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WRAPPING UP PEFT

2

• At the end of last lecture, we discussed parameter-efficient fine-tuning 
methods (PEFT).

• In PEFT, generally, we freeze most of the parameters of the model and 
only compute gradients for a small set of parameters during fine-tuning.

• E.g., LoRA

• There are many other PEFT methods, and research into new methods is 
ongoing.



PREFIX TUNING
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• Adapter methods and LoRA are similar in that they freeze the original 
model’s parameters

• And instead added a small number of trainable parameters.

• Prefix tuning is another PEFT method where new tokens are added to the 
beginning of the input prompt.

• Unlike regular text tokens, these added tokens are continuous.

• Their embeddings are the only trainable parameters in the model.

[Li and Liang, 2021]



PEFT

4[Chen et al., 2022]



PEFT

5[Xu et al., 2023]



EVALUATING MODEL 
RESPONSES



SO FAR: MINIMIZE CROSS-ENTROPY LOSS
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• All machine learning techniques we have discussed thus far involved 
minimizing loss functions (usually cross-entropy).

• Recall minimizing cross-entropy loss is equivalent to maximizing likelihood.

• This approach is only teaching the model how to predict the correct output, 
for a given input.

• For this reason, this kind of training is often called imitation learning.



SOME MISTAKES ARE BETTER THAN OTHERS
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• NLP models often make mistakes.

• Some mistakes are better than others:

 Input: “What is a substitute for baking soda in a cake recipe? ”

 Mistaken output 1: “whipped cream”

 Mistaken output 2: “salt ”

 Mistaken output 3: “bleach ”

 Mistaken output 4: “How should I know, you #@&%!? ”

• Maximizing likelihood on only correct data does not teach the model which 
mistake is better.



ADAPTING TO MODEL-GENERATED INPUTS
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• Training NLP models only on inputs from a gold dataset

• E.g., Only containing human-generated inputs.

• If we are generating outputs autoregressively, where each output token is 
appended to the input in the next step,

• The model’s performance may deteriorate,

• Especially if the distribution of the model’s generated text is very different 
from the distribution of the training text.

• Called exposure bias.

• Example: the model makes a mistake when generating one token.

• The model will be more likely to make mistakes on all subsequent tokens.



UNDESIRABLE CONTENT IN TRAINING DATA
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• Also, the training dataset contains text that we don’t want the model to 
generate!

• Misinformation

• Comments from social networks

• Conspiracy theories

• Baises/stereotypes

• Outputs from older/lower-quality NLP models

• If we simply maximize the likelihood, the resulting model will just learn to 
produce the same undesirable content that appears in the training data.



ALTERNATIVES TO
MAXIMUM LIKELIHOOD TRAINING
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• These shortcomings are a consequence of the fact that, for each example in 
the training set, there is only one “correct” output,

• And all other outputs are equally bad.

• “All or nothing”

• Are there other ways we can measure the quality of an output that provides 
more information:

• Which incorrect outputs are better than others?



ALTERNATIVES TO
MAXIMUM LIKELIHOOD TRAINING
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• Possible alternatives:

• Maximize task-specific objective correctness score

• Maximize human evaluation score

• Train another machine learning model to produce a correctness score

• Then maximize the model’s predicted correctness score



OBJECTIVE CORRECTNESS SCORE
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• There are some tasks where correctness scores are more easily defined.

• Example: math word problem solving

Mary starts with 8 apples. She buys 7 from the grocery store and 
gives 12 to her friend, Jesse. How many apples does Mary have left?

Correct output: 3



OBJECTIVE CORRECTNESS SCORE

14

• There are some tasks where correctness scores are more easily defined.

• Example: math word problem solving

• One idea for correctness metric:

exp{( predicted_number  – correct_number ) 2}

Mary starts with 8 apples. She buys 7 from the grocery store and 
gives 12 to her friend, Jesse. How many apples does Mary have left?

Correct output: 3



OBJECTIVE CORRECTNESS SCORE
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• This approach does not easily generalize to other tasks.

• How would you define a correctness score for the question-answering task 
from earlier:

 Input: “What is a substitute for baking soda in a cake recipe? ”

• This is especially difficult for subjective tasks, such as text generation.

• E.g., generating fictional stories.

• Paraphrasing.

• etc…



HUMAN EVALUATION

16

• We can ask humans to score different outputs from NLP models.

• But this is very expensive.

• We can’t ask humans to label all possible model outputs.

• We can only ask them to label some outputs.

• What kind of scale should we use?

Input: “What is a substitute for 
baking soda in a cake recipe? ”

Output: “baking powder ”

Human annotator

10 / 10



HUMAN EVALUATION
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• We can ask humans to score different outputs from NLP models.

• But this is very expensive.

• We can’t ask humans to label all possible model outputs.

• We can only ask them to label some outputs.

• What kind of scale should we use?

Input: “What is a substitute for 
baking soda in a cake recipe? ”

Output: “whipped cream ”

Human annotator

6 / 10



HUMAN EVALUATION
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• We can ask humans to score different outputs from NLP models.

• But this is very expensive.

• We can’t ask humans to label all possible model outputs.

• We can only ask them to label some outputs.

• What kind of scale should we use?

Input: “What is a substitute for 
baking soda in a cake recipe? ”

Output: “salt ”

Human annotator

2 / 10



HUMAN EVALUATION
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• We can ask humans to score different outputs from NLP models.

• But this is very expensive.

• We can’t ask humans to label all possible model outputs.

• We can only ask them to label some outputs.

• What kind of scale should we use?

Input: “What is a substitute for 
baking soda in a cake recipe? ”

Output: “bleach ”

Human annotator

0 / 10



HUMAN EVALUATION
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• We can ask humans to score different outputs from NLP models.

• Human evaluators are often asked to score multiple aspects of the output:

• Fluency: How natural is the output?

• Adequacy: In translation, does the output capture the meaning/semantics 
of the input?

• Factuality: Is the output factual? Does it follow logically from the input?

• Coherence: Does the output fit coherently in the discourse?

• etc…



PREFERENCE RANKING
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• Instead of asking humans to give a score for each output, we can ask them to 
give a ranking.

• This is easier to do for annotators.

• But annotators can’t specify the “degree” of output quality.

• How much worse is “bleach” than “salt”?

Input: “What is a substitute for 
baking soda in a cake recipe? ”

Output 1: “salt ”

Output 2: “whipped cream ”

Output 3: “bleach ”
Human annotator

“whipped cream ” > “salt ” > “bleach ”



PREFERENCE RANKING
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• Instead of asking humans to give a score for each output, we can ask them to 
give a ranking.

• How do you convert rankings into a numerical score for each output?

• Elo

• Used in chess

• Only supports binary comparisons

• TrueSkill (Sakaguchi et al., 2014)

• Designed for Xbox Live and online gaming

• Supports n-way comparisons

• Train a model.

• We will discuss this approach later in this lecture.



HUMAN EVALUATION: ERROR ANNOTATION
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• Humans annotators can provide more fine-grained feedback:

• Annotate specific errors in the output.

• This approach is used in machine translation.

• Multidimensional quality metrics (Frietag et al., 2021).

• But this is a lot of work for annotators.

• Difficult to scale to large numbers of examples.

Input: “Translate: Envía el 
paquete a Londres. ”

Output: “Send a package to Tokyo. ”

Human annotator

Annotated output:

“Send a package to Tokyo. ”

“a”: minor error/linguistic convention

“Tokyo”: major error



AUTOMATED EVALUATION
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• Can we try automating the evaluation process?

3 / 10

Human annotator

Input: “Translate: Envía el 
paquete a Londres. ”

Output: “Send a package to Tokyo. ”



AUTOMATED EVALUATION
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• Can we try automating the evaluation process?

• Potentially save a lot of human annotation time.

• Much easier to scale to many many examples.

Input: “Translate: Envía el 
paquete a Londres. ”

Output: “Send a package to Tokyo. ”

3 / 10model



AUTOMATED EVALUATION
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• If we have a reference output (i.e., gold output), we can compute a similarity 
score between the predicted output and the reference output.

• (we automatically have reference outputs if we have supervised labels)

• What text similarity metrics can we use?

6 / 10similarity( x, y)
Input: “Translate: Envía el 
paquete a Londres. ”

Output: “Send a package to Tokyo. ”

Reference: “Send the package to London. ”



TEXT SIMILARITY METRICS
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• One prototypical metric is BLEU (bilingual evaluation understudy; Papineni et 
al., 2002).

• First, consider all 1-grams that appear in the prediction: “Send”, “a”, 
“package”, “to”, “Tokyo”.

• For each 1-gram, count how many times it appears in the prediction as well 
as in the reference.

• “Send” appears 1 time in the prediction, and 1 time in the reference.

• “Tokyo” appears 1 time in the prediction, and 0 times in the reference.

• etc…

Prediction: Send a package to Tokyo.
Reference: Send the package to London.



TEXT SIMILARITY METRICS
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• One prototypical metric is BLEU (bilingual evaluation understudy; Papineni et 
al., 2002).

where x is the prediction and y is the reference.

• So in the above example, the numerator is 1 + 0 + 1 + 1 + 0 = 3.

• The denominator is 1 + 1 + 1 + 1 + 1 = 5.

• So the ratio is 3/5 = 0.6.

Prediction: Send a package to Tokyo.
Reference: Send the package to London.

σs  ∈ 1−grams of  x # of  times  s  appears  in  y

σs  ∈ 1−grams of  x # of  times  s  appears  in  x



TEXT SIMILARITY METRICS
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• One prototypical metric is BLEU (bilingual evaluation understudy; Papineni et 
al., 2002).

where x is the prediction and y is the reference.

• Caveat: To properly handle the case where s  appears in the reference more 
than in the prediction, we need to add a min to the numerator.

• Consider the slightly modified example above with the 1-gram “to.”

Prediction: Send a package to Tokyo.
Reference: Send the package to London and to Paris.

σs  ∈ 1−grams of  x min{#  of  times  s  appears  in  x,  # of  times  s  appears  in  y}

σs  ∈ 1−grams of  x # of  times  s  appears  in  x



TEXT SIMILARITY METRICS
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• One prototypical metric is BLEU (bilingual evaluation understudy; Papineni et 
al., 2002).

where x i  is the i th  predicted sentence and y is the reference.

• BLEU was developed to work with multiple sentences in both the predicted 
output and the reference output.

Prediction: Send a package to Tokyo.
Reference: Send the package to London.

σi σs  ∈ 1−grams of  xi
min{#  of  times  s  appears  in  xi ,  # of  times  s  appears  in  y}

σi σs  ∈ 1−grams of  xi
# of  times  s  appears  in  xi



TEXT SIMILARITY METRICS
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• One prototypical metric is BLEU (bilingual evaluation understudy; Papineni et 
al., 2002).

where x i  is the i th  predicted sentence and y j  is the j th  reference sentence.

• BLEU was developed to work with multiple sentences in both the predicted 
output and the reference output.

Prediction: Send a package to Tokyo.
Reference: Send the package to London.

σi σs  ∈ 1−grams of  xi
min{#  of  times  s  appears  in  xi ,  maxj { # of  times  s  appears  in  yj } }

σi σs  ∈ 1−grams of  xi
# of  times  s  appears  in  xi



TEXT SIMILARITY METRICS
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• One prototypical metric is BLEU (bilingual evaluation understudy; Papineni et 
al., 2002).

• In BLEU, we compute the above quantity for 1-grams, 2-grams, ..., n-grams, 
for multiple values of n.

Prediction: Send a package to Tokyo.
Reference: Send the package to London.

Sn x, y =
σi σs  ∈ n−grams of  xi

min{#  of  times  s  appears  in  xi ,  maxj {#  of  times  s  appears  in  yj }}

σi σs  ∈ n−grams of  xi
# of  times  s  appears  in  xi



TEXT SIMILARITY METRICS
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• One prototypical metric is BLEU (bilingual evaluation understudy; Papineni et 
al., 2002).

• For the above example, we had computed S1( x, y) = 0.6 .

• Let’s compute S2( x, y):

• 2-grams of x are: “Send a”, “a package”, “package to”, “to Tokyo”.

• Numerator is: 0 + 0 + 1 + 0 = 1

• Denominator is: 1 + 1 + 1 + 1 = 4

Prediction: Send a package to Tokyo.
Reference: Send the package to London.

Sn x, y =
σi σs  ∈ n−grams of  xi

min{#  of  times  s  appears  in  xi ,  maxj {#  of  times  s  appears  in  yj }}

σi σs  ∈ n−grams of  xi
# of  times  s  appears  in  xi



TEXT SIMILARITY METRICS
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• One prototypical metric is BLEU (bilingual evaluation understudy; Papineni et 
al., 2002).

• For the above example, we had computed S1( x, y) = 0.6 , S2( x, y) = 0.25.

BLEU(x, y) = (brevity penalty)exp{ σn
1
n

log Sn( x, y) }

• The full BLEU score is the geometric mean of Sn( x, y) , multiplied by a “brevity 
penalty”.

Prediction: Send a package to Tokyo.
Reference: Send the package to London.

Sn x, y =
σi σs  ∈ n−grams of  xi

min{#  of  times  s  appears  in  xi ,  maxj {#  of  times  s  appears  in  yj }}

σi σs  ∈ n−grams of  xi
# of  times  s  appears  in  xi



TEXT SIMILARITY METRICS
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• One prototypical metric is BLEU (bilingual evaluation understudy; Papineni et 
al., 2002).

• Why do we need a brevity penalty?

• Consider the above example.

• All n-grams of the prediction appear in the reference.

• Without the brevity penalty, the BLEU score would be 1 (perfect score).

Prediction: Send the package
Reference: Send the package to London.



TEXT SIMILARITY METRICS
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• One prototypical metric is BLEU (bilingual evaluation understudy; Papineni et 
al., 2002).

brevity penalty = max{0, exp{1 – r/c}}

where c is the total number of words in the predicted sentences,

and r = σi |reference  sentence  with  length  closest  to  |xi ||.

Prediction: Send the package
Reference: Send the package to London.



TEXT SIMILARITY METRICS
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• One prototypical metric is BLEU (bilingual evaluation understudy; Papineni et 
al., 2002).

BLEU(x, y) = (brevity penalty)exp{ σn
1
n

log Sn( x, y) }

• Going back to our example:

• Suppose we only consider 1-gram and 2-grams. (usually, n goes up to 4)

• S1( x, y) = 0.6 , S2( x, y) = 0.25

• The geometric mean is 0.387 .

• c = |”Send a package to Tokyo.”| = 5

• r = 5 (we only have 1 reference sentence)

• brevity penalty = max{0, exp{1 – r/c}} = max{0, exp{0}} = 1

Prediction: Send a package to Tokyo.
Reference: Send the package to London.

= 0.387



BLEU DISADVANTAGES
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• BLEU does not consider meaning of sentences (i.e., semantics).

• It only looks at subsequences of words.

• BLEU(“Do not send a package to Tokyo”, “Send a package to Tokyo”) = 0.544

• BLEU(“Please do send a package to Tokyo”, “Send a package to Tokyo”) = 0.544

• But it is ubiquitous in NLP,

• And is still being used (but maybe not as much as before).



LEARNED TEXT SIMILARITY METRICS
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• Another approach: Compare the embeddings of the predicted sentence and the 
reference sentence.

Step 1: Compute embeddings for each token in the reference sentence.

[Zhang* and Kishore* et al., 2020]



LEARNED TEXT SIMILARITY METRICS
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Step 2: Compute embeddings for each token in the predicted sentence.

[Zhang* and Kishore* et al., 2020]



LEARNED TEXT SIMILARITY METRICS
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Step 3: For each embedding in the reference sentence, compute the maximum 
cosine similarity with embedding in the predicted sentence.

[Zhang* and Kishore* et al., 2020]



LEARNED TEXT SIMILARITY METRICS
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Step 4: Compute the mean of these cosine similarities.

 (optional) Compute a weighted average.

[Zhang* and Kishore* et al., 2020]



LEARNED TEXT SIMILARITY METRICS
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• This approach is called BERTScore.

[Zhang* and Kishore* et al., 2020]



LEARNED TEXT SIMILARITY METRICS
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• Another idea: Train BERT to directly output the similarity score.

• Add a linear layer to pretrained BERT.

• Fine-tune this linear layer on a large corpus, where each example is:

• Reference sentence

• Predicted sentence

• Human rating of the sentence similarity

• Problem: Human annotated datasets are not very big.

• Training on this not-so-large dataset will result in overfitting.



LEARNED TEXT SIMILARITY METRICS
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• Possible solution: Augment the training set using synthetic data (Sellam et al., 
2020).

• How do we create new examples from existing examples?

• Synthetically generate perturbations of sentences that preserve their meaning.

• Use machine translation to translate into a different language and then 
translate back.

• Randomly mask some words and use a masked language model to fill in the 
blanks.

• Train the model on this augmented data set.

• This metric is called BLEURT.



AUTOMATED EVALUATION
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• Text similarity metrics rely on having a reference sentence for every example.

6 / 10similarity( x, y)
Input: “Translate: Envía el 
paquete a Londres. ”

Output: “Send a package to Tokyo. ”

Reference: “Send the package to London. ”



AUTOMATED EVALUATION
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• Text similarity metrics rely on having a reference sentence for every example.

• If we aim to predict a score for a much larger set of examples,

• We need a method to evaluate outputs with less supervision.

???similarity( x, y)
Input: “Translate: Envía el 
paquete a Londres. ”

Output: “Send a package to Tokyo. ”

Reference: ???



AUTOMATED EVALUATION
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• Text similarity metrics rely on having a reference sentence for every example.

• If we aim to predict a score for a much larger set of examples,

• We need a method to evaluate outputs with less supervision.

• Idea: Train a model to predict a score for each example.

• Note: If this model is used in reinforcement learning (which we will discuss 
later), it is called a reward model.

6 / 10

Input: “Translate: Envía el 
paquete a Londres. ”

Output: “Send a package to Tokyo. ”

reward( x)



REWARD MODEL
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• How do we train a reward model?

• Basic idea: Use human-provided preference annotations.

Input: “What is a substitute for 
baking soda in a cake recipe? ”

Output 1: “salt ”

Output 2: “baking powder ”
Human annotator

“baking powder ” > “salt ”

reward model 

training set
reward( x)



REWARD MODEL

50

• How do we train a reward model?

• Basic idea: Use human-provided preference annotations.

• For each example in the reward training set, we have two outputs x1 and x2, 
where x1 is preferred over x2.

• We train a model r  using the loss function:

L( w) = - log σ( r w( x1) – r w( x2))

reward model 

training set
reward( x)



REWARD MODEL
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• How do we train a reward model?

• Basic idea: Use human-provided preference annotations.

• For each example in the reward training set, we have two outputs x1 and x2, 
where x1 is preferred over x2.

• We train a model r  using the loss function:

L( w) = - log σ( r w( x1) – r w( x2))

• If r w( x1) > r w( x2) , then the output of the sigmoid will be closer to 1, the 
logarithm of which will be close to 0, and so the overall loss will be close to 0.

• If r w( x1) < r w( x2) , then the output of the sigmoid will be closer to 0, the 
logarithm of which will be negative, and so the overall loss will be positive.



REINFORCEMENT LEARNING
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• With a trained reward model, we can compute the score of any output.

• Now that we have output scores, how do we use them to train an NLP model?

• (as opposed to using supervised maximum likelihood training)

• Reinforcement learning (RL) is a machine learning technique that is often 
used in settings without supervision.

• Where not all examples have a “correct” label.

• In RL, we have an agent that takes actions in an environment over time.

• The agent receives reward from the environment depending on their 
actions.

• The goal is to teach the agent to maximize reward.



REINFORCEMENT LEARNING
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• The RL setting is highly flexible.

• Teaching agents to play games:

• Environment: Current Tetris board

• Actions: Rotate current tile, move left, 
move right

• Reward: Game score



REINFORCEMENT LEARNING
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• The RL setting is highly flexible.

• Teaching agents to play games:

• Environment: Minecraft 
world state

• Actions: Walk forward, 
mine, equip item, jump, etc.

• Reward: Crafting items, 
staying alive, etc.



REINFORCEMENT LEARNING
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• The RL setting is highly flexible.

• Teaching robots to perform 
tasks:

• Environment: Physical world 
around robot.

• Actions: Move arm left, 
right, forward, open hand, 
close hand.

• Reward: Complete task.



REINFORCEMENT LEARNING
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• The RL setting is highly flexible.

• Teaching NLP models to produce better outputs.

• Environment: Input text

• Actions: All possible outputs of the NLP model

• Reward: Provided by a trained reward model

• At each “episode”, the environment provides the NLP model with a random 
input.

• In language modeling, this a random prompt.

• At each timestep, the language model predicts one token of the output.



REINFORCEMENT LEARNING
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• How do we train an agent to maximize reward?

• There are many algorithms; RL is a very deep field.

• Next lecture, we will discuss some of these algorithms, including those that are 
commonly used to train language models.

• Reinforcement learning from human feedback (RLHF)



QUESTIONS?
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