
CS 577:
NATURAL LANGUAGE
PROCESSING

Abulhair Saparov

Lecture 12: Efficiency III

WORKING WITH LARGE MODELS

2

• NLP models benefit from increasing scale.

• GPT-3, for example, has ~175 billion parameters.

• Each parameter and activation is stored as a 16-bit floating point number.

• Thus, you need 350 GB of VRAM just to load the model parameters.

• You need more memory to store (batched) activations and KV cache for
inference.

• You need a lot more to do any training or fine-tuning.

• The H200 GPU has 192 GB of VRAM.

• Consumer GPUs have 16 or 24 GB.

• So in order to work with models that don’t fit in one GPU’s VRAM, we need to
find ways to distribute inference/training across multiple GPUs.

DISTRIBUTED INFERENCE/TRAINING

3

• If a model is too big to fit in a single GPU’s VRAM, one idea is to split the
model into smaller portions.

• Assign each portion of the model to a GPU.

• This general idea is known as model parallelism.

• For example, if a model consists of many layers, we can divide the layers
among the available GPUs.

Device 3

Device 0

Device 1

Device 2

[Huang et al., 2019]

PIPELINE PARALLELISM

4

• For example, if our model has 100 layers, we assign 25 to each of 4 GPUs.

• In the forward pass, device 0 first computes the activations after the first 25
layers.

Device 3

Device 0

Device 1

Device 2

[Huang et al., 2019]

PIPELINE PARALLELISM

5

• The activations are then copied from device 0 to device 1 ,

• And device 1 computes the activations after the first 50 layers.

• We repeat until device 3 compute the activations after all 100 layers.

• Note that we can easily combine this approach with batching to improve
throughput. (memory permitting)

Device 3

Device 0

Device 1

Device 2

[Huang et al., 2019]

PIPELINE PARALLELISM

6

• The same idea can be used for training, too.

• After device 3 finishes the forward pass, it performs a backward pass on
layers 75-100.

• The gradients are copied from device 3 to device 2 , which then performs a
backward pass on layers 50-75.

• And so on.
Device 3

Device 0

Device 1

Device 2

[Huang et al., 2019]

PIPELINE PARALLELISM

7

• In order to perform the backward pass, each device needs to keep the
activations from the forward pass in memory.

• In each backward pass, each device computes the gradients for only the
weights of the layers that are assigned to that device.

Device 3

Device 0

Device 1

Device 2

[Huang et al., 2019]

PIPELINE PARALLELISM

8

• In order to perform the backward pass, each device needs to keep the
activations from the forward pass in memory.

• In each backward pass, each device computes the gradients for only the
weights of the layers that are assigned to that device.

• Once we have computed the gradients on all devices, the gradient update
step is performed simultaneously.

Device 3

Device 0

Device 1

Device 2

[Huang et al., 2019]

PIPELINE PARALLELISM

9

• One disadvantage of this approach is idle time:

• Most devices are spending most of their time doing nothing.

• Hardware utilization is low.

• An idea to address this is to process multiple inputs simultaneously.

• If using batches, we would process multiple input batches simultaneously.

Device 3

Device 0

Device 1

Device 2

[Huang et al., 2019]

PIPELINE PARALLELISM

10

• Device 0 processes batch 0 first, then passes the activations to device 1 ,
and immediately begins processing batch 1 , etc.

• This is called pipeline parallelism or inter-layer parallelism.

• Since we can apply it to any model that contains sequential computation
(i.e., a pipeline), such as the layers of a transformer.

Device 3

Device 0

Device 1

Device 2

[Huang et al., 2019]

PIPELINE PARALLELISM

11

• During training, in the example below, the training batch is split into 4
“minibatches.”

• Gradients are accumulated across the backward passes, so that we correctly
compute the gradient over the full training batch.

• The gradient update is performed with the accumulated gradients.

Device 3

Device 0

Device 1

Device 2

[Huang et al., 2019]

PIPELINE PARALLELISM

12

• Even with pipelining, there is still considerable idle time for each device,

• Especially during training when device 0 has to wait for all other devices
to finish their forward and backward passes.

• What if we divide each individual layer across GPUs?

Device 3

Device 0

Device 1

Device 2

[Huang et al., 2019]

TENSOR PARALLELISM

13

• Let’s take a closer look at the feedforward layer in the transformer:

• Xout = f(X W1
T + b 1) W2

T + b 2

• Recall that X has dimension n × d, where n is the sequence length and d is the
model dimension.

• What if we divided the weight matrix W1 and X along their columns?

• For simplicity, let’s assume we just have two machines/GPUs.

X = X(1) X(2) and W1 = W1
(1) W1

(2)

• Then f(X W1
T + b 1) = f(X(1) W1

(1) T
 + X(2) W1

(2) T
 + b 1) .

TENSOR PARALLELISM

14

f(X W1
T + b 1) = f(X(1) W1

(1) T
 + X(2) W1

(2) T
 + b 1)

• So we can imagine giving the left d/2 columns of W1 and X to the first
machine, and give the remaining d/2 columns to the second machine.

• The first machine computes X(1) W1
(1) T

 and the second computes X(2) W1
(2) T

.

• But the problem is the nonlinear activation function f(…) .

• We can’t simply apply f to each portion of the product, since it’s not
linear.

 f(X(1) W1
(1) T

 + X(2) W1
(2) T

 + b 1) ≠ f(X(1) W1
(1) T

) + f(X(2) W1
(2) T

 + b 1)

• Instead, we would need to synchronize the machines:

• Have them share information about the first matrix product before
computing the activation function.

TENSOR PARALLELISM

15

• So let’s try the other approach: Divide W1 along its rows.

• The first machine has the first dff /2 rows of W1.

• The second machine has the last dff /2 rows of W1.

W1 =
W1

(1)

W1
(2)

• Then f(X W1
T + b 1) = f X W1

(1) T
+ b1

(1) , X W1
(2) T

 + b1
(2) ,

 = f (X W1
(1) T

+ b1
(1)) , f (X W1

(2) T
 + b1

(2)) .

TENSOR PARALLELISM

16

• To compute the linear layer, we divide W2 along its columns:

• The first machine has the first d/2 columns of W2.

• The second machine has the last d/2 columns of W2.

W2 = W2
(1) W2

(2)

• Then f (X W1
(1) T

+ b1
(1)) , f (X W1

(2) T
 + b1

(2)) W2
T + b2

 = f (X W1
(1) T

 + b1
(1)) W2

(1) T
 + f (X W1

(2) T
 + b1

(2)) W2
(2) T

 + b2.

• So each machine computes one term of this sum.

• We simply need to sum them together to get the correct output.

TENSOR PARALLELISM

17

• Below is an example where the activation function is GeLU.

• The f block is an identity in the forward pass, whereas the g block is an all-
reduce operation.

• All-reduce involves all machines sharing their tensor portions with each other,
so each machine can reconstruct the full tensor.

[Shoeybi et al., 2020]

TENSOR PARALLELISM

18

• All-reduce operations are required if the next operation needs the full tensor
(e.g., LayerNorm, RMSNorm, softmax, dropout, etc).

• In the backward pass, the g block is an identity, whereas the g block is an all-
reduce operation.

[Shoeybi et al., 2020]

TENSOR PARALLELISM

19

• What about the attention layer?

• Luckily, the attention heads provide a natural way to divide the work across
multiple machines.

[Shoeybi et al., 2020]

TENSOR PARALLELISM

20

• This approach is called tensor parallelism, as we are dividing the weight and
activation tensors across available GPUs.

• This is a type of intra-layer model parallelism.

• But there are some operations that require the full input tensor, rather than
one term in a sum:

• E.g., LayerNorm, RMSNorm, softmax, dropout.

• Notice that these operations are all applied on each row of the input.

• So we could divide the rows of the input across machines, and each machine
would compute the operation only on its assigned rows.

• This approach is called sequence parallelism (Korthikanti et al., 2022).

• Since the rows correspond to tokens in the input sequence.

SEQUENCE PARALLELISM

21

• This approach is often combined with tensor parallelism:

[Korthikanti et al., 2020]

SEQUENCE PARALLELISM

22

• Zooming into the FF (i.e., MLP) layer:

• Notice that g needs to convert from sequence to tensor parallelism.

• It performs an all-reduce to reconstruct the full input to the FF layer.

[Korthikanti et al., 2020]

SEQUENCE PARALLELISM

23

• തg needs to convert from tensor to sequence parallelism:

• Perform an all-reduce to compute the sum of the terms from each
machine.

• Then “scatter” the rows of the resulting matrix across machines.

[Korthikanti et al., 2020]

TENSOR/SEQUENCE PARALLELISM

24

• Korthikanti et al., 2022, combined tensor and sequence parallelism with
pipeline parallelism and were able to fit a 1T-parameter model on 512 GPUs.

• Compared to pipeline parallelism, there is much less idle time in
tensor/sequence parallelism.

• However, the all-reduce operations require a lot of inter-device
communication, which can be expensive.

INTER-DEVICE COMMUNICATION

25

• A node is a machine that has one motherboard, CPU, etc.

• Each node can have multiple GPUs

• Which are connected to each other with some GPU interconnect.

• PCIe is the most typical interconnect, but there are others.

• PCIe bandwidth is shared across all PCIe devices.

• E.g., PCIe 6.0 has a total bandwidth of 242 GB/s.

• So if GPU 1 is transferring data to GPU 2 at a rate of 200 GB/s,
(hypothetically)

• There will only be 42 GB/s of bandwidth remaining for any other transfers.

INTER-DEVICE COMMUNICATION

26

• NVLink is a proprietary interconnect developed by Nvidia.

• Infinity Fabric is a competing interconnect by AMD.

• Both technologies enable point-to-point communication between devices,
and so bandwidth doesn’t need to be shared.

• As you might expect, it is faster to read/write data on the GPU’s high-
bandwidth memory than it is to read/write data on another GPU.

• E.g., For a P100 GPU, HBM bandwidth is 720 GB/s.

• NVLink 1.0 has a peak theoretical bandwidth of 80 GB/s.

INTER-DEVICE COMMUNICATION

27

• Benchmarks of inter- vs intra-GPU bandwidth and latency: (4x P100 GPUs)

NVLink PCIe

[Eshelman, Comparing NVLink vs PCI-E with NVIDIA Tesla P100 GPUs on OpenPOWER Servers, 2017]

INTER-DEVICE COMMUNICATION

28

• Benchmarks of inter- vs intra-GPU bandwidth and latency: (4x P100 GPUs)

NVLink PCIe

INTER-NODE COMMUNICATION

29

• Each node/machine can only be fitted with a limited number of GPUs.

• It is difficult to effectively cool a machine if there are too many GPUs,
each running at full utilization.

• It is expensive to implement a high-performance interconnect if there are
many GPUs on the same node.

• (4 GPUs per node is typical)

• But we need hundreds or thousands of GPUs to train very large-scale models.

• So we need a fast interconnect between nodes.

• Ethernet is the most well-known, but there are other interconnects that
have been developed for high-performance computing:

• E.g., InfiniBand

INTER-NODE COMMUNICATION

30

• Inter-node communication is slower than intra-node communication.

• So we want to avoid frequent all-reduce operations that require inter-node
communication.

AUTOMATIC PARALLELIZATION

31

• A better strategy could be to use tensor/sequence parallelism on individual
nodes, and pipeline parallelism across nodes.

• Assign layers to nodes.

• Split the tensors in each layer across the GPUs in the same node.

• Software tools have been developed to automatically apply different
parallelism techniques, considering the topology of the GPU cluster.

• E.g., XLA auto sharding,

• GSPMD (Xu et al., 2021)

• PyTorch FSDP (Zhao et al., 2023)

DATA PARALLELISM

32

• Another form of parallelism that can be easily combined with the previous
types of parallelism is called data parallelism.

• Suppose we have a parallelized model that runs with a batch size of 1 on n
nodes.

• If we have Bn nodes available, we can simply increase the batch size linearly
to B,

• By dividing the batch into minibatches, where each minibatch is given to
a group of n nodes.

• This is necessary for training since larger models require a larger batch size
for compute-optimal training.

• Data parallelism is very useful for increasing throughput during inference.

WHAT IF WE DON’T HAVE 1000 GPUS?

33

• We don’t all have access to massive clusters with thousands of GPUs.

• How do we train or run inference on models that are too large for 1 or 4
GPUs?

• We can use approximation to reduce the memory footprint of the model.

• Approximation may lead to a cost in accuracy.

• Suppose we have a model that is small enough to fit in our memory for
inference, but too large for training.

• (recall the memory cost of training is significantly larger than that for
inference)

APPROXIMATING MATRIX PRODUCTS

34

• The weight matrices of the linear layers are the largest contributors to a
model’s memory footprint.

• During training, in a linear layer, we compute the forward pass:

 f(X) = XWT + b .

• In the backward pass, we compute the gradient of the loss with respect to
the parameters W and b.

• Then we update the values of W and b according to the step size 𝛾.

 Wnew = W - 𝛾
𝜕L
𝜕W

 .

APPROXIMATING MATRIX PRODUCTS

35

• We can gather all the gradient updates into a single ΔW term:

 Wnew = W + ΔW.

• This way, during training, we keep W unchanged and only keep track of ΔW.

• So the forward pass becomes:

 f(X) = X(W + ΔW) T + b .

• Let’s try to approximate ΔW using a product of smaller matrices:

 ΔW = AB,

• Where ΔW has dimension d × d, A has dimension d × r , and B has dimension
r × d, where r is much smaller than d.

APPROXIMATING MATRIX PRODUCTS

36

• Thus our forward pass is now:

 f(X) = X(W + AB) T + b

• Where W is a constant and only A and B are learnable parameters.

• So how many training parameters do we have?

• Previously, we had d2 + d per linear layer.

• Now, we have 2dr + d , which can be much smaller when r is small.

LORA

37

• This approach is called Low-Rank Adaptation or LoRA (Hu and Shen et al.,
2021).

• It works well if the changes to the weight matrix have low rank, which is
often true in fine-tuning.

• But this is not true in pretraining, where the learned weight matrices
have high rank.

• Thus LoRA is only used for fine-tuning.

LORA

38

• Fine-tuning vs LoRA experiments on Llama-2: (r = 8)

[Niederfahrenhorst et al., Fine-Tuning LLMs: LoRA or Full-Parameter? An in-depth Analysis with Llama 2, 2023]

PEFT

39

• LoRA is an example of parameter-efficient fine-tuning (PEFT).

• There are many other PEFT methods, and research into new methods is
ongoing.

• One simple PEFT approach is to freeze all layers of the model except for the
last layer.

• This was a typical approach for fine-tuning BERT.

• A simple extension is to fine-tune the last k layers.

PEFT

40

• LoRA is an example of parameter-efficient fine-tuning (PEFT).

• There are many other PEFT methods, and research into new methods is
ongoing.

• Another class of PEFT methods are called adapter methods.

[Houlsby et al., 2019]

ADAPTER METHODS

41

• The idea is to add a small network inside the attention and FF layers.

• Called the “adapter.”

• Keep all model parameters fixed except for those in the adapter, which is
much smaller than the original model.

[Houlsby et al., 2019]

ADAPTER METHODS

42

• The idea is to add a small network inside the attention and FF layers.

• Called the “adapter.”

• Keep all model parameters fixed except for those in the adapter, which is
much smaller than the original model.

[Houlsby et al., 2019]

ADAPTER METHODS

43

• The idea is to add a small network inside the attention and FF layers.

• Called the “adapter.”

• Keep all model parameters fixed except for those in the adapter, which is
much smaller than the original model.

[Houlsby et al., 2019]

PREFIX TUNING

44

• Adapter methods and LoRA are similar in that they freeze the original
model’s parameters

• And instead added a small number of trainable parameters.

• Prefix tuning is another PEFT method where new tokens are added to the
beginning of the input prompt.

• Unlike regular text tokens, these added tokens are continuous.

• Their embeddings are the only trainable parameters in the model.

[Li and Liang, 2021]

PEFT

45[Chen et al., 2022]

PEFT

46[Xu et al., 2023]

NEXT TIME

47

• Reinforcement learning

• Can we provide more informative supervision during post-training?

• After: What if the original model is too large to fit in memory even for
inference alone?

• Can we make the model smaller?

• Quantization: Reduce the precision of the floating-point numbers in the
model.

• How can we reduce the precision without adversely affecting the
model’s accuracy?

• It’s not so simple, especially with very low precision.

• Distillation: Use a larger model to train a small model.

QUESTIONS?

	Slide 1: CS 577: Natural Language Processing
	Slide 2: Working with Large Models
	Slide 3: Distributed Inference/Training
	Slide 4: Pipeline Parallelism
	Slide 5: Pipeline Parallelism
	Slide 6: Pipeline Parallelism
	Slide 7: Pipeline Parallelism
	Slide 8: Pipeline Parallelism
	Slide 9: Pipeline Parallelism
	Slide 10: Pipeline Parallelism
	Slide 11: Pipeline Parallelism
	Slide 12: Pipeline Parallelism
	Slide 13: Tensor Parallelism
	Slide 14: Tensor Parallelism
	Slide 15: Tensor Parallelism
	Slide 16: Tensor Parallelism
	Slide 17: Tensor Parallelism
	Slide 18: Tensor Parallelism
	Slide 19: Tensor Parallelism
	Slide 20: Tensor Parallelism
	Slide 21: sequence Parallelism
	Slide 22: sequence Parallelism
	Slide 23: sequence Parallelism
	Slide 24: Tensor/Sequence Parallelism
	Slide 25: Inter-device communication
	Slide 26: Inter-device communication
	Slide 27: Inter-device communication
	Slide 28: Inter-device communication
	Slide 29: Inter-Node communication
	Slide 30: Inter-Node communication
	Slide 31: Automatic Parallelization
	Slide 32: Data Parallelism
	Slide 33: What if we don’t have 1000 GPUs?
	Slide 34: Approximating Matrix Products
	Slide 35: Approximating Matrix Products
	Slide 36: Approximating Matrix Products
	Slide 37: LORA
	Slide 38: LORA
	Slide 39: PEFT
	Slide 40: PEFT
	Slide 41: Adapter Methods
	Slide 42: Adapter Methods
	Slide 43: Adapter Methods
	Slide 44: Prefix Tuning
	Slide 45: PEFT
	Slide 46: PEFT
	Slide 47: Next Time
	Slide 48: Questions?

