 has a peak theoretical bandwidth of 80 GB/s.

26

INTER-DEVICE COMMUNICATION

 Benchmarks of inter- vs intra-GPU bandwidth and latency: (4x P100 GPUs)

NVLink

Unidirectional P2P=Enabled Bandwidth Matrix (GB/s)

D\D %] 1 2
@ 457.93 35.30 20.37
1 35.30 454.78 20.16
2 20.19 20.16 454.56
3 18.36 18.42 35.29

3
20.40
20.14
35.29

454.07

PCle

D\D %) 1 2
0 452.19 10.19 10.73
1 10.19 450.04 10.76
2 10.91 10.90 450.94
3 10.90 10.91 10.18

[Eshelman, Comparing NVLink vs PCI-E with NVIDIA Tesla P100 GPUs on OpenPOWER Servers, 2017]

Unidirectional P2P=Enabled Bandwidth Matrix (GB/s)

3
10.74
10.75
10.21

450.95

27

INTER-DEVICE COMMUNICATION

 Benchmarks of inter- vs intra-GPU bandwidth and latency: (4x P100 GPUs)

NVLink PCle
Unidirectional P2P=Enabled Bandwidth Matrix (GB/s) Unidirectional P2P=Enabled Bandwidth Matrix (GB/s)
D\D %] 1 2 3 D\D 7] 1 2 3
@ 457.93 35.30 20.37 20.40 © 452.19 10.19 10.73 10.74
1 35.30 454.78 20.16 20.14 1 10.19 450.04 10.76 10.75
2 20.19 20.16 454.56 35.29 2 10.91 10.90 450.94 10.21
3 18.36 18.42 35.29 454.097 3 10.90 10.91 10.18 450.95
P2P=Enabled Latency Matrix (us) P2P=Enabled Latency Matrix (us)
D\D (%] 1 2 3 D\D %] 1 2 3

0 4.99 7.92 15.56 15.43 %] 3.22 7.86 16.90 17.05
1 8.06 5.00 15.40 15.40 1 7.85 3.21 17.08 17.22
2 15.47 15.52 5.4 8.97 2 16.32 16.37 3.07 7.85
3 15.43 15.49 8.04 4.97 3 16.26 16.35 7.84 3.07

INTER-NODE COMMUNICATION

e Each node/machine can only be fitted with a limited number of GPUs.

* It is difficult to effectively cool a machine if there are too many GPUs,
each running at full utilization.

* |t is expensive to implement a high-performance interconnect if there are
many GPUs on the same node.

* (4 GPUs per node is typical)

* But we need hundreds or thousands of GPUs to train very large-scale models.
* So we need a fast interconnect between nodes.

 Ethernet is the most well-known, but there are other interconnects that
have been developed for high-performance computing:

* E.g., InfiniBand

29

INTER-NODE COMMUNICATION

* Inter-node communication is slower than intra-node communication.

* So we want to avoid frequent all-reduce operations that require inter-node

communication.
oo

matmulH relu Hmatmuleub]

Challenge 2: How to handle

Fast connections heterogeneous network topology?

-d—P» Slow connections

machine machine machine machine

= >

AUTOMATIC PARALLELIZATION

* A better strategy could be to use tensor/sequence parallelism on individual
nodes, and pipeline parallelism across nodes.

* Assign layers to nodes.
* Split the tensors in each layer across the GPUs in the same node.
* Software tools have been developed to automatically apply different
parallelism techniques, considering the topology of the GPU cluster.
* E.g., XLA auto sharding,
* GSPMD (Xu et al., 2021)
e PyTorch FSDP (Zhao et al., 2023)

31

DATA PARALLELISM

Another form of parallelism that can be easily combined with the previous
types of parallelism is called data parallelism.

Suppose we have a parallelized model that runs with a batch size of 1on n
nodes.

If we have Bn nodes available, we can simply increase the batch size linearly
to B,

* By dividing the batch into minibatches, where each minibatch is given to
a group of n nodes.

This is necessary for training since larger models require a larger batch size
for compute-optimal training.

Data parallelism is very useful for increasing throughput during inference.
32

WHAT IF WE DON’T HAVE 1000 GPUS?

We don’t all have access to massive clusters with thousands of GPUs.

How do we train or run inference on models that are too large for 1 or 4
GPUs?

We can use approximation to reduce the memory footprint of the model.
Approximation may lead to a cost in accuracy.

Suppose we have a model that is small enough to fit in our memory for
inference, but too large for training.

 (recall the memory cost of training is significantly larger than that for
inference)

33

APPROXIMATING MATRIX PRODUCTS

The weight matrices of the linear layers are the largest contributors to a
model’s memory footprint.

During training, in a linear layer, we compute the forward pass:
f(X) = X" + b,

In the backward pass, we compute the gradient of the loss with respect to
the parameters WV and b.

Then we update the values of Wand b according to the step size y.

Wnew - W B ‘}/W'

34

APPROXIMATING MATRIX PRODUCTS

We can gather all the gradient updates into a single Al term:
W., =W+ AW
This way, during training, we keep ¥ unchanged and only keep track of AW
So the forward pass becomes:
fX) = X(W + AW)T + b.
Let’s try to approximate AW using a product of smaller matrices:
AW = AB,

Where AlWhas dimension d x d, 4 has dimension d x r, and B has dimension
r x d, where ris much smaller than d.

35

APPROXIMATING MATRIX PRODUCTS

* Thus our forward pass is now:
fX) = X(W + AB)T + b
* Where Iis a constant and only 4 and B are learnable parameters.

* So how many training parameters do we have?
* Previously, we had d° + d per linear layer.
* Now, we have 2dr + d, which can be much smaller when ris small.

36

LORA

* This approach is called Low-Rank Adaptation or LoRA (Hu and Shen et al.,
2021).

* It works well if the changes to the weight matrix have low rank, which is
often true in fine-tuning.

* But this is not true in pretraining, where the learned weight matrices
have high rank.

* Thus LoRA is only used for fine-tuning.

37

LORA

* Fine-tuning vs LORA experiments on Llama-2: (r = 8)

1.4
&b

anyscale
1.2

Accuracy

0.2

Accuracy by task and model size for ViGGO, SQL and GSM8k

0.0
ViGGO (Functional Representation)

Model (finetuning technique)
B 7B (baseline vs LoRA vs full-parameter)
B 13B (baseline vs LoRA vs full-parameter)
B /0B (baseline vs LoRA vs full-parameter)
GPT-4

full—>»
LoRA—»
baseline—»
SQL Generation GSM8k (Math)

Task

[Niederfahrenhorst et al., Fine-Tuning LLMs: LoRA or Full-Parameter? An in-depth Analysis with Llama 2, 2023]

38

PEFT

* LoRA is an example of parameter-efficient fine-tuning (PEFT).

* There are many other PEFT methods, and research into new methods is
ongoing.
* One simple PEFT approach is to freeze all layers of the model except for the

last layer.
* This was a typical approach for fine-tuning BERT.

* A simple extension is to fine-tune the last k layers.

39

PEFT

* LoRA is an example of parameter-efficient fine-tuning (PEFT).

* There are many other PEFT methods, and research into new methods is
ongoing.

* Another class of PEFT methods are called adapter methods.

[Houlsby et al., 2019]

e f il Layer
1 Transformer
! Layer |OO0O000O0O|
Adapter r—lﬁ
Feedforward
2x Feed-forward up-project
layer
Nonlinearity
Layer Norm :E
Adapter Feedforward
down-project
Feed-forward layer ;I_J
Multi-headed eXeXeXeXeXel
attention

40

ADAPTER METHODS

* The idea is to add a small network inside the attention and FF layers.
* Called the “adapter.”

* Keep all model parameters fixed except for those in the adapter, which is
much smaller than the original model.

' f il Layer
1 Transformer
! Layer |OO0O000O0O|
Adapter (—Iﬁ
Feedforward
2x Feed-forward up-project
layer
Nonlinearity
Layer Norm :E
Adapter Feedforward
down-project
Feed-forward layer ;I_J
Multi-headed eXeXeXeXeXel
attention

[Houlsby et al., 2019] S -

ADAPTER METHODS

* The idea is to add a small network inside the attention and FF layers.
* Called the “adapter.”

* Keep all model parameters fixed except for those in the adapter, which is
much smaller than the original model.

GLUE (BERT ArGE)
5 1 1 1
0 =1 N; —- i__‘ -
S
[
- —10+ -
O
o
3 — 154 =
|9
<
—20+4 —e Adapters L
=—a Fine-tune top layers
-25

10° 10° 10’ 108 10°

[Houlsby et al., 2019] Num trainable parameters / task

42

ADAPTER METHODS

* The idea is to add a small network inside the attention and FF layers.
* Called the “adapter.”

* Keep all model parameters fixed except for those in the adapter, which is

much smaller than the original model.
MNLI,, (BERTgAsE)

86 tiaal Lol Lol Lol
X 84+ -
g //_\‘\/
(@)
o
S 82 L
(@)
(&)
[¢°]
Ss0{ ° :
T
= ® Layer Norm.
S 78| I Adapters i
F Fine-tune top layers
76 1 LI RE] | T LI IR | T T T LI |
10* 10° 10° 10’ 108

[Houlsby et al., 2019] Num trainable parameters / task

43

PREFIX TUNING

* Adapter methods and LoRA are similar in that they freeze the original
model’s parameters

* And instead added a small number of trainable parameters.

* Prefix tuning is another PEFT method where new tokens are added to the
beginning of the input prompt.

* Unlike regular text tokens, these added tokens are continuous.
* Their embeddings are the only trainable parameters in the model.

Transformer (Pretrained)

NN

. . name Starbucks type coffee shop [SEP] Starbucks serves coffee
[Li and Liang, 2021] Input (table-to-text) Output (table-to-text)

(Table-to-text)

44

PEFT

Low-Resource (<1k) Medium-Resource (1k~10k) High-Resource (>10k)

‘/ﬁ\' A Param.(%)
o 107 ¥ ‘ : 1.4
c | e |
<
g) 4 & * * .
5 O - é%(} S eea # -T-".“ i - LEEEE z %.;..J.. W ammas g o= m e
+= B i : x 1
o i =
¥ '
0 -10- * FT
g ® Adapter
= m PT
. —20- A LoRA 0.6

= * BitFit

[\ AN N [\ W (@) ~ \O (@)} —_— W W

W () N ()] ~J = () RS ~] o) (@) \O

() o = -} () (=) (an) [\ =~ N s W

<)) (=) - ~J ~ ~ ~
Data Size

[Chen et al., 2022]

[Xu et al., 2023]

PEFT

MoELoRA L-LoRA

Additive Fine-tuning
LoRA-Hub

LoRAPrune
Delta-LoRA
Unified Fine-tuning
) IncreLoRA

Kermmel-mix-lite(gqvo)

LoRA

Intrinsic
SAID

LoRA-FA
Laplace-LoRA
LOFTQ

QA-LoRA

Ss U/S-SAM

QLoRA
U/S-BitFit
AutoPEFT
AdalLoRA
S°Delta-M
SAM
KronA
UniPELT | TEsT
Compacter
FISH
Mask
MAM
Adapter child
tuning
BitFit
Diff
Threshold Pruning
MASK

46

NEXT TIME

* Reinforcement learning
* Can we provide more informative supervision during post-training?

* After: What if the original model is too large to fit in memory even for
inference alone?

* Can we make the model smaller?
* Quantization: Reduce the precision of the floating-point numbers in the

model.
* How can we reduce the precision without adversely affecting the

model’s accuracy?
* It’s not so simple, especially with very low precision.
* Distillation: Use a larger model to train a small model.

a7

QUESTIONS?

	Slide 1: CS 577: Natural Language Processing
	Slide 2: Working with Large Models
	Slide 3: Distributed Inference/Training
	Slide 4: Pipeline Parallelism
	Slide 5: Pipeline Parallelism
	Slide 6: Pipeline Parallelism
	Slide 7: Pipeline Parallelism
	Slide 8: Pipeline Parallelism
	Slide 9: Pipeline Parallelism
	Slide 10: Pipeline Parallelism
	Slide 11: Pipeline Parallelism
	Slide 12: Pipeline Parallelism
	Slide 13: Tensor Parallelism
	Slide 14: Tensor Parallelism
	Slide 15: Tensor Parallelism
	Slide 16: Tensor Parallelism
	Slide 17: Tensor Parallelism
	Slide 18: Tensor Parallelism
	Slide 19: Tensor Parallelism
	Slide 20: Tensor Parallelism
	Slide 21: sequence Parallelism
	Slide 22: sequence Parallelism
	Slide 23: sequence Parallelism
	Slide 24: Tensor/Sequence Parallelism
	Slide 25: Inter-device communication
	Slide 26: Inter-device communication
	Slide 27: Inter-device communication
	Slide 28: Inter-device communication
	Slide 29: Inter-Node communication
	Slide 30: Inter-Node communication
	Slide 31: Automatic Parallelization
	Slide 32: Data Parallelism
	Slide 33: What if we don’t have 1000 GPUs?
	Slide 34: Approximating Matrix Products
	Slide 35: Approximating Matrix Products
	Slide 36: Approximating Matrix Products
	Slide 37: LORA
	Slide 38: LORA
	Slide 39: PEFT
	Slide 40: PEFT
	Slide 41: Adapter Methods
	Slide 42: Adapter Methods
	Slide 43: Adapter Methods
	Slide 44: Prefix Tuning
	Slide 45: PEFT
	Slide 46: PEFT
	Slide 47: Next Time
	Slide 48: Questions?

