
CS 577:
NATURAL LANGUAGE
PROCESSING

Abulhair Saparov

Lecture 14: Reinforcement Learning II

A BIRD’S EYE VIEW

2

• To train a large language model:

• First pre-train the model on the language modeling task.

• Post-training:

• Next, use supervised fine-tuning to initially modify the model’s behavior.

• For example, to teach the model how to follow instructions.

• Train a reward model on a large corpus of human-annotated preference
data.

• Use RL to teach the language model to generate human-preferred
responses using the learned reward model. (reinforcement-learning from
human feedback, RLHF)

• Use RL to teach the language model to reason with verifiable rewards
(reinforcement-learning from verifiable rewards, RLVR)

REINFORCEMENT LEARNING

3

• In RL, we have an agent that takes actions in an environment over time.

• The agent receives reward from the environment depending on their
actions.

• The goal is to teach the agent to maximize reward.

• We will discuss algorithms that we can use to do this.

• Let’s define some notation so it’s easier to talk about RL more formally:

• s t is the environment state at time t

• at is the action performed by the agent at time t

• r t is the reward given to the agent at time t

• Note: We don’t expect you to memorize all the derivations in this lecture. Rather, the
important thing is to understand the concepts, and to know what to search for when you
need to lookup something while reading research papers with RL.

• Let’s define some notation so it’s easier to talk about RL more formally:

• s t is the environment state at time t

• at is the action performed by the agent at time t

• r t is the reward given to the agent at time t

REINFORCEMENT LEARNING

4

Environment

Agent

at : action
r t : rewards t : state

s t+1 r t+1

REINFORCEMENT LEARNING

5

• How can we fit the task of language modeling (i.e., next word prediction) into
the RL framework?

• s t (the environment at time t) is the input sequence of words + the first t
output words.

• The environment is the model’s output behavior for a single prompt.

• The language model is the agent.

• at (the agent’s action at time t) is the language model’s (t+1) th predicted
word.

• So in this setting, s t+1 is simply at appended to s t .

REWARD IN LANGUAGE MODELING?

6

• What is the reward r t ?

• Recall from the last lecture, we covered how to train a reward model.

• A function from model responses to real values,

• Such that, if one response has a higher reward than another response, then
human annotators are more likely to prefer it to the other response.

• In the RL setting, the agent does not finish generating the full response until the
last time step T.

• Thus, for all t < T , r t = 0.

• But at the end of the response, r T = reward(s T) ,

• The reward is given by the reward model only at the last step.

REINFORCEMENT LEARNING

7

• In this lecture, we will discuss RL algorithms that work generally.

• E.g., we will not assume that the reward is always zero until the last step.

• How does the agent decide which action at to choose at each time step?

• We describe the agent’s behavior with a policy: πθ(s) .

• Here, θ is a parameter.

• For example, πθ can be defined as a neural network,

• And θ are the weights of this network.

• Given a state s , πθ(s) returns a probability distribution over actions.

• So at each time step, we sample the action at ~ πθ(s) .

• Now our goal is more well-defined:

• Find the value of θ that maximizes the reward.

POLICY OPTIMIZATION

8

• One class of RL methods are called policy optimization methods.

• The basic idea is to write an objective function of θ, that measures the quality
of a policy πθ.

• How much reward does the agent receive when following πθ?

• Then simply apply optimization algorithms on this objective function.

• Gradient-free (zeroth-order) methods:

• Evolutionary strategies, genetic algorithms, simplex method, etc

• Works even when the policy function is not differentiable

• But typically less sample-efficient

• First-order methods:

• Gradient descent

POLICY GRADIENT

9

• When using gradient-based optimization, policy optimization is also called policy
gradient.

• What is the objective function that we maximize?

J 𝜃 = 𝔼πθ ෍

t =1

T

r t (πθ) ,

• Recall that r t is the reward, which depends on the states of the environment and
the actions of the agent,

• Which depends on the policy πθ.

• The environment can be probabilistic,

• The policy is probabilistic (the actions can vary from one episode to the next),

• Which is why we take the expectation.

POLICY GRADIENT

10

• When using gradient-based optimization, policy optimization is also called policy
gradient.

• What is the objective function that we maximize?

J 𝜃 = 𝔼πθ ෍

t =1

T

r t (πθ) ,

= ෍
a0, …,aT−1

s1,…, sT

ෑ

t =0

T−1

πθ at |s t p(s t +1|s t , at) ෍

t =1

T

r t (s t) ,

= ෍

𝜏

p(𝜏|𝜃) r (𝜏) .

p(𝜏|𝜃) r (𝜏)

POLICY GRADIENT

11

• What is the gradient of the objective function?

∇𝜃 J 𝜃 = ∇𝜃 ෍

𝜏

p(𝜏|𝜃) r (𝜏) ,

= ෍

𝜏

r (𝜏) ∇𝜃p(𝜏|𝜃) ,

= ෍

𝜏

r (𝜏) p(𝜏|𝜃)
1

p(𝜏|𝜃)
∇𝜃p(𝜏|𝜃) ,

= ෍

𝜏

r (𝜏) p(𝜏|𝜃) ∇𝜃 log p(𝜏|𝜃) .

• Because of the chain rule: ∇𝜃 log f (θ) =
1

f θ ∇𝜃f (θ) .

POLICY GRADIENT

12

• What is the gradient of the objective function?

∇𝜃 J 𝜃 = ෍

𝜏

r (𝜏) p(𝜏|𝜃) ∇𝜃 log p(𝜏|𝜃) .

• The term ∇𝜃 log p(𝜏|𝜃) is called the score function.

• The log is convenient since many machine learning models return log probabilities

rather than normalized probabilities anyway.

• But the sum is intractable to compute exactly.

• For language modeling, this would require computing the sum over all possible LM outputs,

of any length.

POLICY GRADIENT

13

• What is the gradient of the objective function?

∇𝜃 J 𝜃 = ෍

𝜏

r (𝜏) p(𝜏|𝜃) ∇𝜃 log p(𝜏|𝜃) .

• Use Monte Carlo sampling to approximate this sum:

• Sample m trajectories using the policy πθ: 𝜏
(1), …, 𝜏(𝑚).

∇𝜃 J 𝜃 ≈
1

m
෍

𝑖=1

m

r (𝜏 𝑖) ∇𝜃 log p(𝜏 𝑖 |𝜃) ,

 where 𝜏(𝑖) ~ p(𝜏|𝜃) are independently and identically distributed (i.i.d.).

• Compute score function for each trajectory ∇𝜃 log p(𝜏 𝑖 |𝜃) as well as its reward r (𝜏(𝑖)) .

• Compute their products and sum over all time steps t .

• Equivalent to stochastic gradient ascent.

POLICY GRADIENT

14

• What is the gradient of the objective function?

∇𝜃 J 𝜃 ≈
1

m
෍

𝑖=1

m

r (𝜏 𝑖) ∇𝜃 log p(𝜏 𝑖 |𝜃) .

• In language modeling, this is equivalent to:

• The language model is the policy.

• For each input prompt in a corpus,

• Sample m outputs (i.e., trajectories) from the LM.

• For each predicted output, compute the reward and the gradient of the probabilities of
the output tokens.

• (this is the same gradient we would compute if we were doing supervised training)

• Multiply the rewards and gradients and compute their average.

“VANILLA” POLICY GRADIENT

15

• Now we have all the ingredients to describe the full learning algorithm:

• Start with some initial value for 𝜃0.

• Repeat for t = 0, 1, 2, …

• Sample m trajectories from the environment using the policy 𝜋𝜃𝑡
.

• Estimate the policy gradient:

gt =
1

m
෍

𝑖=1

m

r (𝜏 𝑖) ∇𝜃 log 𝜋𝜃𝑡
(𝜏 𝑖)

• Update the policy using gradient ascent:

𝜃t +1 = 𝜃t + αt gt
 where αt is the learning rate.

“VANILLA” POLICY GRADIENT

16

• For the special case of training a language model:

• Start with some initial value for 𝜃0 (the LM after pre-training and/or fine-tuning).

• Repeat for t = 0, 1, 2, …
• For each input prompt, sample m outputs from the LM with temperature = 1.

• Estimate the policy gradient:

gt =
1

m
෍

𝑖=1

m

r (𝜏 𝑖) ∇𝜃 log 𝜋𝜃𝑡
(𝜏 𝑖)

• Update the LM weights using gradient ascent:

𝜃t +1 = 𝜃t + αt gt
 where αt is the learning rate.

PROBLEMS WITH “VANILLA” POLICY GRADIENT

17

• Consider our approximation of the policy gradient:

∇𝜃 J 𝜃 = ෍

𝜏

r (𝜏) p(𝜏|𝜃) ∇𝜃 log p(𝜏|𝜃) ≈
1

m
෍

𝑖=1

m

r (𝜏 𝑖) ∇𝜃 log p(𝜏 𝑖 |𝜃)

• If our initial policy is not very good, the reward can have very high variance:

• Many randomly sampled trajectories will have very low reward,

• Some sampled trajectories will have high reward.

• Rewards can be very rare: reward sparsity problem.

• This can cause the gradient estimates to be very noisy.

• Can be alleviated by choosing a very large m, but this is computationally intractable.

POLICY GRADIENT WITH BASELINE

18

• Consider our approximation of the policy gradient:

∇𝜃 J 𝜃 = ෍

𝜏

p(𝜏|𝜃) ∇𝜃 log p(𝜏|𝜃) r (𝜏) ,

= ෍

𝜏

p(𝜏|𝜃) ∇𝜃 log ෑ

t =0

T−1

p(st+1 |st , at) πθ at |st r (𝜏) ,

= ෍

𝜏

p(𝜏|𝜃) ෍

t =0

T−1

∇𝜃log p(s t +1|s t , at) + ∇𝜃log πθ at |s t r (𝜏) ,

= ෍

𝜏

෍

t =0

T−1

p(𝜏|𝜃) ∇𝜃log πθ at |st r (𝜏) ,

POLICY GRADIENT WITH BASELINE

19

• Consider our approximation of the policy gradient:

∇𝜃 J 𝜃 = ෍

𝜏

෍

t =0

T−1

p(𝜏|𝜃) ∇𝜃 log πθ at |s t (r (𝜏) − b(s t))

• Add a −b(st) term, called the “baseline”.

• The baseline function only depends on the state st , and not on the policy or θ.

• Claim: the additional baseline term does not change the policy gradient.

• Claim: σ𝜏 p(𝜏|𝜃) ∇𝜃log πθ at |s t b(s t) = 0.

• If we can prove this claim, then the above expression is equivalent to the original gradient:

෍

𝜏

෍

t =0

T−1

p(𝜏|𝜃) ∇𝜃log πθ at |st r (𝜏)

POLICY GRADIENT WITH BASELINE IS UNBIASED

20

෍

𝜏

p(𝜏|𝜃) ∇𝜃log πθ at |s t b(s t) = 𝔼p(𝜏|𝜃) ∇𝜃log πθ at |s t b(s t)

= 𝔼p(s1,…,sT,a0,…,aT−1|𝜃) ∇𝜃 log πθ at |s t b(s t) ,

= 𝔼p(s1,…,s t ,a0,…,at−1 |𝜃) 𝔼p(s t+1 ,…,sT ,at ,…,aT−1|s1,…,s t ,a0,…,at−1 ,𝜃) ∇𝜃log πθ at |s t b(s t) ,

= 𝔼p(s1,…,st ,a0,…,at−1 |𝜃) 𝔼p(s t+1 ,…,sT ,at ,…,aT−1|s t ,𝜃) ∇𝜃log πθ at |s t b(s t) ,

= 𝔼p(s1,…,st ,a0,…,at−1 |𝜃) 𝔼p(at |s t ,𝜃) 𝔼p(s t+1 ,…,sT,at +1,…,aT−1
|s t ,at ,𝜃) ∇𝜃log πθ at |s t b(s t) ,

= 𝔼p(s1,…,st ,a0,…,at−1 |𝜃) 𝔼p(at |s t ,𝜃) ∇𝜃log πθ at |s t b(s t) ,

this quantity does not depend

on s t+1 , … , sT, at +1, … , aT−1

POLICY GRADIENT WITH BASELINE IS UNBIASED

21

෍

𝜏

p(𝜏|𝜃) ∇𝜃log πθ at |s t b(s t)

= 𝔼p(s1,…,st ,a0,…,at−1 |𝜃) 𝔼p(at |s t ,𝜃) ∇𝜃log πθ at |s t b(s t) ,

= 𝔼p(s1,…,st ,a0,…,at−1 |𝜃) ෍

at

πθ at |s t ∇𝜃 log πθ at |s t b(s t) ,

= 𝔼p(s1,…,st ,a0,…,at−1 |𝜃) ෍

at

πθ at |s t
1

πθ at |s t
∇𝜃πθ at |s t b(s t) ,

= 𝔼p(s1,…,st ,a0,…,at−1 |𝜃) b(s t) ∇𝜃 ෍

at

πθ at |s t ,

= 𝔼p(s1,…,st ,a0,…,at−1 |𝜃) b(s t) ∇𝜃 1 ,

= 0.

POLICY GRADIENT WITH BASELINE

22

∇𝜃 J 𝜃 = ෍

𝜏

(r (𝜏) − b(τ)) p(𝜏|𝜃) ∇𝜃 log p(𝜏|𝜃)

• Why is the baseline helpful?

• Notice that we can choose any baseline function, so long as it only depends on the state.

• If we choose a baseline that is close to the true rewards, we can significantly reduce the
variance of the gradient updates.

• This will help us to reduce the number of samples we need to compute a good estimate of
the policy gradient.

• We can again estimate the policy using Monte Carlo sampling:

∇𝜃 J 𝜃 ≈
1

m
෍

𝑖=1

m

(r (𝜏 𝑖) − b(𝜏 𝑖)) ∇𝜃 log p(𝜏 𝑖 |𝜃) .

VALUE FUNCTION

23

∇𝜃 J 𝜃 = ෍

𝜏

(r (𝜏) − V(𝜏)) p(𝜏|𝜃) ∇𝜃 log p(𝜏|𝜃)

• One good choice for the baseline: the value function, V(s t) .

• This is a learned function that estimates how good is the current state s t .

• If the current state can potentially lead to high rewards, its value is high.

• If the current state will not lead to rewards, its value is low.

• The term At (s t) = r t (s t) - V(s t) is called the advantage function.

∇𝜃 J 𝜃 = ෍

𝜏

A(𝜏) p(𝜏|𝜃) ∇𝜃 log p(𝜏|𝜃)

• The advantage function describes how much better is the reward compared to the
predicted reward.

VALUE FUNCTION

24

• We train the value function and policy simultaneously.

• In language modeling, the value function can be modeled using an extra linear layer at the
end of the language model.

• For transformer-based models, this linear layer could be added the output of the last
transformer layer.

• We train the value function by minimizing the L2 loss between the predicted rewards V(s t)
and the actual rewards r t (s t) .

1

m
෍

𝑖=1

m

r (𝜏 𝑖) − Vϕt
(𝜏 𝑖)

2

• RL methods that learn both the policy and the value function are called actor-critic
methods.

• The policy is the “actor” and the value function is the “critic.”

ACTOR-CRITIC

25

• Start with some initial value for 𝜃0 and 𝜙0.

• Repeat for t = 0, 1, 2, …

• Sample m trajectories from the environment using the policy 𝜋𝜃𝑡
.

• Compute the advantages: A(𝜏 𝑖) = r (𝜏 𝑖) − Vϕt
(𝜏 𝑖)

• Estimate the policy gradient:

gt =
1

m
෍

𝑖=1

m

A(𝜏 𝑖) ∇𝜃 log 𝜋𝜃𝑡
(𝜏 𝑖)

• Update the policy and value function: 𝜃t+1 = 𝜃t + αt gt
• Update the value function by performing gradient descent on the L2-loss:

1

m
෍

𝑖=1

m

r (𝜏 𝑖) − Vϕt
(𝜏 𝑖)

2

IMPORTANCE SAMPLING

26

• Before discussing more advanced policy gradient algorithms,

• We first need additional background on importance sampling.

• Recall our objective function:

∇𝜃J 𝜃 = ෍

𝜏

A(𝜏) 𝜋𝜃(𝜏) ∇𝜃 log 𝜋𝜃(𝜏) = 𝔼𝜏~πθ A(𝜏) ∇𝜃 log 𝜋𝜃(𝜏) .

• We have to be careful since when we sample from πθ during training, we are sampling from
the old policy (before the current iteration of gradient updates).

IMPORTANCE SAMPLING

27

• So to make this explicit in our objective:

ቚ∇𝜃J 𝜃
𝜃=𝜃𝑜𝑙𝑑

 = 𝔼𝜏~𝜋𝜃𝑜𝑙𝑑
A(𝜏) ቚ∇𝜃 log 𝜋𝜃(𝜏)

𝜃=𝜃𝑜𝑙𝑑

 = 𝔼𝜏~𝜋𝜃𝑜𝑙𝑑
A(𝜏)

ห∇𝜃𝜋𝜃(𝜏)
𝜃=𝜃𝑜𝑙𝑑

𝜋𝜃𝑜𝑙𝑑
(𝜏)

 J 𝜃 = 𝔼𝜏~𝜋𝜃𝑜𝑙𝑑
A(𝜏)

𝜋𝜃(𝜏)
𝜋𝜃𝑜𝑙𝑑

(𝜏)
.

• Thus, the earlier policy gradient methods are all equivalent to maximizing the above
objective,

• Where we use importance sampling to sample many trajectories from the old policy to
estimate the objective function under the new policy.

IMPORTANCE SAMPLING

28

• In general, importance sampling is useful for estimating quantities from distribution A, but
by using samples from a different distribution B.

• Example for intuition: Want to compute the average height of 8-year-olds, but we sample
from a population of 5-year-olds.

• For each selected 5-year-old, we can compute their height h, and multiply it by the
ratio:

 p(8-year-old has height h) / p(5-year-old has height h)

• Intuitively, if the 5-year-old is tall for their age, the denominator will be small and the
numerator will be high, so the weight of their height will be high.

• If the 5-year-old is average or short, the numerator will be low, so the weight of their
height will be low.

• If we compute the weighted sum, we can obtain an unbiased estimator of the average
height of 8-year-olds.

PROBLEMS WITH POLICY GRADIENT METHODS

29

• Another difficulty with policy gradient methods is how to choose the learning rate.

• If the step size is set too small, learning is very slow.

• If the step size is too large, the policy is changed too aggressively.

• The policy diverges quickly from “good” regions.

• Performance collapse: “falling off a cliff.”

• What does the learning rate/step size actually mean?

• It denotes the distance of the gradient update to 𝜃 (e.g., the weights of the policy
neural network).

• But small changes to 𝜃 can cause dramatic changes to the probability πθ(a) .

• Text classification models (including language models) tend to a softmax layer at
the end.

• Linear changes to the softmax input causes exponential changes to the softmax
output.

PROBLEMS WITH POLICY GRADIENT METHODS

30

J 𝜃 = 𝔼𝜏~𝜋𝜃𝑜𝑙𝑑
A(𝜏)

p(𝜏|𝜃)

p(𝜏|𝜃𝑜𝑙𝑑)

• What if we add a regularization term that discourages drastic changes to the policy?

J penalty 𝜃 = 𝔼𝜏~𝜋𝜃𝑜𝑙𝑑
A(𝜏)

p(𝜏|𝜃)

p(𝜏|𝜃𝑜𝑙𝑑)
 − 𝛽 ⋅ KL(𝜋𝜃𝑜𝑙𝑑

, 𝜋𝜃)

• We add a negative term containing the KL-divergence between the old and new policy.

• 𝛽 is a hyperparameter.

• Thus, if the old and new policy are far, the objective function is negative.

• Notice we are using KL-divergence to measure the distance between probability
distributions.

• As opposed to a measure of distance between the parameters 𝜃𝑜𝑙𝑑 and 𝜃.

• Methods that maximizing this objective are called proximal policy gradient (PPO) methods.

[Schulman et al., 2017]

PROXIMAL POLICY GRADIENT

31

• Another way to prevent large changes to the policy is to “clip” the objective function:

J 𝜃 = 𝔼𝜏~𝜋𝜃𝑜𝑙𝑑
A(𝜏)

p(𝜏|𝜃)

p(𝜏|𝜃𝑜𝑙𝑑)

J clip 𝜃 = 𝔼𝜏~𝜋𝜃𝑜𝑙𝑑
min A(𝜏)

p(𝜏|𝜃)

p(𝜏|𝜃𝑜𝑙𝑑)
, A(𝜏) ⋅ clip 1 − 𝜖, 1 + 𝜖,

p(𝜏|𝜃)

p(𝜏|𝜃𝑜𝑙𝑑)

• 𝜖 is a hyperparameter.

• The clip function simply makes sure the term
p(𝜏|𝜃)

p(𝜏|𝜃𝑜𝑙𝑑)
 is not larger than 1 + 𝜖 or smaller

than 1 − 𝜖.

• The clipped objective is often combined with the KL-divergence penalty in PPO.

PROXIMAL POLICY GRADIENT

32[Schulman et al., 2017]

PROXIMAL POLICY GRADIENT

33[Schulman et al., 2017]

PUTTING IT ALL TOGETHER

34

• To train a large language model:

• First pre-train the model on the language modeling task.

• Post-training:

• Next, use supervised fine-tuning to initially modify the model’s
behavior.

• For example, to teach the model how to follow instructions.

• Train a reward model on a large corpus of human-annotated
preference data.

• Use RL to teach the language model to generate human-preferred
responses using the learned reward model.

• This process is termed reinforcement-learning from human feedback
(RLHF).

• (but this term sometimes only refers to the RL part)

POST-TRAINING: SFT

35

• To train a large language model:

• First pre-train the model on the language modeling task.

• Post-training:

• Next, use supervised fine-tuning to initially modify the model’s
behavior.

• For example, to teach the model how to follow instructions.

• Train a reward model on a large corpus of human-annotated
preference data.

• Use RL to teach the language model to generate human-preferred
responses using the learned reward model.

• This process is termed reinforcement-learning from human feedback
(RLHF).

• (but this term sometimes only refers to the RL part)
[Ouyang et al., 2022]

POST-TRAINING: REWARD MODELING

36

• To train a large language model:

• First pre-train the model on the language modeling task.

• Post-training:

• Next, use supervised fine-tuning to initially modify the model’s
behavior.

• For example, to teach the model how to follow instructions.

• Train a reward model on a large corpus of human-annotated
preference data.

• Use RL to teach the language model to generate human-preferred
responses using the learned reward model.

• This process is termed reinforcement-learning from human feedback
(RLHF).

• (but this term sometimes only refers to the RL part)
[Ouyang et al., 2022]

POST-TRAINING: RL

37

• To train a large language model:

• First pre-train the model on the language modeling task.

• Post-training:

• Next, use supervised fine-tuning to initially modify the model’s
behavior.

• For example, to teach the model how to follow instructions.

• Train a reward model on a large corpus of human-annotated
preference data.

• Use RL to teach the language model to generate human-preferred
responses using the learned reward model.

• This process is termed reinforcement-learning from human feedback
(RLHF).

• (but this term sometimes only refers to the RL part)
[Ouyang et al., 2022]

GIST OF RLHF

38[twitter.com/anthrupad/status/1622349563922362368]

RLHF RESULTS ON GPT-3

39[Ouyang et al., 2022]

RLHF RESULTS ON LLAMA-2

40[Touvron et al., 2023]

RLHF IS NOT FOOL-PROOF

41

• The performance of RLHF depends heavily on the training data

 (e.g., the preference data to train the reward model, the set of prompts used in RL)

• Andriushchenko and Flammarion (2024) tested whether RLHF would correctly generalize to
past tense in GPT-4o.

• E.g., “How to make a Molotov cocktail?” vs “How did people make Molotov cocktails?”

RLHF IS NOT FOOL-PROOF

42[Andriushchenko and Flammarion, 2024]

RLHF IS NOT FOOL-PROOF

43[Andriushchenko and Flammarion, 2024]

QUESTIONS?

	Slide 1: CS 577: Natural Language Processing
	Slide 2: A BIRD’s Eye VIEW
	Slide 3: Reinforcement Learning
	Slide 4: Reinforcement Learning
	Slide 5: Reinforcement Learning
	Slide 6: Reward in language modeling?
	Slide 7: Reinforcement Learning
	Slide 8: Policy optimization
	Slide 9: Policy Gradient
	Slide 10: Policy Gradient
	Slide 11: Policy Gradient
	Slide 12: Policy Gradient
	Slide 13: Policy Gradient
	Slide 14: Policy Gradient
	Slide 15: “Vanilla” Policy Gradient
	Slide 16: “Vanilla” Policy Gradient
	Slide 17: Problems with “Vanilla” Policy Gradient
	Slide 18: Policy Gradient with Baseline
	Slide 19: Policy Gradient with Baseline
	Slide 20: Policy Gradient with Baseline Is UNBiased
	Slide 21: Policy Gradient with Baseline Is UNBiased
	Slide 22: Policy Gradient with Baseline
	Slide 23: Value Function
	Slide 24: Value Function
	Slide 25: Actor-critic
	Slide 26: Importance Sampling
	Slide 27: Importance Sampling
	Slide 28: Importance Sampling
	Slide 29: Problems with Policy Gradient Methods
	Slide 30: Problems with Policy Gradient Methods
	Slide 31: Proximal Policy Gradient
	Slide 32: Proximal Policy Gradient
	Slide 33: Proximal Policy Gradient
	Slide 34: Putting it all Together
	Slide 35: Post-training: SFT
	Slide 36: Post-training: Reward Modeling
	Slide 37: Post-training: RL
	Slide 38: Gist of RLHF
	Slide 39: RLHF Results on GPT-3
	Slide 40: RLHF Results on LLaMA-2
	Slide 41: RLHF is not fool-proof
	Slide 42: RLHF is not fool-proof
	Slide 43: RLHF is not fool-proof
	Slide 44: Questions?

