CS 577:
NATURAL LANGUAGE
PROCESSING

Abulhair Saparov

Lecture 15: Quantization

PREVIOUSLY: WORKING WITH LARGE MODELS

* Previously, we discussed how to train and run inference on models via
parallelizing them across many GPUs.
* We also discussed how we can use large models even if we don’t have access

to large GPU clusters.
* We looked into how to train models that are small enough for us to run
inference (i.e., forward passes), but too large for us to fine-tune.

* Parameter-efficient fine-tuning (PEFT)

PREVIOUSLY: WORKING WITH LARGE MODELS

* But what if the model is too large to fit in memory even for inference alone?

* |Is there some way we can make the model smaller and retain accuracy?
* Or minimize any loss to accuracy?

* Smaller models would be much cheaper.
* Large models are expensive to train.

Time Power Carbon Emitted
(GPU hours) Consumption (W) (tCOzeq)
7B 184320 400 31.22
Liamao 13B 368640 400 62.44
34B 1038336 350 153.90
70B 1720320 400 291.42
Total 3311616 539.00

[Touvron et al., 2023]

PREVIOUSLY: WORKING WITH LARGE MODELS

* tCO,eq Is a unit meaning “metric tons of CO, equivalent.”

* This table only considers the power requirements of GPUs, and not the cost of
running the CPUs, interconnects, datacenter cooling, etc.

* This table also only considers the cost of training.
* For popular models, the cost of inference quickly outpaces the cost of

training.

Time Power Carbon Emitted

(GPU hours) Consumption (W) (tCOzeq)
7B 184320 400 31.22
Liamao L3B 368640 400 62.44
34B 1038336 350 153.90
70B 1720320 400 291.42
Total 3311616 539.00

[Touvron et al., 2023] 4

PREVIOUSLY: WORKING WITH LARGE MODELS

* Future Al data centers and clusters are projected to continue using more and

more power,
* And therefore, producing more and more greenhouse gases.

Figure 1a: Al LLM data center share of Figure 1b: Al LLM data center share
total summer generating capacity of total energy sales

% 2% 4%
2% 4%

1%
3%

1%
1% 2%
2%

1%

2023 2024 2025 2026 2027 2022 2023 2024 2025 2026 2027

Source: Data derived from the EIA's Annual Energy Outlook 2023 and the authors’ Al
LLM demand projections.

[Jafari et al., Projecting the Electricity Demand Growth of Generative Al Large Language Models in the US, 2024]

PREVIOUSLY: WORKING WITHA,Cou,dsoonNeedasMuch- ILS

Electricity as an Entire Country

Behind the scenes, the technology relies on
thousands of specialized computer chips.

% Share full article p‘ﬁ m

* Future Al data centers and clusters are projecte
more power,

Q BB [c o senm INA More green

e and

ter share of igure 1b: d
Google turns to nuclear to bpacity ~ of total sneray sal
power Al data centres P >

Jodo da Silva
Business reporter

1%

Kasia Bojanowska

2023 2024 2025 2026 2027 2022 2023 2024 a
: By Delger Erdenesanaa

Source: Data derr‘_ved_from the EIA’s Annual Energy Outlook 2023 ¢ Published Oct. 10, 2023 Updated Aug. 23, 2024
LLM demand projections.

[Jafari et al., Projecting the Electricity Demand Growth of Generative Al Large Language Models A the US;"2024] 6

MODEL COMPRESSION

* Effective model compression can potentially help to reduce the costs of
training and inference.

* Compression can help to broaden access to large models.

* There are three broad categories of model compression techniques:
* Quantization: Reduce the precision of the floating-point numbers in the

model.
* How can we reduce the precision without adversely affecting the

model’s accuracy?
* It’s not so simple, especially with very low precision.
* Distillation: Use a larger model to train a small model.
* Pruning: Remove parts of the model while minimizing any adverse effects
on model performance. 7

MODEL COMPRESSION

* Why should we think it is even possible to compress models?

* Trained models may be overparameterized.
* |.e., they have more parameters than they need to learn a task.

 Du and Lee (2018) showed that:

For a k£ hidden node shallow network with
quadratic activation and n training data points, we
show as long as k£ > +/2n, over-parametrization
enables local search algorithms to find a globally
optimal solution for general smooth and convex
loss functions.

MODEL COMPRESSION

e But there are some caveats to the findings of Du and Lee (2018):

* They only considered shallow networks.

* They assumed the loss function is convex.

* Loss functions for almost all large real-world models are not convex.
e Allen-Zhu et al. (2018) showed that if a network contains a subnetwork that
Is able to perform the target task,
* And there is sufficient available training data,
* Then the overparameterized network can learn the task without
overfitting.

* So there is hope that large models might contain these smaller
“subnetworks” that are able to perform tasks with similar accuracy.

QUANTIZATION

* The first model compression approach we will consider is quantization.

* We can reduce the size of the model by reducing the precision of each
parameter.

IEEE 754 single-precision 32-bit float
sign exponent (8 bit) fraction (23 bit)

1
c,0{4941944/1;,1,0,0j0/1,0 0000/ 0|0 0 0 0O|O|O0O/O0(O0|0|O0|0 |0 O 0|0
0

31 30 23 22

* This floating-point number represents (-1)s-2¢7127.1 f

* Where s is the sign, eis the exponent (also called range), and fis the fraction

(also called mantissa or precision) in binary.

[en.wikipedia.org/wiki/Bfloat16_floating-point_format] 10

QUANTIZATION

* There are smaller floating-point formats:

IEEE half-precision 16-bit float
sign exponent (5 bit) fraction (10 bit)

o o0of1/,1,0(0j0(1|j0(0|0|0 | 0 0|00

15 14 10 9 0

bfloat16
sign exponent (8 bit) fraction (7 bit)

1
co,of19/1|j1(1(1/0/j0f0 |1 /0 0 00 |0
7 6

15 14 0

* bf16 or bfloat16 (“Brain float-16"; Google Brain, 2018) allocates more bits to
the exponent (same number of bits as £p32) and fewer bits to the fraction.

* A wider range of numbers can be represented in bf16 compared to fpl6.
* At the expense of the precision.

[en.wikipedia.org/wiki/Bfloat16_floating-point_format] 11

QUANTIZATION DURING TRAINING

* Training is very sensitive to floating-point precision.

* Simply reducing the precision of all parameters from fp32 to fp16 leads to
instability during training.

5.0 §‘—
4.5

4.0

35

3.0 ——

—F16

25 . . |
0K 500K 1,000K 1,500K 2,000K

[Narang et al., 2018]

QUANTIZATION DURING TRAINING

* Why do quantized models diverge during training?

* Inspect the gradients of the parameters during £p32 training, and plot a
histogram of their magnitudes:

Weight Gradient

25.0% .

20.0% leELCOME

=
u
3
&

ge of total gradients

v ‘
2 10.0% |-

t

50%

0.0%

[Narang et al., 2018]

QUANTIZATION DURING TRAINING

* Possible reason for training instability when using fpl6:
* Small gradients are important for training.
* When naively switching from £p32 to £p16, they are rounded to zero.

Weight Gradient

25.0% .

20.0% leELCOME

=
u
3
&

ge of total gradients

v ‘
2 10.0% |-

t

50%

0.0%

[Narang et al., 2018]

QUANTIZATION DURING TRAINING

* Possible reason for training instability when using fpl6:
* Small gradients are important for training.
* When naively switching from £p32 to fp16, they are rounded to zero.

* This is especially problematic for larger models since they require a smaller
learning rate for training.

* Is there a way we can avoid underflow?

15

QUANTIZATION DURING TRAINING

* What if we keep the weights in high precision (fp32) but perform and forward
and backward pass in lower precision (fp16)?

* But we still have the problem where the gradients computed in the backward
pass will be rounded to zero.

* What if we scale the gradients by a constant factor?

a L O(’(:\Oﬂ \n
Wnew =W - y ﬁ/ e ne Yed.‘:\g {0 -f_p32-
e cOMP™ " oaver™

y 0 W fore
= —_— —— 6‘06
W = %= (SL) gp

* This is possible due to the linearity of the derivative operator.
* This has the effect of shifting the magnitude of the gradients further away

from 0, where there is a much lower risk of underflow.
16

MIXED PRECISION TRAINING

* This approach is called mixed-precision training.

5.0

4.5

4.0

3.5

3.0 p—

——Mixed precision, loss scale 1
94 —— Mixed Precision, loss scale 128
0K 500K 1,000K 1,500K 2,000K

[Narang et al., 2018]

MIXED PRECISION TRAINING

* This approach is called mixed-precision training.

* With an appropriate value for S, it can perform very similar to full-precison

training.

5.0

4.5

4.0

1,950K

3.5

3.0 p—

—— Mixed precision, loss scale 1
94 —— Mixed Precision, loss scale 128
0K 500K 1,000K 1,500K 2,000K

[Narang et al., 2018]

MIXED PRECISION TRAINING

* This approach is called mixed-precision training.

* With an appropriate value for S, it can perform very similar to full-precison
training.

* We can reduce the memory requirement of training by almost half:

* Only the model parameters require high-precision.
e Everything else (the activations, gradients) can be stored in half precision.

19

WE DON’T NEED 32-BITS PER PARAMETER

* Is there a middle-ground between fp32 and fp16 that would maintain
stability during training?

* What if we used the same number of exponent bits as £p32 (8 bits) and the
same number of fraction bits as fp16 (10 bits)?

Sign Range Precision

— N N

TF3Z Range

TF32 Precision
FP16

[Kharya, TensorFloat-32 in the A100 GPU Accelerates Al Training, HPC up to 20x, 2020]

20

TF32

e The proposed format is called TensorFloat-32 or t£32 (Nvidia, 2020).
* Note that only 19 bits are useful, and the remaining 13 bits are padding.

* So there are no memory savings as compared to £p32, but arithmetic
operations can be much faster.

Sign Range Precision

T\ N
L Y J
TF3Z Range

TF32 Precision

FP16

[Kharya, TensorFloat-32 in the A100 GPU Accelerates Al Training, HPC up to 20x, 2020]

21

TRAINING WITH TF32 VS FP32

* Experiments demonstrate that training/using models with t£32 is similar to

fp32.
* For example, training a Transformer-XL model:

50
w FP32 == TF32

40

Perplexity

30

20
Ok 50k 100k 150k 200k

Iterations

[Stosic, Training Neural Networks with Tensor Cores, 2020]

22

TRAINING WITH TF32 VS FP32

* Experiments demonstrate that training/using models with t£32 is similar to

fp32.
* For example, training ResNeXt101:
6 80
= FP32 == TF32

5
60

4

5 3

40

2

1 20

0 25 50 75 100 0 25 50 75 100

Epochs Epochs

[Stosic, Training Neural Networks with Tensor Cores, 2020] 23

QUANTIZED MODELS ARE FASTER

* In addition to reducing memory footprint,
* Quantization can significantly improve the speed of model operations.

* E.g.,, on an P100 GPU:
» fp64 (“double” in C/C++/Java): 5.3 TFLOPs/s
* fp32 (“float” in C/C++/Java): 10.6 TFLOPs/s
* fp16: 21.2 TFLOPs/s

[en.wikipedia.org/wiki/Hopper_(microarchitecture)]

24

QUANTIZED MODELS ARE FASTER

In addition to reducing memory footprint,

Quantization can significantly improve the speed of model operations.

Newer GPUs have specialized hardware for reduced-precision arithmetic.

* E.g.,, on an H200 GPU:

fp64 (“double” in C/C++/Java): 34 TFLOPs/s

fp32 (“float” in C/C++/Java): 67 TFLOPs/s

t£32: 495 TFLOPs/s

fp16: 990 TFLOPs/s

bfloat16: 990 TFLOPs/s

int8 (“char” in C/C++, “byte” in Java): 1980 TOPs/s

[en.wikipedia.org/wiki/Hopper_(microarchitecture)]

25

MIXED PRECISION TRAINING

* But mixed-precision training isn’t completely free of instability.
* Lee et al., 2024, attempted to train GPT-2 for 188 different random initial
seed values.
* They used mixed-precision training with bf16 and t£32 formats.
e They found 18 of the 188 seeds diverged (about 5%).
* Some examples of diverged training runs:

1 Diverged example 1 1 Diverged example 2 2 Diverged example 3
—— Seed 15940 —— Seed 20695 ! —— Seed 32277 i
10 | —— Sampled Avg. # 10 | —— Sampled Avg. |\| 10 | —— Sampled Avg. |
| , \
2 | R !H | h‘ 2 Jl"l
S 8 Nl S 8 S 8 ¥
o | o \ o
E . £ £
E 6 E 6 E 6 h
= = = |
4 4 4
2 2 2

0 5K 10K 15K 20K 25K 30K 0 5K 10K 15K 20K 25K 30K 0 5K 10K 15K 20K 25K 30K
Training Steps Training Steps Training Steps

MIXED PRECISION TRAINING

* But mixed-precision training isn’t completely free of instability.

* Lee et al., 2024, attempted to train GPT-2 for 188 different random initial
seed values.

* They used mixed-precision training with bf16 and t£32 formats.
e They found 18 of the 188 seeds diverged (about 5%).

* However, they used early stopping to be able to experiment with a larger
number seeds.

* So they estimate the true divergence rate is closer to 10% of seeds.

27

MIXED PRECISION TRAINING

* DeepSeek-Al, 2024, performs mixed-precision training where weights are
stored in £p32 and (some) activations are stored in fp8.

* Only one matrix product is shown here (“Fprop” means forward pass).

Fprop Y = XA
] To FP8 To BF16
[Input | L9®_P® J >[Output] where X is the input,
BF16 FP32 Y is the output,
—] and 4 are the weights.

. To FP8 (Master
[Weight]< Weight

\

28

MIXED PRECISION TRAINING

* DeepSeek-Al, 2024, performs mixed-precision training where weights are
stored in £fp32 and (some) activations are stored in fp8.

* Activations are in bf16 but are converted to £p8 for matrix multiplications.

Fprop Y = XA
] To FP8 To BF16
[Input | k9®_>®) >[Output] where X is the input,
BF16 FP32 Y is the output,
—] and 4 are the weights.

. To FP8 (Master
[Weight]< | Weight

Recall: In the backward pass,

we need to compute
oL oL oY _ XTa_L

T
0 —a_a__a_ T (« 7
aX_aYaX_aY‘4 (“Dgrad”) 5g

MIXED PRECISION TRAINING

* DeepSeek-Al, 2024, performs mixed-precision training where weights are
stored in £p32 and (some) activations are stored in £p8.

T
BF16 k FP32

\

)

1

[Weight]<

To BF16
>[Output]

To FP8

To FP8

Wgrad

z Weight
Gradient I
el FP32 To
BF16
Master To FP32 (- Optimizer
. Weight | States

Recall: In the backward pass,
we need to compute

oL _ L aY _ qoL |, }
a_é_a{aél/_XLaY(ngd)
0 —a_a__a_ T (« 7
aX_aYaX_aY‘4 (“Dgrad”) - 54

MIXED PRECISION TRAINING

* DeepSeek-Al, 2024, performs mixed-precision training where weights are
stored in £p32 and (some) activations are stored in £p8.

To BF16
>[Output]

[Weight]<

To FP8

Wgrad
z Weight I
Gradient
el FP32 To

L

[T](ToBFfﬁ(3 Dgrad

Gradient
FP32

\ To FP8 (Output]

To FP8

\

Gradient |

a4~ aY oA oY (

29X aY aX oY

BF16

Master To FP32 (- Optimizer
Weight States

\

Recall: In the backward pass,

we need to compute
oL oL oY _ XTa_L

oL oL Y oL
— == g7 (“Dgrad”) 34

* NVIDIA (2025) recently proposed a mixed-precision training method where
weights are stored in fp32 and matrix products are computed in 4-bits.

From
layeri-1

MIXED PRECISION TRAINING

BF16
Activation

P Activation Gradient

BF16

Tolayeri-1

Quantize [NVFP4 FPROP BF16 \ Activation
to NVFP4 "| (NVFP4 GEMM) / Tolayer i+ 1
NVEP 4? Tran?pose Trans;lpose
2D Block Hadamard | | Hadamard
Quantize to Transform | | Transform
NVFP4 BF16 BF16
' - Quanti
Quantize uantize
Transpose FP32 toNVFPa | | toNVFP4
Weights with SR
NVFP4 NVFP4
FP32 v l F
NVFP4 rom
Obtimi BF16 WGRAD A EF1? layer i +1
ptimizer [¢&— (NVFP4 GEMM) c we? ion [¢&——
Gradient
= Quanti
uantize
DGRAD NVFP4
<4+— to NVFP4
(NVFP4 GEMM) with SR

MIXED PRECISION TRAINING

* They introduce a new 4-bit floating-point format called nvfp4.

From
averi) BF16 Quantize |NVFPY FPROP BF16) Activation
Activation to NVFP4 - (NVFP4 GEMM) / Tolayeri+1
NVEP 4? Trans:pose Trans;lpose
2D Block Hadamard | | Hadamard
Quantize to Transform | [Transform
NVFP4 BF16 BF16
' - Quanti
Quantize il
Transpose FP32 toNVFPa | | toNVFP4
Weights with SR
NVFP4 NVFP4
FP32 v l :
rom
e Ontimi BF16 WGRAD A '3”? javer + 1
]
ptimizer (NVFP4 GEMM) ctivation —
Gradient
= Quanti
- A uantize
_ Activation Gradient BF16 DGRAD NVFP4
Tolayer -1 (NVEP4 GEMM) |* O

MIXED PRECISION TRAINING

* They introduce a new 4-bit floating-point format called nvfp4.

1.5
— NVFP4

14 — FP8
wn
wn
Q Start of learning rate annealing
C (20% before end of training)
2 13 —+
e
©
O
o
=

12 T Transition from Phase 1 to Phase 2 data

Transition from Phase 2 to Phase 3 data
1.1 —_—t]

o 1 2 3 4 5 6 7 8 9 10
Tokens (in trillions)

EVEN SMALLER NUMBER FORMATS

* Smaller floating-point layouts are possible:
 fp8 or float8: 1 bit sign, 4 bit exponent, 3 bit fraction
* fpd or float4: 1 bit sign, 2 bit exponent, 1 bit fraction

* Numbers can be converted into integers:

int8
int4d
int3
int2
int1 (binary)

35

HARDWARE SUPPORT FOR QUANTIZATION

GPUs don’t support arbitrary floating-point or integer formats.

We can imagine how fast int4 or fp4 operations would be, but most GPUs
simply don’t provide hardware acceleration support.
Many software frameworks still don’t support many small number formats.
* PyTorch does not currently support int3 or £p4 (as of March 2025),
* And has limited support for int4 and £p8.
When we perform arithmetic operations using these number formats on GPUs

without hardware support, we first must convert them into a supported
number format.

36

HARDWARE SUPPORT FOR QUANTIZATION

* We can still use these smaller number formats, since they still provide
reduced memory footprint.

* The speed of the operation will be the same as the supported number
format.

* Number formats smaller than £p16 cause too much instability during
training,

* But inference is much more robust to quantization.
* Thus smaller number formats are currently only used for inference.

* Let’s see how to quantize models into these smaller formats for inference.

37

INT8 QUANTIZATION

Absolute maximum (absmax) quantization:

* int8 operations are significantly faster
than floating-point for GPUs that provide
acceleration support.

* But naively quantizing the
weights/activations of a trained model
leads to significant approximation errors.

o
]

©
o

* For example, if we evaluate OPT on a
wide range of datasets: WinoGrande,
HellaSwag, PIQA, and LAMBADA:

* Interestingly, only larger models are
strongly affected by quantization

error.
[Dettmers et al., 2022]

Mean zeroshot accuracy
o
wu

o
»

0.3

127 Xtp16)

X; = round

Method |
—— LLM.int8() |
—— 8-bit baseline \
—— 16-bit baseline

outlier features

A3 $ 2
RO N T O

Parameters

INT8 QUANTIZATION

* Dettmers et al., 2022, recognized that outliers are the issue.

* Larger models were more likely to contain weights/activations that have very
large magnitude.
* And these outliers were somehow important to the model’s functioning.

* They proposed to separate the rows/columns of matrices that contain
outliers.
* Perform arithmetic operations on the outliers in £p16.

* Perform arithmetic operations on the other values in int8.
* Combine the outputs and convert the result back into £p16.

39

FP16

1] o
X o [12]z 632 2OW
-1]37|-1}83 o 0]-2
3 (-2
1|2

FP16

[] Regular values
[] outliers

[Dettmers et al., 2022]

INT8 QUANTIZATION

40

INT8 QUANTIZATION

X 2 |a5]-1]171 i
0 [12]3 [eq 2 2)0
-137]-1}83 o 0|-2 W
FP16 312
-1]2
FP16 : Py
16-bit Decomposition
fonemmmnensseesssisssssssssssssssseeses ;
1
! (1) Decompose outliers (2) FP16 Matmul !
L} 1
] 1
: w X W._=O0ut i
! 25017 F16 F16 F16 1
1 X [12]e3 2 i
[] Regular values i 3]- '
) : 37183 F16 i
[] outliers : F16 ;

[Dettmers et al., 2022]

INT8 QUANTIZATION

8-bit Vector-wise Quantization

[= = e e e e e e e e e e N e N eSS S s Ss S sssssssme—————
1
i (1) Find vector-wise constants: CW& CX (2) Quantize (4) Dequantize i
[] 1
' X *(127/C,) = X i
1 X 1 2<«—C Fls(/ x) 18 OutB"; (CX®CW) o :
> ., - w — = QOut i
: 21 2]-1|-1 1|0 V\{:;E(127/CW) = ng 127*127 F16 :
: 31013]2 0[-2 :
: 1[-1]1]o0 -1f2 (3) Int8 Matmul :
' F16 16 1
X 2 [a5]-1[27]1 i i T w X W = Out i
o Bl B2 2o ' 18 18 132 i
-1(37]-1fed o 0]-2 W i CX E
FPl6 |3 [-2] T T T T T T T T T T T E e
1|2
FP16 : P
16-bit Decomposition
-2 H
E (1) Decompose outliers (2) FP16 Matmul E
| 1
L} 1
H W X W _ = Out i
! 25117 . F16 F16 F16
[] Regular values X [12pes 3[- i
_ i 37[83 F16 i
[] outliers P me

[Dettmers et al., 2022]

INT8 QUANTIZATION

8-bit Vector-wise Quantization

o R R R NN AN AASEeS RSN ERA R
1
i (1) Find vector-wise constants: CW& CX (2) Quantize (4) Dequantize i
[] 1
' X *(127/C,) = X i
1 X 1 2<~—(C Fls(/ x) 18 OutB"; (CX®CW) o :
> ., - w — = QOut i
: 21 2]-1|-1 1|0 V\{:;E(127/CW) = ng 127*127 F16 :
: 31013]2 0[-2 :
: 1[-1]1]o0 -1f2 (3) Int8 Matmul :
' F16 16 I
X 2 [as][1 271 i i T w X W = Out i
o Bl B2 2|0 ' 18 I8 132 i
-1[37]-1]83 o 0|2 W : CX E
FPL6 |3]-2| T e
1|2
FP16 : P
16-bit Decomposition
P emmmme e eeeem e seesmsmeeeeeee—a e ————— ;
E (1) Decompose outliers (2) FP16 Matmul E
| 1
L} 1
n
' w X W =0ut i
' 25017 . F16 F16 F16 1 Out_
[] Regular values X [12pes 3[- i
_ i 37[83 F16 i
[] outliers P me

[Dettmers et al., 2022]

INT8 QUANTIZATION

* The conversion to and from fp16/int8 requires additional overhead
computation.

* Models smaller than 6.7B parameters are slower due to this overhead.

* But this quantization approach enables running inference with 175B
parameter models on 80GB of VRAM.
* (there are single GPUs with this much memory)
e Or you can use 8 consumer GPUs (GeForce RTX 3090).
* Inference speed is doubled in comparison to £p16 inference.

44

MORE QUANTIZATION

* More recent quantization methods are able to further reduce the precision to
int4, int3, and int2 (!).

* For example, SpQR (Sparse-Quantized Representation; Dettmers et al., 2023),
not only considers outliers in the weight/activation matrices.

* They more directly consider the quantization error on real inputs.
* For each weight matrix ¥in the model,

* They use a small set of calibration inputs X to measure a sensitivity
parameter for each weight W, ; in W

P2
Sg+4 = min||{WX — W
such that w,/ = quantize(w, ;) and the other parameters of W’ are

unconstrained. je

MORE QUANTIZATION

* They then specially consider weights in the matrix that are very sensitive to
quantization (i.e., they have very high s,).

* They use higher precision to represent those weights, and lower precision for
all other weights.

* With this approach, they are able to quantize models into int3 and int2
(binary).
* Jin et al., 2024, evaluated SpQR along with other quantization methods on a
number of benchmarks.
* MMLU (Massive Multitask Language Understanding; Hendrycks et al.,
2021): Multiple-choice questions from broad set of categories.

 C-EVAL (Huang et al., 2023): Multiple-choice examples from Chinese
standardized exames. 46

[Jin et al., 2024]

Accuracy (%) =

MORE QUANTIZATION

70 1

N
(e

o
]

B
)

301

P = _*::::::::::::::::::'::::: ————————————————— .-
e g
9
\
A
\
\
e T 3 N
==mmm====c==zz-oS=2 ::::: ________________ L R
hhhhhhhhh \\ --—-.__________.
_____ - \
\ \
\ \
\\ \\
LTSRN I .. - memzmmm=y =Sy ——— B __ E k
________ -.——-_.____ _-_-_-___I__‘\‘—-—_.\L__
__________ \\ \ ‘———--_______k.
—=w . _ - \‘ \\
56.2 75.00 \ Y
251 N 5 A
* Qwen-7B-Chat 6.0 - 74.75 - NN
* Qwen-14B-Chat 65.00\] NN
* Qwen-72B-Chat 5.8 74.50 NN N
. 64.75 - s
Vv Qwen-7B-Chat-LLM.int8() 7495 4 - NN N
'~ \
¥ Qwen-14B-Chat-LLM.int8() 3367 . 6450 — 5 \\ \
- AU A \
v Qwen-72B-Chat-LLM.int8() 55\ T = 74.00 - \\ N
-9 o _ i 7 e \ \ \
Qwen-7B-Chat-GPTQ) 64254 73.75 - NN
-® Qwen-14B-Chat-GPTQ s5hd w R N “ \
- @ Qwen-72B-Chat-GPTQ 4.00 73.50 - "N
AY
- Qwen-7B-Chat-SPQR 55.0| N \\\
- AY
- Qwen-14B-Chat-SPQR 63175 e R
| -® Qwen-72B-Chat-SPQR --.>380 L N [23004 e . 34%
----- Random 546 63.50]

BFloat16

INTS INT4 INT3 INT2

(a) MMLU

a7

[Jin et al., 2024]

Accuracy (%) =

801

70 1

o))
(e

wn
<

B
o

30+

MORE QUANTIZATION

67.50

W e s ens s e e e reeed B- oo _m_
e —— e s mEm———— "~:: _________________ =
Rl TTtee-m
e
*o ': = ----—---==::::_-::t _____________________ _._\.'_.
~— N T ———
_____ . e
hhhhhh \\ ..,____..
‘‘‘‘‘ \
~q \
. Ay
* '- --—-::::-—:::_—:::——': ____________ \‘ \\\
e N i S
- . N T emee .
il PO AN Y\ TTe-m
=~ \\ \\
Qwen-7B-Chat 69 .\\ \\\ \\\
* Qwen-14B-Chat 59.75 4 ' U
\
Qwen-72B-Chat 59,50 69.25 1 79.5 1 \\ N \‘\
¥ Qwen-7B-Chat-LLM.int8() e AN NN
9.00 I \ \
¥ Qwen-14B-Chat-LLM.int8() 3923 7 ° 79.0 1 E-- NN
¥ Qwen-72B-Chat-LLM.int8) 59 g9 4 68.75 1 NN
~® Qwen-7B-Chat-GPTQ 6850 78.5 - NN \\
. T b A
-@ Qwen-14B-Chat-GPTQ 8159 oW
- & Qwen-72B-Chat-GPTQ 58504 68.25 1 gon- 78.0 - SN
~B- Qwen-7B-Chat-SPQR . AR
58.25 1 68907 B o N
-B- Qwen-14B-Chat-SPQR 7.5 1 DAY
F-- Qwen-72B-Chat-SPQR -~zg iy 67-7%1 “;: ------
----- Random 77.0

BFloat16

INTS

INT4

(b) C-EVAL

48

TWO BROAD APPROACHES TO QUANTIZATION

* The methods described thusfar involve training a model with high precision
(or mixed precision) and then quantizing the model for inference afterwards.

* These approaches (including GPTQ and SpQR) are classified as post-training
quantization (PTQ) methods.

* Generally, while quantized models are evaluated on a handful of
benchmarks,

* Their abilities and generalization behavior, relative to the unquantized
model, are currently not well understood.

* What if we modified the training procedure to make the model more robust to
quantization?

e This other general approach is called quantization-aware training (QAT).
49

BINARIZED NEURAL NETWORKS

e One early approach to QAT is called binarized neural networks (Courbariaux
et al., 2016).

* All activations and weights are +1 or -1.

* Backprop is also discretized.

* They wrote a GPU kernel (“XNOR kernel”) to optimize binary matrix
multiplication.

* They tested their method by training a convolutional neural network on the
CIFAR-10 dataset.

50

BINARIZED NEURAL NETWORKS

* The dashed lines show the training loss.

* The solid lines show the test error rate.

[Courbariaux et al., 2016]

CIFAR-10 TRAINING CURVES

0 100 200 300 400 500
EPOCH
— —BASELINE— —BNN (THEANO) — —BNN (TORCH7)

25.00%

20.00%

15.00%

10.00%

5.00%

0.00%

VALIDATION ERROR RATE (%)

51

BINARIZED NEURAL NETWORKS

* Training is considerably slower with binarized neural networks,

* But the final accuracy is not significantly lower than the baseline.

CIFAR-10 TRAINING CURVES

25.00%
2
20.00% H
o
5
15.00% £
o
Ll
=
10.00% O
<
(]
5.00% =
g
0.00%
0 100 200 300 400 500
EPOCH
— —BASELINE — —BNN (THEANO) — — BNN (TORCH7)

[Courbariaux et al., 2016]

QUANTIZATION-AWARE TRAINING

* Liu and Oguz (2023) propose an approach to first pretrain an unquantized
model.

* Next, initialize a quantized model from the first model’s weights.

* Generate many input examples and perform forward passes on the
unquantized models to obtain the logits for each example.

* Fine-tune the quantized model to minimize the difference between its
predicted logits and the logits from the unquantized model.
* QAT methods generally tend to be more computationally intensive.
* Thus, PTQ methods are more widely used today.
* But research is ongoing.

53

QLORA

* Quantization can be combined with parameter-efficient fine-tuning methods

such as LORA.

* In QLoRA (Dettmers et al., 2023), the model parameters are quantized to 4

bits.

Optimizer
State
(32 bit)

Adapters
(16 bit)

Base
Model

Full Finetuning
(No Adapters)

-
||

bt

16-bit Transformer

LoRA

(Je—

— | [J—
— | [J—

—
— |—>

16-bit Transformer

QLoRA
/\:
D © 8% oo
| |] 00
O O O

<107

4-bit Transformer

Parameter Updates s
Gradient Flow ===
Paging Flow ==

54

QLORA

* They propose a new number format called NormalFloat which is specifically

designed to store normally-distributed values.

* The adapters are stored using bf16.

[Dettmers et al., 2023]

Optimizer
State
(32 bit)

Adapters
(16 bit)

Base
Model

Full Finetuning
(No Adapters)

-
||

bt

16-bit Transformer

LoRA

(Je—

—
— |—>

— | [J—
— | [J—

16-bit Transformer

QLoRA
/\:
O O O<ippp:
| | | iooos
o O O

<107

4-bit Transformer

Parameter Updates s
Gradient Flow ===

Paging Flow ==

55

QLORA

* They utilize “GPU memory paging” to move memory from GPU memory to
system memory and back to more gracefully handle spikes in GPU memory

usage.
* Enables fine-tuning a 65B parameter model on a single 48GB GPU.
Full Finetuning LoRA QLoRA
(No Adapters)
Optimizer [] /\
State : :
(32 bit) D D D <+ CPU
000
- l l l L]]] oom
(16 bit) O O O o 0O O
Pt 1 ~V7
VN (D A el

[Dettmers et al., 2023] 16-bit Transformer 16-bit Transformer 4-bit Transformer Paging Flow ==jp

QUANTIZATION SUMMARY

* We have discussed how to use quantization to speed up both inference and
training of large models,

* And to greatly reduce their memory footprints.

* For inference, we have looked at both post-training quantization (PTQ) and
quantization-aware training (QAT) approaches.

* Next time, we will continue looking into other model compression techniques.
* Distillation

* Can we use a large model to teach a smaller model?
* |s there an upper limit to the performance of the smaller model?
* Pruning

* Can we remove parts of the model and maintain accuracy?
57

QUESTIONS?

	Slide 1: CS 577: Natural Language Processing
	Slide 2: Previously: Working with Large Models
	Slide 3: Previously: Working with Large Models
	Slide 4: Previously: Working with Large Models
	Slide 5: Previously: Working with Large Models
	Slide 6: Previously: Working with Large Models
	Slide 7: Model Compression
	Slide 8: Model Compression
	Slide 9: Model Compression
	Slide 10: Quantization
	Slide 11: Quantization
	Slide 12: Quantization during Training
	Slide 13: Quantization during Training
	Slide 14: Quantization during Training
	Slide 15: Quantization during Training
	Slide 16: Quantization during Training
	Slide 17: Mixed Precision Training
	Slide 18: Mixed Precision Training
	Slide 19: Mixed Precision Training
	Slide 20: We don’t need 32-bits per parameter
	Slide 21: TF32
	Slide 22: Training with TF32 vs FP32
	Slide 23: Training with TF32 vs FP32
	Slide 24: Quantized Models are Faster
	Slide 25: Quantized Models are Faster
	Slide 26: Mixed Precision Training
	Slide 27: Mixed Precision Training
	Slide 28: Mixed Precision Training
	Slide 29: Mixed Precision Training
	Slide 30: Mixed Precision Training
	Slide 31: Mixed Precision Training
	Slide 32: Mixed Precision Training
	Slide 33: Mixed Precision Training
	Slide 34: Mixed Precision Training
	Slide 35: Even Smaller Number Formats
	Slide 36: Hardware Support for Quantization
	Slide 37: Hardware Support for Quantization
	Slide 38: Int8 Quantization
	Slide 39: Int8 Quantization
	Slide 40: Int8 Quantization
	Slide 41: Int8 Quantization
	Slide 42: Int8 Quantization
	Slide 43: Int8 Quantization
	Slide 44: Int8 Quantization
	Slide 45: More Quantization
	Slide 46: More Quantization
	Slide 47: More Quantization
	Slide 48: More Quantization
	Slide 49: Two Broad Approaches to Quantization
	Slide 50: Binarized Neural Networks
	Slide 51: Binarized Neural Networks
	Slide 52: Binarized Neural Networks
	Slide 53: Quantization-AWARE training
	Slide 54: QLORA
	Slide 55: QLORA
	Slide 56: QLoRA
	Slide 57: Quantization Summary
	Slide 58: Questions?

