CS 577:
NATURAL LANGUAGE
PROCESSING

Abulhair Saparov

Lecture 13: Reinforcement Learning

[some slide content from: Graham Neubig, 11-711 Lecture Slides, 2024]

WRAPPING UP PEFT

* At the end of last lecture, we discussed parameter-efficient fine-tuning
methods (PEFT).

* In PEFT, generally, we freeze most of the parameters of the model and
only compute gradients for a small set of parameters during fine-tuning.
* E.g.,, LORA

* There are many other PEFT methods, and research into new methods is
ongoing.

PREFIX TUNING

* Adapter methods and LoRA are similar in that they freeze the original
model’s parameters

* And instead added a small number of trainable parameters.

* Prefix tuning is another PEFT method where new tokens are added to the
beginning of the input prompt.

* Unlike regular text tokens, these added tokens are continuous.
* Their embeddings are the only trainable parameters in the model.

Transformer (Pretrained)

NN

. . name Starbucks type coffee shop [SEP] Starbucks serves coffee
[Li and Liang, 2021] Input (table-to-text) Output (table-to-text)

(Table-to-text)

PEFT

Low-Resource (<1k) Medium-Resource (1k~10k) High-Resource (>10k)

‘/ﬁ\' A Param.(%)
o 107 ¥ ‘ : 1.4
c | e |
<
g) 4 & * * .
5 O - é%(} S eea # -T-".“ i - LEEEE z %.;..J.. W ammas g o= m e
+= B i : x 1
o i =
¥ '
0 -10- * FT
g ® Adapter
= m PT
. —20- A LoRA 0.6

= * BitFit

[\ AN N [\ W (@) ~ \O (@)} —_— W W

W () N ()] ~J = () RS ~] o) (@) \O

() o = -} () (=) (an) [\ =~ N s W

<)) (=) - ~J ~ ~ ~
Data Size

[Chen et al., 2022]

PEFT

MOELoRA L-LoRA LElRAA
Additive Fine-tuning Laplace-LoRA
LoRA-Hub
LOFTQ
LoRAPrune

QA-LoRA

Delta-LoRA 5 U/S-SAM
A
Unified Fine-tuning QLoRA
U/S-BitFit
h IncreLoRA AutoPEFT
AdalLoRA
DyLoRA
S°Delta-M
SAM
Kermmel-mix-lite(gqvo)
KronA
UniPELT | TrgT
Compacter
LoRA
FISH
Mask
MAM
Adapter child
tuning
BitFit
Intrinsic
Diff
SAID Threshold Finvrie
MASK

[Xu et al., 2023]

EVALUATING MODEL
RESPONSES

SO FAR: MINIMIZE CROSS-ENTROPY LOSS

* All machine learning techniques we have discussed thus far involved
minimizing loss functions (usually cross-entropy).

* Recall minimizing cross-entropy loss is equivalent to maximizing likelihood.

* This approach is only teaching the model how to predict the correct output,
for a given input.

* For this reason, this kind of training is often called imitation learning.

SOME MISTAKES ARE BETTER THAN OTHERS

* NLP models often make mistakes.
* Some mistakes are better than others:
Input: “What is a substitute for baking soda in a cake recipe?”
Mistaken output 1: “whipped cream”
Mistaken output 2: “salt”
Mistaken output 3: “bleach”
Mistaken output 4: “How should I know, you #®@&}!7?”

* Maximizing likelihood on only correct data does not teach the model which
mistake is better.

ADAPTING TO MODEL-GENERATED INPUTS

Training NLP models only on inputs from a gold dataset
* E.g., Only containing human-generated inputs.

If we are generating outputs autoregressively, where each output token is
appended to the input in the next step,

The model’s performance may deteriorate,

Especially if the distribution of the model’s generated text is very different
from the distribution of the training text.

Called exposure bias.

Example: the model makes a mistake when generating one token.
* The model will be more likely to make mistakes on all subsequent tokens.

UNDESIRABLE CONTENT IN TRAINING DATA

* Also, the training dataset contains text that we don’t want the model to
generate!

* Misinformation
e Comments from social networks

Conspiracy theories
Baises/stereotypes
Outputs from older/lower-quality NLP models

* If we simply maximize the likelihood, the resulting model will just learn to
produce the same undesirable content that appears in the training data.

10

ALTERNATIVES TO
MAXIMUM LIKELIHOOD TRAINING

* These shortcomings are a consequence of the fact that, for each example in
the training set, there is only one “correct” output,

* And all other outputs are equally bad.
* “All or nothing”

* Are there other ways we can measure the quality of an output that provides
more information:

* Which incorrect outputs are better than others?

11

ALTERNATIVES TO
MAXIMUM LIKELIHOOD TRAINING

* Possible alternatives:
* Maximize task-specific objective correctness score
* Maximize human evaluation score
* Train another machine learning model to produce a correctness score
* Then maximize the model’s predicted correctness score

12

OBJECTIVE CORRECTNESS SCORE

* There are some tasks where correctness scores are more easily defined.

* Example: math word problem solving

Mary starts with 8 apples. She buys 7 from the grocery store and
gives 12 to her friend, Jesse. How many apples does Mary have left?

Correct output: 3

13

OBJECTIVE CORRECTNESS SCORE

* There are some tasks where correctness scores are more easily defined.
* Example: math word problem solving
* One idea for correctness metric:

exp{(predicted_number - correct_number)?}

Mary starts with 8 apples. She buys 7 from the grocery store and
gives 12 to her friend, Jesse. How many apples does Mary have left?

Correct output: 3

14

OBJECTIVE CORRECTNESS SCORE

* This approach does not easily generalize to other tasks.

* How would you define a correctness score for the question-answering task
from earlier:

Input: “What is a substitute for baking soda in a cake recipe?”

* This is especially difficult for subjective tasks, such as text generation.
* E.g., generating fictional stories.
* Paraphrasing.
e etc...

15

HUMAN EVALUATION

* We can ask humans to score different outputs from NLP models.

* But this is very expensive.
* We can’t ask humans to label all possible model outputs.
* We can only ask them to label some outputs.

e What kind of scale should we use?

Input: “What is a substitute for ‘

baking soda in a cake recipe?” T~ —> 10/10
Output: “baking powder”

Human annotator

16

HUMAN EVALUATION

* We can ask humans to score different outputs from NLP models.

* But this is very expensive.
* We can’t ask humans to label all possible model outputs.
* We can only ask them to label some outputs.

e What kind of scale should we use?

Input: “What is a substitute for ‘

baking soda in a cake recipe?” T~ —> 6/10
Output: “whipped cream”

Human annotator

17

HUMAN EVALUATION

* We can ask humans to score different outputs from NLP models.

* But this is very expensive.
* We can’t ask humans to label all possible model outputs.
* We can only ask them to label some outputs.

e What kind of scale should we use?

Input: “What is a substitute for ‘

baking soda in a cake recipe?” > —> 2/10
Output: “salt”

Human annotator

18

HUMAN EVALUATION

* We can ask humans to score different outputs from NLP models.

* But this is very expensive.
* We can’t ask humans to label all possible model outputs.
* We can only ask them to label some outputs.

e What kind of scale should we use?

Input: “What is a substitute for ‘

baking soda in a cake recipe?” T~ —> 0/10
Output: “bleach”

Human annotator

19

HUMAN EVALUATION

* We can ask humans to score different outputs from NLP models.

* Human evaluators are often asked to score multiple aspects of the output:

* Fluency: How natural is the output?

* Adequacy: In translation, does the output capture the meaning/semantics
of the input?
Factuality: Is the output factual? Does it follow logically from the input?
Coherence: Does the output fit coherently in the discourse?

* etfc...

20

PREFERENCE RANKING

* Instead of asking humans to give a score for each output, we can ask them to
give a ranking.

Input: “What is a substitute for .
baking soda in a cake recipe?” —> —> “whipped cream” > “salt” > “bleach”
Output 1: “salt” .

Output 2: “whipped cream” Human annotator
Output 3: “bleach”

* This is easier to do for annotators.

* But annotators can’t specify the “degree” of output quality.

* How much worse is “bleach” than “salt”?
21

PREFERENCE RANKING

* Instead of asking humans to give a score for each output, we can ask them to
give a ranking.
* How do you convert rankings into a numerical score for each output?
* Elo
* Used in chess
* Only supports binary comparisons
* TrueSkill (Sakaguchi et al., 2014)
* Designed for Xbox Live and online gaming
* Supports n-way comparisons
* Train a model.

* We will discuss this approach later in this lecture.
22

HUMAN EVALUATION: ERROR ANNOTATION

* Humans annotators can provide more fine-grained feedback:
* Annotate specific errors in the output.

Annotated output:
Input: “Translate: Envia el ‘ “Send a package to Tokyo.”
paquete a Londres.”

—> —>
Output: “Send a package to Tokyo.” . “a”: minor error/linguistic convention
“Tokyo”: major error

Human annotator

* This approach is used in machine translation.
* Multidimensional quality metrics (Frietag et al., 2021).

e But this is a lot of work for annotators.

* Difficult to scale to large numbers of examples. o

AUTOMATED EVALUATION

* Can we try automating the evaluation process?

Input: “Translate: Envia el ‘
paquete a Londres.” —> —> 3/10
Output: “Send a package to Tokyo.” ‘

Human annotator

24

AUTOMATED EVALUATION

* Can we try automating the evaluation process?
* Potentially save a lot of human annotation time.

* Much easier to scale to many many examples.

Input: “Translate: Envia el
paquete a Londres.” —>
Output: “Send a package to Tokyo.”

—_—> 3/10

25

AUTOMATED EVALUATION

* If we have a reference output (i.e., gold output), we can compute a similarity
score between the predicted output and the reference output.

e (we automatically have reference outputs if we have supervised labels)

* What text similarity metrics can we use?

Input: “Translate: Envia el
paquete a Londres.” —> similarity(z,y) —> 6/10
Output: “Send a package to Tokyo.”

T

Reference: “Send the package to London.”

26

TEXT SIMILARITY METRICS

e One prototypical metric is BLEU (bilingual evaluation understudy; Papineni et

al., 2002).
Prediction: Send a package to Tokyo.

Reference: Send the package to London.

* First, consider all 1-grams that appear in the prediction: “Send”, “a”,
“package”, “to”, “Tokyo”.
* For each 1-gram, count how many times it appears in the prediction as well

as in the reference.
* “Send” appears 1 time in the prediction, and 1 time in the reference.

* “Tokyo” appears 1 time in the prediction, and 0 times in the reference.

* etc...
27

TEXT SIMILARITY METRICS

e One prototypical metric is BLEU (bilingual evaluation understudy; Papineni et

al., 2002).
Prediction: Send a package to Tokyo.

Reference: Send the package to London.

2is € 1-grams of z # of times s appears in ¥y

Zs € 1-grams of z # of times s appears in =

where z is the prediction and y is the reference.

* So in the above example, the numeratoris1+0+1+1+0=3.
e The denominatorisl1+1+1+1+1=5.

 So the ratio is 3/5 = 0.6. ,

TEXT SIMILARITY METRICS

e One prototypical metric is BLEU (bilingual evaluation understudy; Papineni et

al., 2002).
Prediction: Send a package to Tokyo.

Reference: Send the package to London and to Paris.

Zs € 1-grams of min{# of times s appears in z, # of times s appears in y}

ZS € 1-grams of z # of times s appears in x

where z is the prediction and y is the reference.

* Caveat: To properly handle the case where s appears in the reference more
than in the prediction, we need to add a min to the numerator.

* Consider the slightly modified example above with the 1-gram “to.”
29

TEXT SIMILARITY METRICS

e One prototypical metric is BLEU (bilingual evaluation understudy; Papineni et

al., 2002).
Prediction: Send a package to Tokyo.

Reference: Send the package to London.

Yids € 1-grams of mimin{# of times s appears in z;, # of times s appears in y}

Z,,;ZS € 1-grams of wz'# of times s appears in z;

where z; is the 7" predicted sentence and vy is the reference.

* BLEU was developed to work with multiple sentences in both the predicted
output and the reference output.

30

TEXT SIMILARITY METRICS

e One prototypical metric is BLEU (bilingual evaluation understudy; Papineni et

al., 2002).
Prediction: Send a package to Tokyo.

Reference: Send the package to London.

min{# of times s appears in z;, man{# of times s appears in yj}}
7

Z,,;ZS € 1-grams of C%# of times s appears in z;

Z'L’Zs € l-grams of =z

where z, is the ¢*" predicted sentence and y; is the j*" reference sentence.

* BLEU was developed to work with multiple sentences in both the predicted
output and the reference output.

31

TEXT SIMILARITY METRICS

e One prototypical metric is BLEU (bilingual evaluation understudy; Papineni et

al., 2002).
Prediction: Send a package to Tokyo.

Reference: Send the package to London.

YitsE n-grams of C%min{# of times s appears in z;, max;{# of times s appears in y;}}

Sp(z,vy) =) :
n Yidise n-grams of mz'# of times s appears in z;

* In BLEU, we compute the above quantity for 1-grams, 2-grames, ..., n-grams,
for multiple values of n.

32

TEXT SIMILARITY METRICS

e One prototypical metric is BLEU (bilingual evaluation understudy; Papineni et

al., 2002).
Prediction: Send a package to Tokyo.

Reference: Send the package to London.

YitsE n-grams of C%min{# of times s appears in z;, max;{# of times s appears in y;}}

Sp(,7) = . |
Z?LZSE n-grams of m?;# of times s appears in x4

* For the above example, we had computed S,(z,y) = 0.6.

* Let’s compute S, (z,v) :
* 2-grams of z are: “Send a”, “a package”, “package to”, “to Tokyo”.
* Numeratoris:0+0+1+0=1

e Denominatoris:1+1+1+1=4
33

TEXT SIMILARITY METRICS

e One prototypical metric is BLEU (bilingual evaluation understudy; Papineni et

al., 2002).
Prediction: Send a package to Tokyo.

Reference: Send the package to London.

YitsE n-grams of C%min{# of times s appears in z;, max;{# of times s appears in y;}}

Sp(z,vy) =) :
n Yidise n-grams of mz'# of times s appears in z;

* For the above example, we had computed S,(z,y) = 0.6, S,(z,y) = 0.25.

BLEU(z,y) = (brevity penalty)exp{), n% logSy(z,y)}

* The full BLEU score is the geometric mean of S_(z,y), multiplied by a “brevity

penalty”.
34

TEXT SIMILARITY METRICS

e One prototypical metric is BLEU (bilingual evaluation understudy; Papineni et

al., 2002).
Prediction: Send the package

Reference: Send the package to London.

* Why do we need a brevity penalty?

* Consider the above example.
* All n-grams of the prediction appear in the reference.
* Without the brevity penalty, the BLEU score would be 1 (perfect score).

35

TEXT SIMILARITY METRICS

e One prototypical metric is BLEU (bilingual evaluation understudy; Papineni et

al., 2002).
Prediction: Send the package

Reference: Send the package to London.
brevity penalty = max{0, exp{l - r/c}}

where c is the total number of words in the predicted sentences,
and r =), ; |reference sentence with length closest to |x;l|.

36

TEXT SIMILARITY METRICS

e One prototypical metric is BLEU (bilingual evaluation understudy; Papineni et

al., 2002).
Prediction: Send a package to Tokyo.

Reference: Send the package to London.
BLEU(z,7y) = (brevity penalty)exp{), n%log Sp(z,y)} = 0.387

* Going back to our example:
* Suppose we only consider 1-gram and 2-grams. (usually, n goes up to 4)
S,(z,y) = 0.6,S,(z,y) = 0.25
The geometric mean is 0.387.
* ¢ = |"Send a package to Tokyo."| =5
e r = 5 (we only have 1 reference sentence)
brevity penalty = max{0, exp{l - r/c}} = max{0, exp{O}} =1 %

BLEU DISADVANTAGES

BLEU does not consider meaning of sentences (i.e., semantics).
* It only looks at subsequences of words.

BLEU(“Do not send a package to Tokyo”, “Send a package to Tokyo”) = 0.544
BLEU(“Please do send a package to Tokyo”, “Send a package to Tokyo”) = 0.544

But it is ubiquitous in NLP,

And is still being used (but maybe not as much as before).

38

LEARNED TEXT SIMILARITY METRICS

* Another approach: Compare the embeddings of the predicted sentence and the
reference sentence.

Step 1: Compute embeddings for each token in the reference sentence.

Contextual
Embedding

Reference
the weather is —> @
cold today

[Zhang* and Kishore* et al., 2020] 39

LEARNED TEXT SIMILARITY METRICS
Step 2: Compute embeddings for each token in the predicted sentence.

Contextual
Embedding

Reference

the weather is —> @
cold today

Cz.mdldaﬁe €T

it is freezing today

[Zhang* and Kishore* et al., 2020]

40

LEARNED TEXT SIMILARITY METRICS

Step 3: For each embedding in the reference sentence, compute the maximum
cosine similarity with embedding in the predicted sentence.

Contextual Pairwise Cosine Maximum Similarity
Embedding Similarity
the 0.591 0.428 0.408| |1.27

Reference
' —’ _’ weather {0.462 0.393)0.515}0.326| | 7.94
fhoveateris = | (@
% cold 10.479 0.454 &I 0.343| |7.90
a today -40.347 0.361 0.307 JuB:, 8.88

Candidate
. . . x # # : . .
it is freezing today MM
O b’b idf
K&@ < weights

Candidate

[Zhang* and Kishore* et al., 2020] 41

LEARNED TEXT SIMILARITY METRICS

Step 4: Compute the mean of these cosine similarities.
(optional) Compute a weighted average.

Reference
the weather is
cold today

Candidate
it is freezing today

—

Contextual
Embedding

x

[Zhang* and Kishore* et al., 2020]

—

Pairwise Cosine
Similarity

Reference

Maximum Similarity

the {E)0.597 0.428 0.408

weather A

0.462 0.393

0.515

0.326

0.6 IR:E1:80.441 0.441

0.479 0.454

0.343

0.347 0.361 0.307 ju&e,

1.27

7.94

1.82

7.90

8.88

e O B
<

9\(0

O

Candidate

weights

Importance Weighting
(Optional)

0.713%1.27)+(0.515X 7.94)+ ...
—» RBERT = (Rt)

 1.2747.9441.8247.90+8.88

42

LEARNED TEXT SIMILARITY METRICS

* This approach is called BERTScore.

Reference
the weather is
cold today

Candidate
it is freezing today

—

Contextual
Embedding

x

[Zhang* and Kishore* et al., 2020]

—

Pairwise Cosine
Similarity

weather A

Reference

Maximum Similarity

the {E)0.597 0.428 0.408

0.462 0.393§0.515}0.326

0.6 IR:E1:80.441 0.441

0.479 0.454EE10.343

0.347 0.361 0.307 ju&e,

1.27

7.94

1.82

7.90

8.88

& °
BN

Candidate

idf
weights

Importance Weighting
(Optional)

_ (0.713x1.27)+(0.515X7.94) +...

—» RBERT = “197170111.8217.0018 88

43

LEARNED TEXT SIMILARITY METRICS

Another idea: Train BERT to directly output the similarity score.

Add a linear layer to pretrained BERT.

Fine-tune this linear layer on a large corpus, where each example is:
* Reference sentence

* Predicted sentence

* Human rating of the sentence similarity

Problem: Human annotated datasets are not very big.

Training on this not-so-large dataset will result in overfitting.

44

LEARNED TEXT SIMILARITY METRICS

Possible solution: Augment the training set using synthetic data (Sellam et al.,
2020).

How do we create new examples from existing examples?
Synthetically generate perturbations of sentences that preserve their meaning.

* Use machine translation to translate into a different language and then
translate back.

* Randomly mask some words and use a masked language model to fill in the
blanks.

Train the model on this augmented data set.
This metric is called BLEURT.

45

AUTOMATED EVALUATION

* Text similarity metrics rely on having a reference sentence for every example.

Input: “Translate: Envia el
paquete a Londres.” —> similarity(z,y) —> 6/10
Output: “Send a package to Tokyo.”

T

Reference: “Send the package to London.”

46

AUTOMATED EVALUATION

* Text similarity metrics rely on having a reference sentence for every example.
* If we aim to predict a score for a much larger set of examples,

* We need a method to evaluate outputs with less supervision.

Input: “Translate: Envia el
paquete a Londres.” —> similarity(z,y) —> ???
Output: “Send a package to Tokyo.”

Reference: ??°?

a7

AUTOMATED EVALUATION

Text similarity metrics rely on having a reference sentence for every example.

* If we aim to predict a score for a much larger set of examples,

We need a method to evaluate outputs with less supervision.

Idea: Train a model to predict a score for each example.

Input: “Translate: Envia el
paquete a Londres.” —> reward (z) —> 6/10
Output: “Send a package to Tokyo.”

e Note: If this model is used in reinforcement learning (which we will discuss
later), it is called a reward model.

48

REWARD MODEL

* How do we train a reward model?
* Basic idea: Use human-provided preference annotations.

Input: “What is a substitute for ‘ .

baking soda in a cake recipe?” > > “baking powder” > “salt
Output 1: “salt”

Output 2: “baking powder Human annotator l

reward(z) -— reward model

training set

49

REWARD MODEL

How do we train a reward model?
Basic idea: Use human-provided preference annotations.

For each example in the reward training set, we have two outputs z, and z,,
where z, is preferred over z..

We train a model rusing the loss function:

L(w) = -log o(r(z,) - r,(z,))

reward(z) -— reward model

training set

50

REWARD MODEL

How do we train a reward model?
Basic idea: Use human-provided preference annotations.

For each example in the reward training set, we have two outputs z, and z,,
where z, is preferred over z..

We train a model rusing the loss function:
L(w) = -log o(r(z,) - r,(z,))

If r,(z,) > r,(z,), then the output of the sigmoid will be closer to 1, the
logarithm of which will be close to 0, and so the overall loss will be close to 0.

If r,(z,) < r,(z,), then the output of the sigmoid will be closer to 0, the
logarithm of which will be negative, and so the overall loss will be positive.

51

REINFORCEMENT LEARNING

With a trained reward model, we can compute the score of any output.

Now that we have output scores, how do we use them to train an NLP model?
* (as opposed to using supervised maximum likelihood training)

Reinforcement learning (RL) is a machine learning technique that is often
used in settings without supervision.

* Where not all examples have a “correct” label.

In RL, we have an agent that takes actions in an environment over time.

* The agent receives reward from the environment depending on their
actions.

* The goal is to teach the agent to maximize reward.

52

REINFORCEMENT LEARNING

* The RL setting is highly flexible.

* Teaching agents to play games:
* Environment: Current Tetris board

* Actions: Rotate current tile, move left,
move right

e Reward: Game score

TIME
00:01:04

53

REINFORCEMENT LEARNING

* The RL setting is highly flexible.

* Teaching agents to play games:

* Environment: Minecraft
world state

* Actions: Walk forward,
mine, equip item, jump, etc.

* Reward: Crafting items,
staying alive, etc.

54

REINFORCEMENT LEARNING

* The RL setting is highly flexible.

* Teaching robots to perform
tasks:
* Environment: Physical world
around robot.
* Actions: Move arm left,
right, forward, open hand,
close hand.

* Reward: Complete task.

55

REINFORCEMENT LEARNING

* The RL setting is highly flexible.

* Teaching NLP models to produce better outputs.
* Environment: Input text
* Actions: All possible outputs of the NLP model
* Reward: Provided by a trained reward model
* At each “episode”, the environment provides the NLP model with a random
input.
* In language modeling, this a random prompt.
* At each timestep, the language model predicts one token of the output.

56

REINFORCEMENT LEARNING

* How do we train an agent to maximize reward?

* There are many algorithms; RL is a very deep field.

* Next lecture, we will discuss some of these algorithms, including those that are
commonly used to train language models.
* Reinforcement learning from human feedback (RLHF)

57

QUESTIONS?

	Slide 1: CS 577: Natural Language Processing
	Slide 2: Wrapping Up PEFT
	Slide 3: Prefix Tuning
	Slide 4: PEFT
	Slide 5: PEFT
	Slide 6: Evaluating Model Responses
	Slide 7: So Far: Minimize Cross-Entropy Loss
	Slide 8: Some Mistakes are Better than others
	Slide 9: Adapting to model-generated inputs
	Slide 10: Undesirable content in Training Data
	Slide 11: Alternatives to Maximum Likelihood Training
	Slide 12: Alternatives to Maximum Likelihood Training
	Slide 13: Objective Correctness Score
	Slide 14: Objective Correctness Score
	Slide 15: Objective Correctness Score
	Slide 16: Human Evaluation
	Slide 17: Human Evaluation
	Slide 18: Human Evaluation
	Slide 19: Human Evaluation
	Slide 20: Human Evaluation
	Slide 21: Preference Ranking
	Slide 22: Preference Ranking
	Slide 23: Human Evaluation: Error Annotation
	Slide 24: Automated Evaluation
	Slide 25: Automated Evaluation
	Slide 26: Automated Evaluation
	Slide 27: Text Similarity Metrics
	Slide 28: Text Similarity Metrics
	Slide 29: Text Similarity Metrics
	Slide 30: Text Similarity Metrics
	Slide 31: Text Similarity Metrics
	Slide 32: Text Similarity Metrics
	Slide 33: Text Similarity Metrics
	Slide 34: Text Similarity Metrics
	Slide 35: Text Similarity Metrics
	Slide 36: Text Similarity Metrics
	Slide 37: Text Similarity Metrics
	Slide 38: BLEU Disadvantages
	Slide 39: Learned Text Similarity Metrics
	Slide 40: Learned Text Similarity Metrics
	Slide 41: Learned Text Similarity Metrics
	Slide 42: Learned Text Similarity Metrics
	Slide 43: Learned Text Similarity Metrics
	Slide 44: Learned Text Similarity Metrics
	Slide 45: Learned Text Similarity Metrics
	Slide 46: Automated Evaluation
	Slide 47: Automated Evaluation
	Slide 48: Automated Evaluation
	Slide 49: Reward Model
	Slide 50: Reward Model
	Slide 51: Reward Model
	Slide 52: Reinforcement Learning
	Slide 53: Reinforcement Learning
	Slide 54: Reinforcement Learning
	Slide 55: Reinforcement Learning
	Slide 56: Reinforcement Learning
	Slide 57: Reinforcement Learning
	Slide 58: Questions?

