
CS 577:
NATURAL LANGUAGE
PROCESSING

Abulhair Saparov

Lecture 13: Reinforcement Learning

[some slide content from: Graham Neubig, 11-711 Lecture Slides, 2024]

WRAPPING UP PEFT

2

• At the end of last lecture, we discussed parameter-efficient fine-tuning
methods (PEFT).

• In PEFT, generally, we freeze most of the parameters of the model and
only compute gradients for a small set of parameters during fine-tuning.

• E.g., LoRA

• There are many other PEFT methods, and research into new methods is
ongoing.

PREFIX TUNING

3

• Adapter methods and LoRA are similar in that they freeze the original
model’s parameters

• And instead added a small number of trainable parameters.

• Prefix tuning is another PEFT method where new tokens are added to the
beginning of the input prompt.

• Unlike regular text tokens, these added tokens are continuous.

• Their embeddings are the only trainable parameters in the model.

[Li and Liang, 2021]

PEFT

4[Chen et al., 2022]

PEFT

5[Xu et al., 2023]

EVALUATING MODEL
RESPONSES

SO FAR: MINIMIZE CROSS-ENTROPY LOSS

7

• All machine learning techniques we have discussed thus far involved
minimizing loss functions (usually cross-entropy).

• Recall minimizing cross-entropy loss is equivalent to maximizing likelihood.

• This approach is only teaching the model how to predict the correct output,
for a given input.

• For this reason, this kind of training is often called imitation learning.

SOME MISTAKES ARE BETTER THAN OTHERS

8

• NLP models often make mistakes.

• Some mistakes are better than others:

 Input: “What is a substitute for baking soda in a cake recipe? ”

 Mistaken output 1: “whipped cream”

 Mistaken output 2: “salt ”

 Mistaken output 3: “bleach ”

 Mistaken output 4: “How should I know, you #@&%!? ”

• Maximizing likelihood on only correct data does not teach the model which
mistake is better.

ADAPTING TO MODEL-GENERATED INPUTS

9

• Training NLP models only on inputs from a gold dataset

• E.g., Only containing human-generated inputs.

• If we are generating outputs autoregressively, where each output token is
appended to the input in the next step,

• The model’s performance may deteriorate,

• Especially if the distribution of the model’s generated text is very different
from the distribution of the training text.

• Called exposure bias.

• Example: the model makes a mistake when generating one token.

• The model will be more likely to make mistakes on all subsequent tokens.

UNDESIRABLE CONTENT IN TRAINING DATA

10

• Also, the training dataset contains text that we don’t want the model to
generate!

• Misinformation

• Comments from social networks

• Conspiracy theories

• Baises/stereotypes

• Outputs from older/lower-quality NLP models

• If we simply maximize the likelihood, the resulting model will just learn to
produce the same undesirable content that appears in the training data.

ALTERNATIVES TO
MAXIMUM LIKELIHOOD TRAINING

11

• These shortcomings are a consequence of the fact that, for each example in
the training set, there is only one “correct” output,

• And all other outputs are equally bad.

• “All or nothing”

• Are there other ways we can measure the quality of an output that provides
more information:

• Which incorrect outputs are better than others?

ALTERNATIVES TO
MAXIMUM LIKELIHOOD TRAINING

12

• Possible alternatives:

• Maximize task-specific objective correctness score

• Maximize human evaluation score

• Train another machine learning model to produce a correctness score

• Then maximize the model’s predicted correctness score

OBJECTIVE CORRECTNESS SCORE

13

• There are some tasks where correctness scores are more easily defined.

• Example: math word problem solving

Mary starts with 8 apples. She buys 7 from the grocery store and
gives 12 to her friend, Jesse. How many apples does Mary have left?

Correct output: 3

OBJECTIVE CORRECTNESS SCORE

14

• There are some tasks where correctness scores are more easily defined.

• Example: math word problem solving

• One idea for correctness metric:

exp{(predicted_number – correct_number) 2}

Mary starts with 8 apples. She buys 7 from the grocery store and
gives 12 to her friend, Jesse. How many apples does Mary have left?

Correct output: 3

OBJECTIVE CORRECTNESS SCORE

15

• This approach does not easily generalize to other tasks.

• How would you define a correctness score for the question-answering task
from earlier:

 Input: “What is a substitute for baking soda in a cake recipe? ”

• This is especially difficult for subjective tasks, such as text generation.

• E.g., generating fictional stories.

• Paraphrasing.

• etc…

HUMAN EVALUATION

16

• We can ask humans to score different outputs from NLP models.

• But this is very expensive.

• We can’t ask humans to label all possible model outputs.

• We can only ask them to label some outputs.

• What kind of scale should we use?

Input: “What is a substitute for
baking soda in a cake recipe? ”

Output: “baking powder ”

Human annotator

10 / 10

HUMAN EVALUATION

17

• We can ask humans to score different outputs from NLP models.

• But this is very expensive.

• We can’t ask humans to label all possible model outputs.

• We can only ask them to label some outputs.

• What kind of scale should we use?

Input: “What is a substitute for
baking soda in a cake recipe? ”

Output: “whipped cream ”

Human annotator

6 / 10

HUMAN EVALUATION

18

• We can ask humans to score different outputs from NLP models.

• But this is very expensive.

• We can’t ask humans to label all possible model outputs.

• We can only ask them to label some outputs.

• What kind of scale should we use?

Input: “What is a substitute for
baking soda in a cake recipe? ”

Output: “salt ”

Human annotator

2 / 10

HUMAN EVALUATION

19

• We can ask humans to score different outputs from NLP models.

• But this is very expensive.

• We can’t ask humans to label all possible model outputs.

• We can only ask them to label some outputs.

• What kind of scale should we use?

Input: “What is a substitute for
baking soda in a cake recipe? ”

Output: “bleach ”

Human annotator

0 / 10

HUMAN EVALUATION

20

• We can ask humans to score different outputs from NLP models.

• Human evaluators are often asked to score multiple aspects of the output:

• Fluency: How natural is the output?

• Adequacy: In translation, does the output capture the meaning/semantics
of the input?

• Factuality: Is the output factual? Does it follow logically from the input?

• Coherence: Does the output fit coherently in the discourse?

• etc…

PREFERENCE RANKING

21

• Instead of asking humans to give a score for each output, we can ask them to
give a ranking.

• This is easier to do for annotators.

• But annotators can’t specify the “degree” of output quality.

• How much worse is “bleach” than “salt”?

Input: “What is a substitute for
baking soda in a cake recipe? ”

Output 1: “salt ”

Output 2: “whipped cream ”

Output 3: “bleach ”
Human annotator

“whipped cream ” > “salt ” > “bleach ”

PREFERENCE RANKING

22

• Instead of asking humans to give a score for each output, we can ask them to
give a ranking.

• How do you convert rankings into a numerical score for each output?

• Elo

• Used in chess

• Only supports binary comparisons

• TrueSkill (Sakaguchi et al., 2014)

• Designed for Xbox Live and online gaming

• Supports n-way comparisons

• Train a model.

• We will discuss this approach later in this lecture.

HUMAN EVALUATION: ERROR ANNOTATION

23

• Humans annotators can provide more fine-grained feedback:

• Annotate specific errors in the output.

• This approach is used in machine translation.

• Multidimensional quality metrics (Frietag et al., 2021).

• But this is a lot of work for annotators.

• Difficult to scale to large numbers of examples.

Input: “Translate: Envía el
paquete a Londres. ”

Output: “Send a package to Tokyo. ”

Human annotator

Annotated output:

“Send a package to Tokyo. ”

“a”: minor error/linguistic convention

“Tokyo”: major error

AUTOMATED EVALUATION

24

• Can we try automating the evaluation process?

3 / 10

Human annotator

Input: “Translate: Envía el
paquete a Londres. ”

Output: “Send a package to Tokyo. ”

AUTOMATED EVALUATION

25

• Can we try automating the evaluation process?

• Potentially save a lot of human annotation time.

• Much easier to scale to many many examples.

Input: “Translate: Envía el
paquete a Londres. ”

Output: “Send a package to Tokyo. ”

3 / 10model

AUTOMATED EVALUATION

26

• If we have a reference output (i.e., gold output), we can compute a similarity
score between the predicted output and the reference output.

• (we automatically have reference outputs if we have supervised labels)

• What text similarity metrics can we use?

6 / 10similarity(x, y)
Input: “Translate: Envía el
paquete a Londres. ”

Output: “Send a package to Tokyo. ”

Reference: “Send the package to London. ”

TEXT SIMILARITY METRICS

27

• One prototypical metric is BLEU (bilingual evaluation understudy; Papineni et
al., 2002).

• First, consider all 1-grams that appear in the prediction: “Send”, “a”,
“package”, “to”, “Tokyo”.

• For each 1-gram, count how many times it appears in the prediction as well
as in the reference.

• “Send” appears 1 time in the prediction, and 1 time in the reference.

• “Tokyo” appears 1 time in the prediction, and 0 times in the reference.

• etc…

Prediction: Send a package to Tokyo.
Reference: Send the package to London.

TEXT SIMILARITY METRICS

28

• One prototypical metric is BLEU (bilingual evaluation understudy; Papineni et
al., 2002).

where x is the prediction and y is the reference.

• So in the above example, the numerator is 1 + 0 + 1 + 1 + 0 = 3.

• The denominator is 1 + 1 + 1 + 1 + 1 = 5.

• So the ratio is 3/5 = 0.6.

Prediction: Send a package to Tokyo.
Reference: Send the package to London.

σs ∈ 1−grams of x # of times s appears in y

σs ∈ 1−grams of x # of times s appears in x

TEXT SIMILARITY METRICS

29

• One prototypical metric is BLEU (bilingual evaluation understudy; Papineni et
al., 2002).

where x is the prediction and y is the reference.

• Caveat: To properly handle the case where s appears in the reference more
than in the prediction, we need to add a min to the numerator.

• Consider the slightly modified example above with the 1-gram “to.”

Prediction: Send a package to Tokyo.
Reference: Send the package to London and to Paris.

σs ∈ 1−grams of x min{# of times s appears in x, # of times s appears in y}

σs ∈ 1−grams of x # of times s appears in x

TEXT SIMILARITY METRICS

30

• One prototypical metric is BLEU (bilingual evaluation understudy; Papineni et
al., 2002).

where x i is the i th predicted sentence and y is the reference.

• BLEU was developed to work with multiple sentences in both the predicted
output and the reference output.

Prediction: Send a package to Tokyo.
Reference: Send the package to London.

σi σs ∈ 1−grams of xi
min{# of times s appears in xi , # of times s appears in y}

σi σs ∈ 1−grams of xi
of times s appears in xi

TEXT SIMILARITY METRICS

31

• One prototypical metric is BLEU (bilingual evaluation understudy; Papineni et
al., 2002).

where x i is the i th predicted sentence and y j is the j th reference sentence.

• BLEU was developed to work with multiple sentences in both the predicted
output and the reference output.

Prediction: Send a package to Tokyo.
Reference: Send the package to London.

σi σs ∈ 1−grams of xi
min{# of times s appears in xi , maxj { # of times s appears in yj } }

σi σs ∈ 1−grams of xi
of times s appears in xi

TEXT SIMILARITY METRICS

32

• One prototypical metric is BLEU (bilingual evaluation understudy; Papineni et
al., 2002).

• In BLEU, we compute the above quantity for 1-grams, 2-grams, ..., n-grams,
for multiple values of n.

Prediction: Send a package to Tokyo.
Reference: Send the package to London.

Sn x, y =
σi σs ∈ n−grams of xi

min{# of times s appears in xi , maxj {# of times s appears in yj }}

σi σs ∈ n−grams of xi
of times s appears in xi

TEXT SIMILARITY METRICS

33

• One prototypical metric is BLEU (bilingual evaluation understudy; Papineni et
al., 2002).

• For the above example, we had computed S1(x, y) = 0.6 .

• Let’s compute S2(x, y):

• 2-grams of x are: “Send a”, “a package”, “package to”, “to Tokyo”.

• Numerator is: 0 + 0 + 1 + 0 = 1

• Denominator is: 1 + 1 + 1 + 1 = 4

Prediction: Send a package to Tokyo.
Reference: Send the package to London.

Sn x, y =
σi σs ∈ n−grams of xi

min{# of times s appears in xi , maxj {# of times s appears in yj }}

σi σs ∈ n−grams of xi
of times s appears in xi

TEXT SIMILARITY METRICS

34

• One prototypical metric is BLEU (bilingual evaluation understudy; Papineni et
al., 2002).

• For the above example, we had computed S1(x, y) = 0.6 , S2(x, y) = 0.25.

BLEU(x, y) = (brevity penalty)exp{ σn
1
n

log Sn(x, y) }

• The full BLEU score is the geometric mean of Sn(x, y) , multiplied by a “brevity
penalty”.

Prediction: Send a package to Tokyo.
Reference: Send the package to London.

Sn x, y =
σi σs ∈ n−grams of xi

min{# of times s appears in xi , maxj {# of times s appears in yj }}

σi σs ∈ n−grams of xi
of times s appears in xi

TEXT SIMILARITY METRICS

35

• One prototypical metric is BLEU (bilingual evaluation understudy; Papineni et
al., 2002).

• Why do we need a brevity penalty?

• Consider the above example.

• All n-grams of the prediction appear in the reference.

• Without the brevity penalty, the BLEU score would be 1 (perfect score).

Prediction: Send the package
Reference: Send the package to London.

TEXT SIMILARITY METRICS

36

• One prototypical metric is BLEU (bilingual evaluation understudy; Papineni et
al., 2002).

brevity penalty = max{0, exp{1 – r/c}}

where c is the total number of words in the predicted sentences,

and r = σi |reference sentence with length closest to |xi ||.

Prediction: Send the package
Reference: Send the package to London.

TEXT SIMILARITY METRICS

37

• One prototypical metric is BLEU (bilingual evaluation understudy; Papineni et
al., 2002).

BLEU(x, y) = (brevity penalty)exp{ σn
1
n

log Sn(x, y) }

• Going back to our example:

• Suppose we only consider 1-gram and 2-grams. (usually, n goes up to 4)

• S1(x, y) = 0.6 , S2(x, y) = 0.25

• The geometric mean is 0.387 .

• c = |”Send a package to Tokyo.”| = 5

• r = 5 (we only have 1 reference sentence)

• brevity penalty = max{0, exp{1 – r/c}} = max{0, exp{0}} = 1

Prediction: Send a package to Tokyo.
Reference: Send the package to London.

= 0.387

BLEU DISADVANTAGES

38

• BLEU does not consider meaning of sentences (i.e., semantics).

• It only looks at subsequences of words.

• BLEU(“Do not send a package to Tokyo”, “Send a package to Tokyo”) = 0.544

• BLEU(“Please do send a package to Tokyo”, “Send a package to Tokyo”) = 0.544

• But it is ubiquitous in NLP,

• And is still being used (but maybe not as much as before).

LEARNED TEXT SIMILARITY METRICS

39

• Another approach: Compare the embeddings of the predicted sentence and the
reference sentence.

Step 1: Compute embeddings for each token in the reference sentence.

[Zhang* and Kishore* et al., 2020]

LEARNED TEXT SIMILARITY METRICS

40

Step 2: Compute embeddings for each token in the predicted sentence.

[Zhang* and Kishore* et al., 2020]

LEARNED TEXT SIMILARITY METRICS

41

Step 3: For each embedding in the reference sentence, compute the maximum
cosine similarity with embedding in the predicted sentence.

[Zhang* and Kishore* et al., 2020]

LEARNED TEXT SIMILARITY METRICS

42

Step 4: Compute the mean of these cosine similarities.

 (optional) Compute a weighted average.

[Zhang* and Kishore* et al., 2020]

LEARNED TEXT SIMILARITY METRICS

43

• This approach is called BERTScore.

[Zhang* and Kishore* et al., 2020]

LEARNED TEXT SIMILARITY METRICS

44

• Another idea: Train BERT to directly output the similarity score.

• Add a linear layer to pretrained BERT.

• Fine-tune this linear layer on a large corpus, where each example is:

• Reference sentence

• Predicted sentence

• Human rating of the sentence similarity

• Problem: Human annotated datasets are not very big.

• Training on this not-so-large dataset will result in overfitting.

LEARNED TEXT SIMILARITY METRICS

45

• Possible solution: Augment the training set using synthetic data (Sellam et al.,
2020).

• How do we create new examples from existing examples?

• Synthetically generate perturbations of sentences that preserve their meaning.

• Use machine translation to translate into a different language and then
translate back.

• Randomly mask some words and use a masked language model to fill in the
blanks.

• Train the model on this augmented data set.

• This metric is called BLEURT.

AUTOMATED EVALUATION

46

• Text similarity metrics rely on having a reference sentence for every example.

6 / 10similarity(x, y)
Input: “Translate: Envía el
paquete a Londres. ”

Output: “Send a package to Tokyo. ”

Reference: “Send the package to London. ”

AUTOMATED EVALUATION

47

• Text similarity metrics rely on having a reference sentence for every example.

• If we aim to predict a score for a much larger set of examples,

• We need a method to evaluate outputs with less supervision.

???similarity(x, y)
Input: “Translate: Envía el
paquete a Londres. ”

Output: “Send a package to Tokyo. ”

Reference: ???

AUTOMATED EVALUATION

48

• Text similarity metrics rely on having a reference sentence for every example.

• If we aim to predict a score for a much larger set of examples,

• We need a method to evaluate outputs with less supervision.

• Idea: Train a model to predict a score for each example.

• Note: If this model is used in reinforcement learning (which we will discuss
later), it is called a reward model.

6 / 10

Input: “Translate: Envía el
paquete a Londres. ”

Output: “Send a package to Tokyo. ”

reward(x)

REWARD MODEL

49

• How do we train a reward model?

• Basic idea: Use human-provided preference annotations.

Input: “What is a substitute for
baking soda in a cake recipe? ”

Output 1: “salt ”

Output 2: “baking powder ”
Human annotator

“baking powder ” > “salt ”

reward model

training set
reward(x)

REWARD MODEL

50

• How do we train a reward model?

• Basic idea: Use human-provided preference annotations.

• For each example in the reward training set, we have two outputs x1 and x2,
where x1 is preferred over x2.

• We train a model r using the loss function:

L(w) = - log σ(r w(x1) – r w(x2))

reward model

training set
reward(x)

REWARD MODEL

51

• How do we train a reward model?

• Basic idea: Use human-provided preference annotations.

• For each example in the reward training set, we have two outputs x1 and x2,
where x1 is preferred over x2.

• We train a model r using the loss function:

L(w) = - log σ(r w(x1) – r w(x2))

• If r w(x1) > r w(x2) , then the output of the sigmoid will be closer to 1, the
logarithm of which will be close to 0, and so the overall loss will be close to 0.

• If r w(x1) < r w(x2) , then the output of the sigmoid will be closer to 0, the
logarithm of which will be negative, and so the overall loss will be positive.

REINFORCEMENT LEARNING

52

• With a trained reward model, we can compute the score of any output.

• Now that we have output scores, how do we use them to train an NLP model?

• (as opposed to using supervised maximum likelihood training)

• Reinforcement learning (RL) is a machine learning technique that is often
used in settings without supervision.

• Where not all examples have a “correct” label.

• In RL, we have an agent that takes actions in an environment over time.

• The agent receives reward from the environment depending on their
actions.

• The goal is to teach the agent to maximize reward.

REINFORCEMENT LEARNING

53

• The RL setting is highly flexible.

• Teaching agents to play games:

• Environment: Current Tetris board

• Actions: Rotate current tile, move left,
move right

• Reward: Game score

REINFORCEMENT LEARNING

54

• The RL setting is highly flexible.

• Teaching agents to play games:

• Environment: Minecraft
world state

• Actions: Walk forward,
mine, equip item, jump, etc.

• Reward: Crafting items,
staying alive, etc.

REINFORCEMENT LEARNING

55

• The RL setting is highly flexible.

• Teaching robots to perform
tasks:

• Environment: Physical world
around robot.

• Actions: Move arm left,
right, forward, open hand,
close hand.

• Reward: Complete task.

REINFORCEMENT LEARNING

56

• The RL setting is highly flexible.

• Teaching NLP models to produce better outputs.

• Environment: Input text

• Actions: All possible outputs of the NLP model

• Reward: Provided by a trained reward model

• At each “episode”, the environment provides the NLP model with a random
input.

• In language modeling, this a random prompt.

• At each timestep, the language model predicts one token of the output.

REINFORCEMENT LEARNING

57

• How do we train an agent to maximize reward?

• There are many algorithms; RL is a very deep field.

• Next lecture, we will discuss some of these algorithms, including those that are
commonly used to train language models.

• Reinforcement learning from human feedback (RLHF)

QUESTIONS?

	Slide 1: CS 577: Natural Language Processing
	Slide 2: Wrapping Up PEFT
	Slide 3: Prefix Tuning
	Slide 4: PEFT
	Slide 5: PEFT
	Slide 6: Evaluating Model Responses
	Slide 7: So Far: Minimize Cross-Entropy Loss
	Slide 8: Some Mistakes are Better than others
	Slide 9: Adapting to model-generated inputs
	Slide 10: Undesirable content in Training Data
	Slide 11: Alternatives to Maximum Likelihood Training
	Slide 12: Alternatives to Maximum Likelihood Training
	Slide 13: Objective Correctness Score
	Slide 14: Objective Correctness Score
	Slide 15: Objective Correctness Score
	Slide 16: Human Evaluation
	Slide 17: Human Evaluation
	Slide 18: Human Evaluation
	Slide 19: Human Evaluation
	Slide 20: Human Evaluation
	Slide 21: Preference Ranking
	Slide 22: Preference Ranking
	Slide 23: Human Evaluation: Error Annotation
	Slide 24: Automated Evaluation
	Slide 25: Automated Evaluation
	Slide 26: Automated Evaluation
	Slide 27: Text Similarity Metrics
	Slide 28: Text Similarity Metrics
	Slide 29: Text Similarity Metrics
	Slide 30: Text Similarity Metrics
	Slide 31: Text Similarity Metrics
	Slide 32: Text Similarity Metrics
	Slide 33: Text Similarity Metrics
	Slide 34: Text Similarity Metrics
	Slide 35: Text Similarity Metrics
	Slide 36: Text Similarity Metrics
	Slide 37: Text Similarity Metrics
	Slide 38: BLEU Disadvantages
	Slide 39: Learned Text Similarity Metrics
	Slide 40: Learned Text Similarity Metrics
	Slide 41: Learned Text Similarity Metrics
	Slide 42: Learned Text Similarity Metrics
	Slide 43: Learned Text Similarity Metrics
	Slide 44: Learned Text Similarity Metrics
	Slide 45: Learned Text Similarity Metrics
	Slide 46: Automated Evaluation
	Slide 47: Automated Evaluation
	Slide 48: Automated Evaluation
	Slide 49: Reward Model
	Slide 50: Reward Model
	Slide 51: Reward Model
	Slide 52: Reinforcement Learning
	Slide 53: Reinforcement Learning
	Slide 54: Reinforcement Learning
	Slide 55: Reinforcement Learning
	Slide 56: Reinforcement Learning
	Slide 57: Reinforcement Learning
	Slide 58: Questions?

