

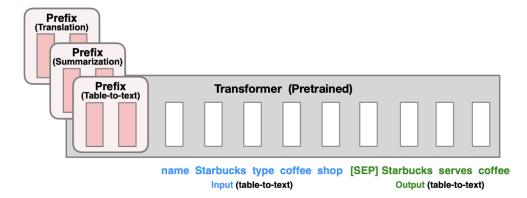
[some slide content from: Graham Neubig, 11-711 Lecture Slides, 2024]

WRAPPING UP PEFT

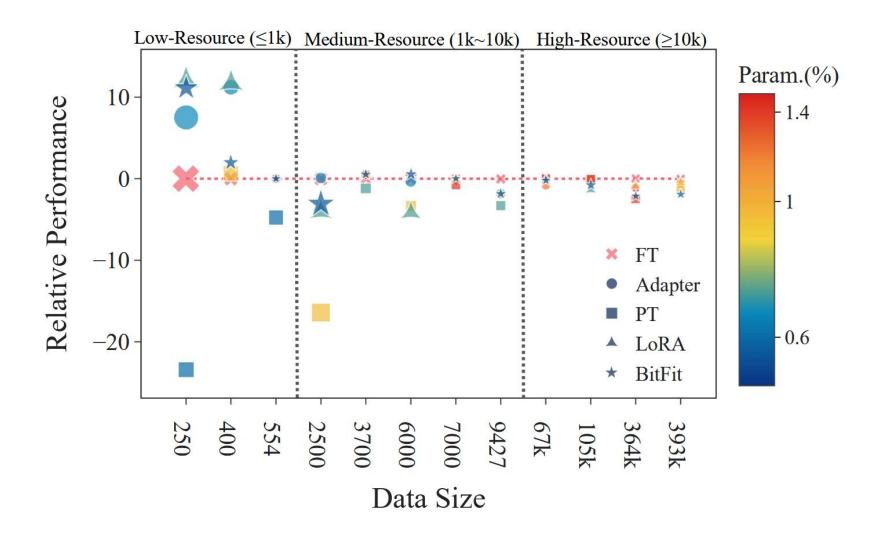
- At the end of last lecture, we discussed parameter-efficient fine-tuning methods (PEFT).
 - In PEFT, generally, we freeze most of the parameters of the model and only compute gradients for a small set of parameters during fine-tuning.
 - E.g., LoRA
- There are many other PEFT methods, and research into new methods is ongoing.

PREFIX TUNING

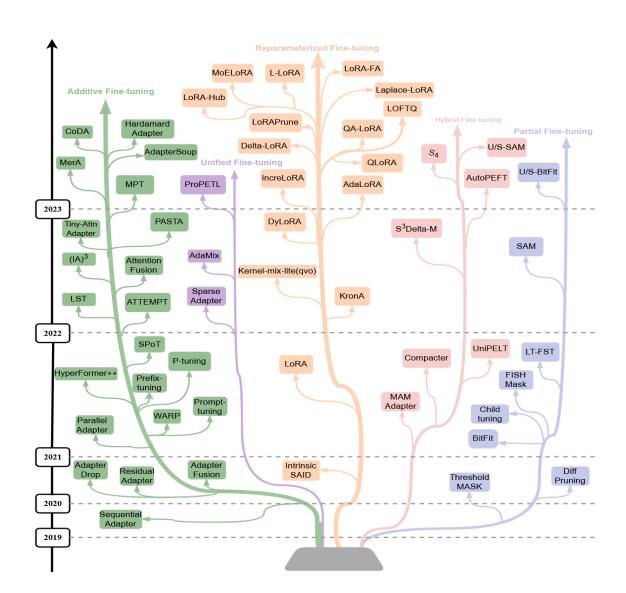
- Adapter methods and LoRA are similar in that they freeze the original model's parameters
 - And instead added a small number of trainable parameters.
- Prefix tuning is another PEFT method where new tokens are added to the beginning of the input prompt.
 - Unlike regular text tokens, these added tokens are continuous.
 - Their embeddings are the only trainable parameters in the model.



PEFT



PEFT



SO FAR: MINIMIZE CROSS-ENTROPY LOSS

- All machine learning techniques we have discussed thus far involved minimizing loss functions (usually cross-entropy).
- Recall minimizing cross-entropy loss is equivalent to maximizing likelihood.
- This approach is only teaching the model how to predict the correct output, for a given input.
 - For this reason, this kind of training is often called imitation learning.

SOME MISTAKES ARE BETTER THAN OTHERS

- NLP models often make mistakes.
- Some mistakes are better than others:

Input: "What is a substitute for baking soda in a cake recipe?"

Mistaken output 1: "whipped cream"

Mistaken output 2: "salt"

Mistaken output 3: "bleach"

Mistaken output 4: "How should I know, you #@&%!?"

 Maximizing likelihood on only correct data does not teach the model which mistake is better.

ADAPTING TO MODEL-GENERATED INPUTS

- Training NLP models only on inputs from a gold dataset
 - E.g., Only containing human-generated inputs.
- If we are generating outputs autoregressively, where each output token is appended to the input in the next step,
- The model's performance may deteriorate,
- Especially if the distribution of the model's generated text is very different from the distribution of the training text.
- Called exposure bias.
- Example: the model makes a mistake when generating one token.
 - The model will be more likely to make mistakes on all subsequent tokens.

UNDESIRABLE CONTENT IN TRAINING DATA

- Also, the training dataset contains text that we don't want the model to generate!
 - Misinformation
 - Comments from social networks
 - Conspiracy theories
 - Baises/stereotypes
 - Outputs from older/lower-quality NLP models
- If we simply maximize the likelihood, the resulting model will just learn to produce the same undesirable content that appears in the training data.

ALTERNATIVES TO MAXIMUM LIKELIHOOD TRAINING

- These shortcomings are a consequence of the fact that, for each example in the training set, there is only one "correct" output,
- And all other outputs are equally bad.
 - "All or nothing"
- Are there other ways we can measure the quality of an output that provides more information:
 - Which incorrect outputs are better than others?

ALTERNATIVES TO MAXIMUM LIKELIHOOD TRAINING

- Possible alternatives:
 - Maximize task-specific objective correctness score
 - Maximize human evaluation score
 - Train another machine learning model to produce a correctness score
 - Then maximize the model's predicted correctness score

OBJECTIVE CORRECTNESS SCORE

- There are some tasks where correctness scores are more easily defined.
- Example: math word problem solving

Mary starts with 8 apples. She buys 7 from the grocery store and gives 12 to her friend, Jesse. How many apples does Mary have left?

Correct output: 3

OBJECTIVE CORRECTNESS SCORE

- There are some tasks where correctness scores are more easily defined.
- Example: math word problem solving
- One idea for correctness metric:

```
exp{(predicted_number - correct_number)<sup>2</sup>}
```

Mary starts with 8 apples. She buys 7 from the grocery store and gives 12 to her friend, Jesse. How many apples does Mary have left?

Correct output: 3

OBJECTIVE CORRECTNESS SCORE

- This approach does not easily generalize to other tasks.
- How would you define a correctness score for the question-answering task from earlier:

Input: "What is a substitute for baking soda in a cake recipe?"

- This is especially difficult for subjective tasks, such as text generation.
 - E.g., generating fictional stories.
 - Paraphrasing.
 - etc...

- We can ask humans to score different outputs from NLP models.
- But this is very expensive.
 - We can't ask humans to label all possible model outputs.
 - We can only ask them to label some outputs.
- What kind of scale should we use?

Input: "What is a substitute for
baking soda in a cake recipe?"

Output: "baking powder"

Human annotator

- We can ask humans to score different outputs from NLP models.
- But this is very expensive.
 - We can't ask humans to label all possible model outputs.
 - We can only ask them to label some outputs.
- What kind of scale should we use?

Input: "What is a substitute for
baking soda in a cake recipe?"

Output: "whipped cream"

Human annotator

- We can ask humans to score different outputs from NLP models.
- But this is very expensive.
 - We can't ask humans to label all possible model outputs.
 - We can only ask them to label some outputs.
- What kind of scale should we use?

Input: "What is a substitute for
baking soda in a cake recipe?"

Output: "salt"

Human annotator

- We can ask humans to score different outputs from NLP models.
- But this is very expensive.
 - We can't ask humans to label all possible model outputs.
 - We can only ask them to label some outputs.
- What kind of scale should we use?

Input: "What is a substitute for
baking soda in a cake recipe?"
Output: "bleach"
Human annotator

- We can ask humans to score different outputs from NLP models.
- Human evaluators are often asked to score multiple aspects of the output:
 - Fluency: How natural is the output?
 - Adequacy: In translation, does the output capture the meaning/semantics of the input?
 - Factuality: Is the output factual? Does it follow logically from the input?
 - Coherence: Does the output fit coherently in the discourse?
 - etc...

PREFERENCE RANKING

• Instead of asking humans to give a score for each output, we can ask them to give a ranking.

Input: "What is a substitute for
baking soda in a cake recipe?"

Output 1: "salt"

Output 2: "whipped cream"

Human annotator
"whipped cream" > "salt" > "bleach"

Human annotator

This is easier to do for annotators.

Output 3: "bleach"

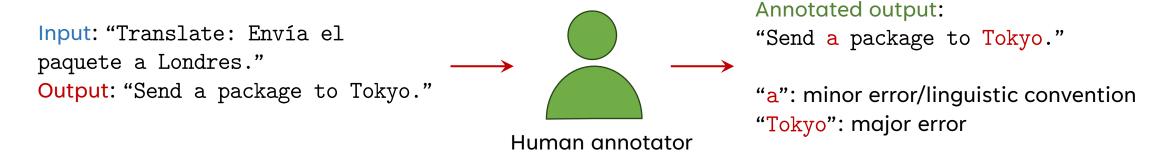
- But annotators can't specify the "degree" of output quality.
 - How much worse is "bleach" than "salt"?

PREFERENCE RANKING

- Instead of asking humans to give a score for each output, we can ask them to give a ranking.
- How do you convert rankings into a numerical score for each output?
 - Elo
 - Used in chess
 - Only supports binary comparisons
 - TrueSkill (Sakaguchi et al., 2014)
 - Designed for Xbox Live and online gaming
 - Supports *n*-way comparisons
 - Train a model.
 - We will discuss this approach later in this lecture.

HUMAN EVALUATION: ERROR ANNOTATION

- Humans annotators can provide more fine-grained feedback:
 - Annotate specific errors in the output.



- This approach is used in machine translation.
 - Multidimensional quality metrics (Frietag et al., 2021).
- But this is a lot of work for annotators.
 - Difficult to scale to large numbers of examples.

AUTOMATED EVALUATION

• Can we try automating the evaluation process?

Input: "Translate: Envia el
paquete a Londres."

Output: "Send a package to Tokyo."

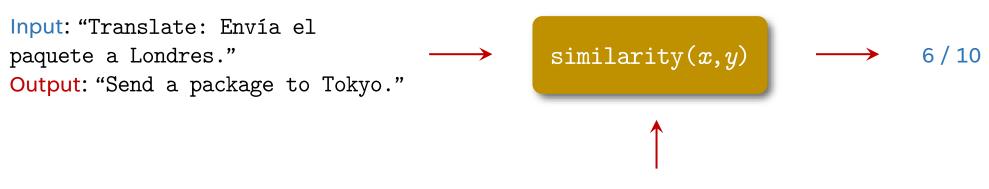
Human annotator

AUTOMATED EVALUATION

- Can we try automating the evaluation process?
- Potentially save a lot of human annotation time.
- Much easier to scale to many many examples.

AUTOMATED EVALUATION

- If we have a reference output (i.e., gold output), we can compute a similarity score between the predicted output and the reference output.
 - (we automatically have reference outputs if we have supervised labels)
- What text similarity metrics can we use?



Reference: "Send the package to London."

• One prototypical metric is BLEU (bilingual evaluation understudy; Papineni et al., 2002).

Prediction: Send a package to Tokyo.

Reference: Send the package to London.

- First, consider all 1-grams that appear in the prediction: "Send", "a", "package", "to", "Tokyo".
- For each 1-gram, count how many times it appears in the prediction as well as in the reference.
 - "Send" appears 1 time in the prediction, and 1 time in the reference.
 - "Tokyo" appears 1 time in the prediction, and 0 times in the reference.
 - etc...

• One prototypical metric is BLEU (bilingual evaluation understudy; Papineni et al., 2002).

Prediction: Send a package to Tokyo.

Reference: Send the package to London.

$$\frac{\sum_{s} \in 1\text{-grams of } x \text{ # of times } s \text{ appears in } y}{\sum_{s} \in 1\text{-grams of } x \text{ # of times } s \text{ appears in } x}$$

where x is the prediction and y is the reference.

- So in the above example, the numerator is 1 + 0 + 1 + 1 + 0 = 3.
- The denominator is 1 + 1 + 1 + 1 + 1 = 5.
- So the ratio is 3/5 = 0.6.

• One prototypical metric is BLEU (bilingual evaluation understudy; Papineni et al., 2002).

Prediction: Send a package to Tokyo.

Reference: Send the package to London and to Paris.

 $\Sigma_s \in 1$ -grams of x min{# of times s appears in x, # of times s appears in y}

 $\sum_{s} \in \text{1-grams of } x \text{ \# of times } s \text{ appears in } x$ where x is the prediction and y is the reference.

- Caveat: To properly handle the case where *s* appears in the reference more than in the prediction, we need to add a min to the numerator.
- Consider the slightly modified example above with the 1-gram "to."

• One prototypical metric is BLEU (bilingual evaluation understudy; Papineni et al., 2002).

Prediction: Send a package to Tokyo.

Reference: Send the package to London.

$$\frac{\sum_{i} \sum_{s \in 1-\text{grams of } x_i} \min\{\text{\# of times } s \text{ appears in } x_i, \text{\# of times } s \text{ appears in } y\}}{\sum_{i} \sum_{s \in 1-\text{grams of } x_i} \text{\# of times } s \text{ appears in } x_i}$$

where x_i is the i^{th} predicted sentence and y is the reference.

 BLEU was developed to work with multiple sentences in both the predicted output and the reference output.

• One prototypical metric is BLEU (bilingual evaluation understudy; Papineni et al., 2002).

Prediction: Send a package to Tokyo.

Reference: Send the package to London.

$$\frac{\sum_{i} \sum_{s} \in 1\text{-grams of } x_{i} \min\{\text{\# of times } s \text{ appears in } x_{i}, \max_{j}\{\text{\# of times } s \text{ appears in } y_{j}\}\}}{\sum_{i} \sum_{s} \in 1\text{-grams of } x_{i} \text{\# of times } s \text{ appears in } x_{i}}$$

where x_i is the i^{th} predicted sentence and y_j is the j^{th} reference sentence.

 BLEU was developed to work with multiple sentences in both the predicted output and the reference output.

• One prototypical metric is BLEU (bilingual evaluation understudy; Papineni et al., 2002).

Prediction: Send a package to Tokyo.

Reference: Send the package to London.

$$\mathbf{S}_n(x,y) = \frac{\sum_i \sum_{s \in n\text{-grams of } x_i} \min\{\text{\# of times } s \text{ appears in } x_i, \max_j \{\text{\# of times } s \text{ appears in } y_j\}\}}{\sum_i \sum_{s \in n\text{-grams of } x_i} \text{\# of times } s \text{ appears in } x_i}$$

• In BLEU, we compute the above quantity for 1-grams, 2-grams, ..., n-grams, for multiple values of n.

• One prototypical metric is BLEU (bilingual evaluation understudy; Papineni et al., 2002).

Prediction: Send a package to Tokyo.

Reference: Send the package to London.

$$\mathbf{S}_n(x,y) = \frac{\sum_i \sum_{s \in n\text{-grams of } x_i} \min\{\text{\# of times } s \text{ appears in } x_i, \max_j \{\text{\# of times } s \text{ appears in } y_j\}\}}{\sum_i \sum_{s \in n\text{-grams of } x_i} \text{\# of times } s \text{ appears in } x_i}$$

- For the above example, we had computed $S_1(x, y) = 0.6$.
- Let's compute $S_2(x, y)$:
 - 2-grams of x are: "Send a", "a package", "package to", "to Tokyo".
 - Numerator is: 0 + 0 + 1 + 0 = 1
 - Denominator is: 1 + 1 + 1 + 1 = 4

• One prototypical metric is BLEU (bilingual evaluation understudy; Papineni et al., 2002).

Prediction: Send a package to Tokyo.

Reference: Send the package to London.

$$\mathbf{S}_n(x,y) = \frac{\sum_i \sum_{s \in n\text{-grams of } x_i} \min\{\text{\# of times } s \text{ appears in } x_i, \max_j \{\text{\# of times } s \text{ appears in } y_j\}\}}{\sum_i \sum_{s \in n\text{-grams of } x_i} \text{\# of times } s \text{ appears in } x_i}$$

• For the above example, we had computed $S_1(x, y) = 0.6$, $S_2(x, y) = 0.25$.

BLEU
$$(x, y)$$
 = (brevity penalty)exp $\{\sum_{n} \frac{1}{n} \log S_n(x, y)\}$

• The full BLEU score is the geometric mean of $S_n(x,y)$, multiplied by a "brevity penalty".

• One prototypical metric is BLEU (bilingual evaluation understudy; Papineni et al., 2002).

Prediction: Send the package

Reference: Send the package to London.

- Why do we need a brevity penalty?
- Consider the above example.
 - All n-grams of the prediction appear in the reference.
 - Without the brevity penalty, the BLEU score would be 1 (perfect score).

• One prototypical metric is BLEU (bilingual evaluation understudy; Papineni et al., 2002).

Prediction: Send the package

Reference: Send the package to London.

brevity penalty = $\max\{0, \exp\{1 - r/c\}\}\$

where c is the total number of words in the predicted sentences, and $r = \sum_{i} |\text{reference sentence with length closest to } |x_i||$.

TEXT SIMILARITY METRICS

• One prototypical metric is BLEU (bilingual evaluation understudy; Papineni et al., 2002).

Prediction: Send a package to Tokyo.

Reference: Send the package to London.

$$\text{BLEU}(x,y) = (\text{brevity penalty}) \exp\{\sum_{n} \frac{1}{n} \log S_n(x,y)\} = 0.387$$

- Going back to our example:
 - Suppose we only consider 1-gram and 2-grams. (usually, n goes up to 4)
 - $S_1(x, y) = 0.6, S_2(x, y) = 0.25$
 - The geometric mean is 0.387.
 - c = | "Send a package to Tokyo." | = 5
 - r = 5 (we only have 1 reference sentence)
 - brevity penalty = $max\{0, exp\{1 r/c\}\} = max\{0, exp\{0\}\} = 1$

BLEU DISADVANTAGES

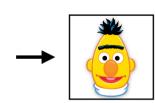
- BLEU does not consider meaning of sentences (i.e., semantics).
 - It only looks at subsequences of words.
- BLEU("Do not send a package to Tokyo", "Send a package to Tokyo") = 0.544
- BLEU("Please do send a package to Tokyo", "Send a package to Tokyo") = 0.544
- But it is ubiquitous in NLP,
- And is still being used (but maybe not as much as before).

• Another approach: Compare the embeddings of the predicted sentence and the reference sentence.

Step 1: Compute embeddings for each token in the reference sentence.

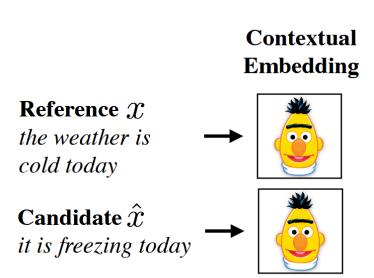
Contextual Embedding

Reference \mathcal{X} *the weather is cold today*

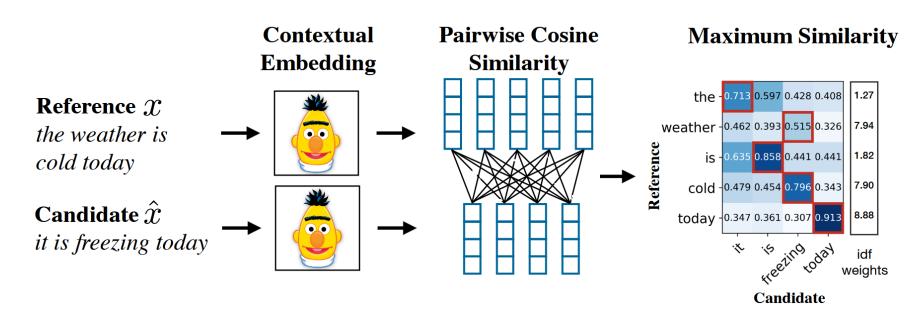


39

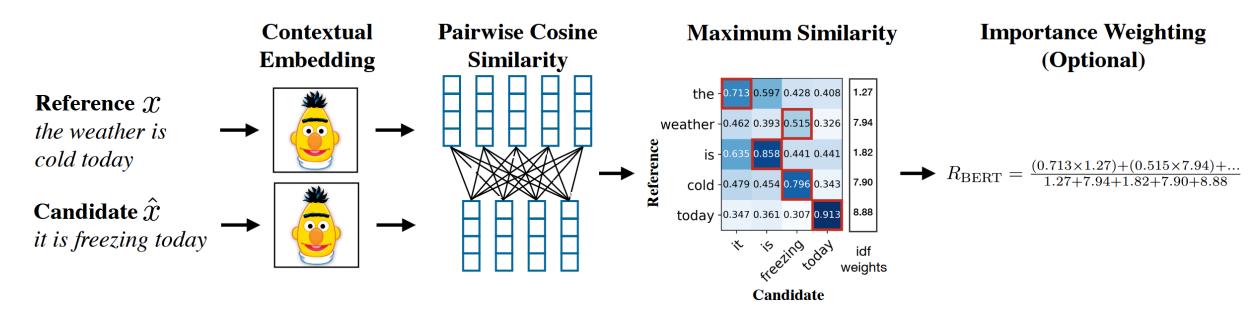
Step 2: Compute embeddings for each token in the predicted sentence.



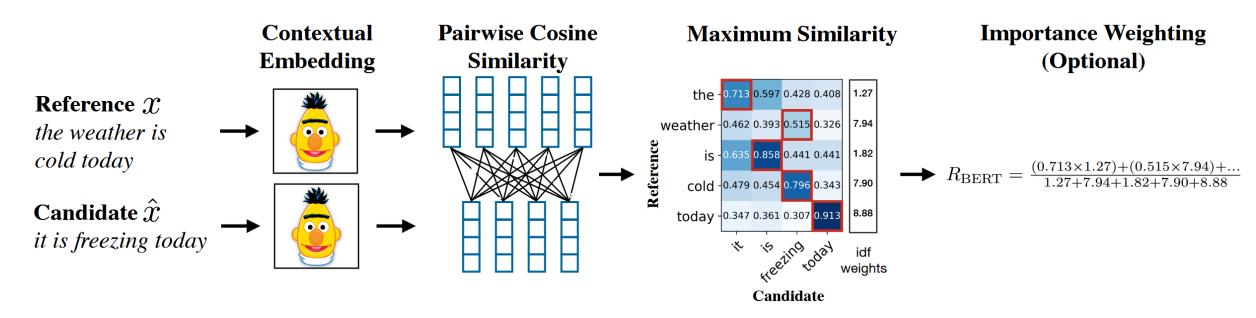
Step 3: For each embedding in the reference sentence, compute the maximum cosine similarity with embedding in the predicted sentence.



Step 4: Compute the mean of these cosine similarities. (optional) Compute a weighted average.



This approach is called BERTScore.

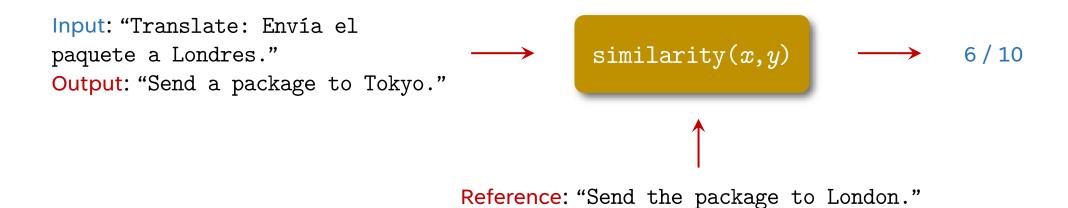


- Another idea: Train BERT to directly output the similarity score.
- Add a linear layer to pretrained BERT.
- Fine-tune this linear layer on a large corpus, where each example is:
 - Reference sentence
 - Predicted sentence
 - Human rating of the sentence similarity
- Problem: Human annotated datasets are not very big.
- Training on this not-so-large dataset will result in overfitting.

- Possible solution: Augment the training set using synthetic data (Sellam et al., 2020).
- How do we create new examples from existing examples?
- Synthetically generate perturbations of sentences that preserve their meaning.
 - Use machine translation to translate into a different language and then translate back.
 - Randomly mask some words and use a masked language model to fill in the blanks.
- Train the model on this augmented data set.
- This metric is called BLEURT.

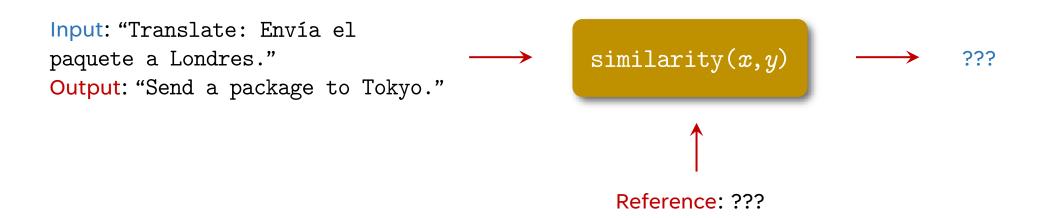
AUTOMATED EVALUATION

• Text similarity metrics rely on having a reference sentence for every example.



AUTOMATED EVALUATION

- Text similarity metrics rely on having a reference sentence for every example.
- If we aim to predict a score for a much larger set of examples,
- We need a method to evaluate outputs with less supervision.



AUTOMATED EVALUATION

- Text similarity metrics rely on having a reference sentence for every example.
- If we aim to predict a score for a much larger set of examples,
- We need a method to evaluate outputs with less supervision.
- Idea: Train a model to predict a score for each example.

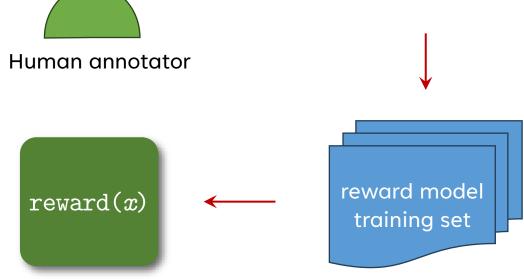
• Note: If this model is used in reinforcement learning (which we will discuss later), it is called a reward model.

REWARD MODEL

- How do we train a reward model?
- Basic idea: Use human-provided preference annotations.

Input: "What is a substitute for "baking powder" > "salt" baking soda in a cake recipe?" Output 1: "salt"

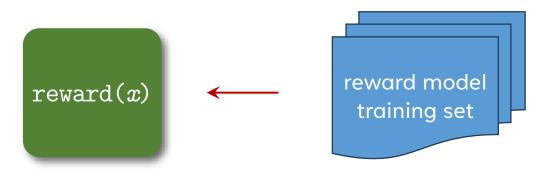
Output 2: "baking powder"



REWARD MODEL

- How do we train a reward model?
- Basic idea: Use human-provided preference annotations.
- For each example in the reward training set, we have two outputs x_1 and x_2 , where x_1 is preferred over x_2 .
- We train a model r using the loss function:

$$L(w) = -\log \sigma(r_w(x_1) - r_w(x_2))$$



REWARD MODEL

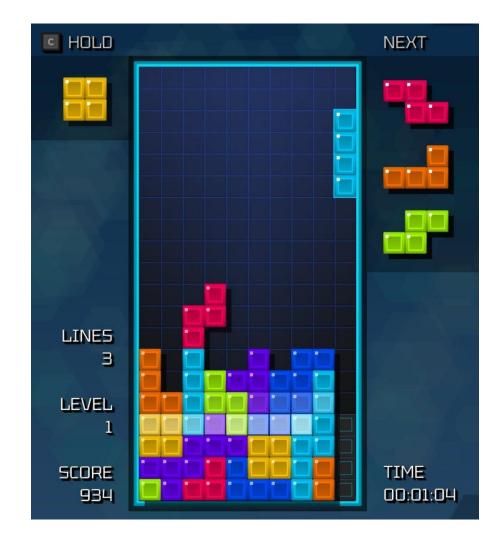
- How do we train a reward model?
- Basic idea: Use human-provided preference annotations.
- For each example in the reward training set, we have two outputs x_1 and x_2 , where x_1 is preferred over x_2 .
- We train a model r using the loss function:

$$L(w) = -\log \sigma(r_w(x_1) - r_w(x_2))$$

- If $r_w(x_1) > r_w(x_2)$, then the output of the sigmoid will be closer to 1, the logarithm of which will be close to 0, and so the overall loss will be close to 0.
- If $r_w(x_1) < r_w(x_2)$, then the output of the sigmoid will be closer to 0, the logarithm of which will be negative, and so the overall loss will be positive.

- With a trained reward model, we can compute the score of any output.
- Now that we have output scores, how do we use them to train an NLP model?
 - (as opposed to using supervised maximum likelihood training)
- Reinforcement learning (RL) is a machine learning technique that is often used in settings without supervision.
 - Where not all examples have a "correct" label.
- In RL, we have an agent that takes actions in an environment over time.
 - The agent receives reward from the environment depending on their actions.
 - The goal is to teach the agent to maximize reward.

- The RL setting is highly flexible.
- Teaching agents to play games:
 - Environment: Current Tetris board
 - Actions: Rotate current tile, move left, move right
 - Reward: Game score



- The RL setting is highly flexible.
- Teaching agents to play games:
 - Environment: Minecraft world state
 - Actions: Walk forward, mine, equip item, jump, etc.
 - Reward: Crafting items, staying alive, etc.

- The RL setting is highly flexible.
- Teaching robots to perform tasks:
 - Environment: Physical world around robot.
 - Actions: Move arm left, right, forward, open hand, close hand.
 - Reward: Complete task.

- The RL setting is highly flexible.
- Teaching NLP models to produce better outputs.
 - Environment: Input text
 - Actions: All possible outputs of the NLP model
 - Reward: Provided by a trained reward model
- At each "episode", the environment provides the NLP model with a random input.
 - In language modeling, this a random prompt.
 - At each timestep, the language model predicts one token of the output.

- How do we train an agent to maximize reward?
- There are many algorithms; RL is a very deep field.
- Next lecture, we will discuss some of these algorithms, including those that are commonly used to train language models.
 - Reinforcement learning from human feedback (RLHF)

