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WORKING WITH LARGE MODELS
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• NLP models benefit from increasing scale.

• GPT-3, for example, has ~175 billion parameters.

• Each parameter and activation is stored as a 16-bit floating point number.

• Thus, you need 350 GB of VRAM just to load the model parameters.

• You need more memory to store (batched) activations and KV cache for 
inference.

• You need a lot more to do any training or fine-tuning.

• The H200 GPU has 192 GB of VRAM.

• Consumer GPUs have 16 or 24 GB.

• So in order to work with models that don’t fit in one GPU’s VRAM, we need to 
find ways to distribute inference/training across multiple GPUs.



DISTRIBUTED INFERENCE/TRAINING
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• If a model is too big to fit in a single GPU’s VRAM, one idea is to split the 
model into smaller portions.

• Assign each portion of the model to a GPU.

• This general idea is known as model parallelism.

• For example, if a model consists of many layers, we can divide the layers 
among the available GPUs.
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PIPELINE PARALLELISM
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• For example, if our model has 100 layers, we assign 25 to each of 4 GPUs.

• In the forward pass, device 0  first computes the activations after the first 25 
layers.
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[Huang et al., 2019]



PIPELINE PARALLELISM
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• The activations are then copied from device 0  to device 1 ,

• And device 1  computes the activations after the first 50 layers.

• We repeat until device 3  compute the activations after all 100 layers.

• Note that we can easily combine this approach with batching to improve 
throughput. (memory permitting)
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PIPELINE PARALLELISM

6

• The same idea can be used for training, too.

• After device 3 finishes the forward pass, it performs a backward pass on 
layers 75-100.

• The gradients are copied from device 3 to device 2 , which then performs a 
backward pass on layers 50-75.

• And so on.
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PIPELINE PARALLELISM
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• In order to perform the backward pass, each device needs to keep the 
activations from the forward pass in memory.

• In each backward pass, each device computes the gradients for only the 
weights of the layers that are assigned to that device.
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PIPELINE PARALLELISM
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• In order to perform the backward pass, each device needs to keep the 
activations from the forward pass in memory.

• In each backward pass, each device computes the gradients for only the 
weights of the layers that are assigned to that device.

• Once we have computed the gradients on all devices, the gradient update 
step is performed simultaneously.
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PIPELINE PARALLELISM
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• One disadvantage of this approach is idle time:

• Most devices are spending most of their time doing nothing.

• Hardware utilization is low.

• An idea to address this is to process multiple inputs simultaneously.

• If using batches, we would process multiple input batches simultaneously.
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PIPELINE PARALLELISM
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• Device 0  processes batch 0  first, then passes the activations to device 1 , 
and immediately begins processing batch 1 , etc.

• This is called pipeline parallelism or inter-layer parallelism.

• Since we can apply it to any model that contains sequential computation 
(i.e., a pipeline), such as the layers of a transformer.

Device 3

Device 0

Device 1

Device 2

[Huang et al., 2019]



PIPELINE PARALLELISM
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• During training, in the example below, the training batch is split into 4 
“minibatches.”

• Gradients are accumulated across the backward passes, so that we correctly 
compute the gradient over the full training batch.

• The gradient update is performed with the accumulated gradients.
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PIPELINE PARALLELISM

12

• Even with pipelining, there is still considerable idle time for each device,

• Especially during training when device 0  has to wait for all other devices 
to finish their forward and backward passes.

• What if we divide each individual layer across GPUs?

Device 3

Device 0

Device 1

Device 2

[Huang et al., 2019]



TENSOR PARALLELISM
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• Let’s take a closer look at the feedforward layer in the transformer:

• Xout  = f(X  W1
T + b 1)  W2

T + b 2

• Recall that X has dimension n × d, where n is the sequence length and d is the 
model dimension.

• What if we divided the weight matrix W1 and X along their columns?

• For simplicity, let’s assume we just have two machines/GPUs.

X = X( 1) X( 2)  and W1  = W1
( 1) W1

( 2)

• Then f(X  W1
T + b 1) = f( X( 1) W1

( 1) T
 + X( 2) W1

( 2) T
  + b 1) .



TENSOR PARALLELISM

14

f(X  W1
T + b 1) = f( X( 1) W1

( 1) T
 + X( 2) W1

( 2) T
  + b 1)

• So we can imagine giving the left d/2 columns of W1 and X to the first 
machine, and give the remaining d/2 columns to the second machine.

• The first machine computes X( 1) W1
( 1) T

 and the second computes X( 2) W1
( 2) T

.

• But the problem is the nonlinear activation function f(…) .

• We can’t simply apply f  to each portion of the product, since it’s not 
linear.

  f( X( 1) W1
( 1) T

 + X( 2) W1
( 2) T

  + b 1) ≠ f( X( 1) W1
( 1) T

) + f( X( 2) W1
( 2) T

  + b 1)

• Instead, we would need to synchronize the machines:

• Have them share information about the first matrix product before 
computing the activation function.



TENSOR PARALLELISM
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• So let’s try the other approach: Divide W1 along its rows.

• The first machine has the first dff /2  rows of W1.

• The second machine has the last dff /2  rows of W1.

W1  =
W1

( 1)

W1
( 2)

• Then f(X  W1
T + b 1) = f X W1

( 1) T  
+ b1

(1) , X W1
( 2) T

 + b1
(2) ,

    = f ( X W1
( 1) T  

+ b1
(1) ) , f ( X W1

( 2) T
 + b1

(2) ) .



TENSOR PARALLELISM
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• To compute the linear layer, we divide W2 along its columns:

• The first machine has the first d/2 columns of W2.

• The second machine has the last d/2 columns of W2.

W2  = W2
( 1) W2

( 2)

• Then f ( X W1
( 1) T  

+ b1
(1) ) , f ( X W1

( 2) T
 + b1

(2) ) W2
T + b2

   = f (X  W1
( 1) T

 + b1
(1) )  W2

( 1) T
 + f (X  W1

( 2) T
 + b1

(2) )  W2
( 2) T

 + b2.

• So each machine computes one term of this sum.

• We simply need to sum them together to get the correct output.



TENSOR PARALLELISM
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• Below is an example where the activation function is GeLU.

• The f  block is an identity in the forward pass, whereas the g block is an all-
reduce operation.

• All-reduce involves all machines sharing their tensor portions with each other, 
so each machine can reconstruct the full tensor.

[Shoeybi et al., 2020]



TENSOR PARALLELISM
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• All-reduce operations are required if the next operation needs the full tensor 
(e.g., LayerNorm, RMSNorm, softmax, dropout, etc).

• In the backward pass, the g block is an identity, whereas the g block is an all-
reduce operation.

[Shoeybi et al., 2020]



TENSOR PARALLELISM
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• What about the attention layer?

• Luckily, the attention heads provide a natural way to divide the work across 
multiple machines.

[Shoeybi et al., 2020]



TENSOR PARALLELISM
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• This approach is called tensor parallelism, as we are dividing the weight and 
activation tensors across available GPUs.

• This is a type of intra-layer model parallelism.

• But there are some operations that require the full input tensor, rather than 
one term in a sum:

• E.g., LayerNorm, RMSNorm, softmax, dropout.

• Notice that these operations are all applied on each row of the input.

• So we could divide the rows of the input across machines, and each machine 
would compute the operation only on its assigned rows.

• This approach is called sequence parallelism (Korthikanti et al., 2022).

• Since the rows correspond to tokens in the input sequence.



SEQUENCE PARALLELISM
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• This approach is often combined with tensor parallelism:

[Korthikanti et al., 2020]



SEQUENCE PARALLELISM
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• Zooming into the FF (i.e., MLP) layer:

• Notice that g needs to convert from sequence to tensor parallelism.

• It performs an all-reduce to reconstruct the full input to the FF layer.

[Korthikanti et al., 2020]



SEQUENCE PARALLELISM
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• തg needs to convert from tensor to sequence parallelism:

• Perform an all-reduce to compute the sum of the terms from each 
machine.

• Then “scatter” the rows of the resulting matrix across machines.

[Korthikanti et al., 2020]



TENSOR/SEQUENCE PARALLELISM
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• Korthikanti et al., 2022, combined tensor and sequence parallelism with 
pipeline parallelism and were able to fit a 1T-parameter model on 512 GPUs.

• Compared to pipeline parallelism, there is much less idle time in 
tensor/sequence parallelism.

• However, the all-reduce operations require a lot of inter-device 
communication, which can be expensive.



INTER-DEVICE COMMUNICATION
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• A node is a machine that has one motherboard, CPU, etc.

• Each node can have multiple GPUs

• Which are connected to each other with some GPU interconnect.

• PCIe is the most typical interconnect, but there are others.

• PCIe bandwidth is shared across all PCIe devices.

• E.g., PCIe 6.0 has a total bandwidth of 242 GB/s.

• So if GPU 1 is transferring data to GPU 2 at a rate of 200 GB/s, 
(hypothetically)

• There will only be 42 GB/s of bandwidth remaining for any other transfers.



INTER-DEVICE COMMUNICATION
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• NVLink is a proprietary interconnect developed by Nvidia.

• Infinity Fabric is a competing interconnect by AMD.

• Both technologies enable point-to-point communication between devices, 
and so bandwidth doesn’t need to be shared.

• As you might expect, it is faster to read/write data on the GPU’s high-
bandwidth memory than it is to read/write data on another GPU.

• E.g., For a P100 GPU, HBM bandwidth is 720 GB/s.

• NVLink 1.0 has a peak theoretical bandwidth of 80 GB/s.



INTER-DEVICE COMMUNICATION
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• Benchmarks of inter- vs intra-GPU bandwidth and latency: (4x P100 GPUs)

NVLink PCIe

[Eshelman, Comparing NVLink vs PCI-E with NVIDIA Tesla P100 GPUs on OpenPOWER Servers, 2017]



INTER-DEVICE COMMUNICATION
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• Benchmarks of inter- vs intra-GPU bandwidth and latency: (4x P100 GPUs)

NVLink PCIe



INTER-NODE COMMUNICATION
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• Each node/machine can only be fitted with a limited number of GPUs.

• It is difficult to effectively cool a machine if there are too many GPUs, 
each running at full utilization.

• It is expensive to implement a high-performance interconnect if there are 
many GPUs on the same node.

• (4 GPUs per node is typical)

• But we need hundreds or thousands of GPUs to train very large-scale models.

• So we need a fast interconnect between nodes.

• Ethernet is the most well-known, but there are other interconnects that 
have been developed for high-performance computing:

• E.g., InfiniBand



INTER-NODE COMMUNICATION
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• Inter-node communication is slower than intra-node communication.

• So we want to avoid frequent all-reduce operations that require inter-node 
communication.



AUTOMATIC PARALLELIZATION
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• A better strategy could be to use tensor/sequence parallelism on individual 
nodes, and pipeline parallelism across nodes.

• Assign layers to nodes.

• Split the tensors in each layer across the GPUs in the same node.

• Software tools have been developed to automatically apply different 
parallelism techniques, considering the topology of the GPU cluster.

• E.g., XLA auto sharding,

• GSPMD (Xu et al., 2021)

• PyTorch FSDP (Zhao et al., 2023)



DATA PARALLELISM
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• Another form of parallelism that can be easily combined with the previous 
types of parallelism is called data parallelism.

• Suppose we have a parallelized model that runs with a batch size of 1 on n 
nodes.

• If we have Bn nodes available, we can simply increase the batch size linearly 
to B,

• By dividing the batch into minibatches, where each minibatch is given to 
a group of n nodes.

• This is necessary for training since larger models require a larger batch size 
for compute-optimal training.

• Data parallelism is very useful for increasing throughput during inference.



WHAT IF WE DON’T HAVE 1000 GPUS?
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• We don’t all have access to massive clusters with thousands of GPUs.

• How do we train or run inference on models that are too large for 1 or 4 
GPUs?

• We can use approximation to reduce the memory footprint of the model.

• Approximation may lead to a cost in accuracy.

• Suppose we have a model that is small enough to fit in our memory for 
inference, but too large for training.

• (recall the memory cost of training is significantly larger than that for 
inference)



APPROXIMATING MATRIX PRODUCTS
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• The weight matrices of the linear layers are the largest contributors to a 
model’s memory footprint.

• During training, in a linear layer, we compute the forward pass:

 f(X)  = XWT + b .

• In the backward pass, we compute the gradient of the loss with respect to 
the parameters W and b.

• Then we update the values of W and b according to the step size 𝛾.

 Wnew = W -  𝛾
𝜕L
𝜕W

 .



APPROXIMATING MATRIX PRODUCTS
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• We can gather all the gradient updates into a single ΔW term:

 Wnew = W + ΔW.

• This way, during training, we keep W unchanged and only keep track of ΔW.

• So the forward pass becomes:

 f(X)  = X(W + ΔW) T + b .

• Let’s try to approximate ΔW using a product of smaller matrices:

  ΔW = AB,

• Where ΔW has dimension d × d, A has dimension d × r , and B has dimension 
r × d, where r  is much smaller than d.



APPROXIMATING MATRIX PRODUCTS
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• Thus our forward pass is now:

 f(X)  = X(W + AB) T + b

• Where W is a constant and only A and B are learnable parameters.

• So how many training parameters do we have?

• Previously, we had d2 + d  per linear layer.

• Now, we have 2dr + d , which can be much smaller when r  is small.



LORA
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• This approach is called Low-Rank Adaptation or LoRA (Hu and Shen et al., 
2021).

• It works well if the changes to the weight matrix have low rank, which is 
often true in fine-tuning.

• But this is not true in pretraining, where the learned weight matrices 
have high rank.

• Thus LoRA is only used for fine-tuning.



LORA
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• Fine-tuning vs LoRA experiments on Llama-2: (r  = 8 )

[Niederfahrenhorst et al., Fine-Tuning LLMs: LoRA or Full-Parameter? An in-depth Analysis with Llama 2, 2023]



PEFT

39

• LoRA is an example of parameter-efficient fine-tuning (PEFT).

• There are many other PEFT methods, and research into new methods is 
ongoing.

• One simple PEFT approach is to freeze all layers of the model except for the 
last layer.

• This was a typical approach for fine-tuning BERT.

• A simple extension is to fine-tune the last k layers.



PEFT
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• LoRA is an example of parameter-efficient fine-tuning (PEFT).

• There are many other PEFT methods, and research into new methods is 
ongoing.

• Another class of PEFT methods are called adapter methods.

[Houlsby et al., 2019]



ADAPTER METHODS
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• The idea is to add a small network inside the attention and FF layers.

• Called the “adapter.”

• Keep all model parameters fixed except for those in the adapter, which is 
much smaller than the original model.

[Houlsby et al., 2019]



ADAPTER METHODS
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• The idea is to add a small network inside the attention and FF layers.

• Called the “adapter.”

• Keep all model parameters fixed except for those in the adapter, which is 
much smaller than the original model.

[Houlsby et al., 2019]



ADAPTER METHODS
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• The idea is to add a small network inside the attention and FF layers.

• Called the “adapter.”

• Keep all model parameters fixed except for those in the adapter, which is 
much smaller than the original model.

[Houlsby et al., 2019]



PREFIX TUNING
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• Adapter methods and LoRA are similar in that they freeze the original 
model’s parameters

• And instead added a small number of trainable parameters.

• Prefix tuning is another PEFT method where new tokens are added to the 
beginning of the input prompt.

• Unlike regular text tokens, these added tokens are continuous.

• Their embeddings are the only trainable parameters in the model.

[Li and Liang, 2021]



PEFT

45[Chen et al., 2022]



PEFT

46[Xu et al., 2023]



NEXT TIME

47

• Reinforcement learning

• Can we provide more informative supervision during post-training? 

• After: What if the original model is too large to fit in memory even for 
inference alone?

• Can we make the model smaller?

• Quantization: Reduce the precision of the floating-point numbers in the 
model.

• How can we reduce the precision without adversely affecting the 
model’s accuracy?

• It’s not so simple, especially with very low precision.

• Distillation: Use a larger model to train a small model.



QUESTIONS?
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