

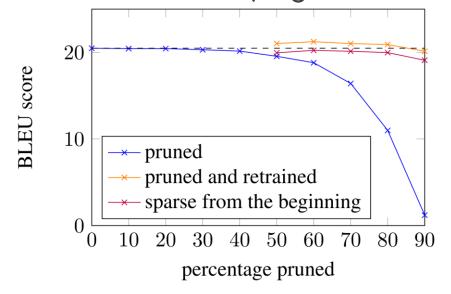
Lecture 16: Pruning

MODEL COMPRESSION

- Last time, we discussed quantization as a method for model compression.
- There are two additional high-level approaches to model compression:
 - Pruning: Remove parts of the model while minimizing any adverse effects on model performance.
 - Distillation: Use a larger model to train a small model.
- We will focus on pruning today.

MAGNITUDE PRUNING

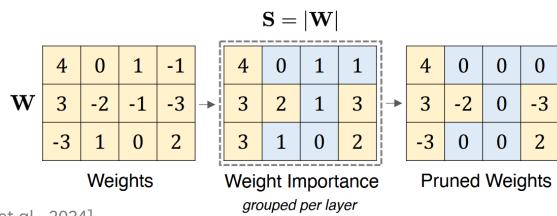
- Perhaps the simplest pruning approach for neural models is magnitude pruning (Han et al., 2015, See et al., 2016).
- Select X_n'' of the model parameters with the smallest magnitude and set them to zero.
- See et al. (2016) trained a NMT model (English-German) on WMT'14 dataset:



MAGNITUDE PRUNING

- One disadvantage of magnitude pruning is that it ignores activations.
- For example, if a small weight value is frequently multiplied by large activations, then the weight may be important.
- Similarly, a large weight may be frequently multiplied by very small activations.

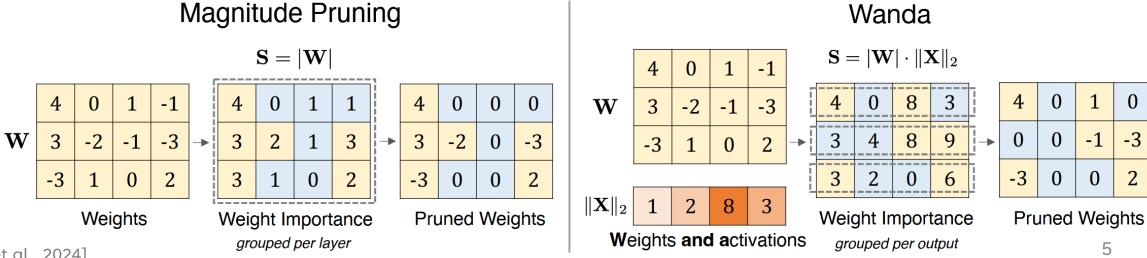
Magnitude Pruning



Δ

WANDA

- An alternative approach is to use a set of calibration data X to compute the activations in a forward pass of the model.
- We multiply the magnitude of the activations with the weights to obtain a "weight importance" metric.
- We prune the weights with the smallest importance.



[Sun et al., 2024]

WANDA

- This approach is called Wanda (Pruning by Weights and Activations; Sun et al., 2024).
- They evaluated their model on 7 zero-shot tasks and computed the average accuracies:

				LLaMA]	LLaMA-2	2
Method	Weight Update	Sparsity	7B	13B	30B	65B	7B	13B	70B
Dense	-	0%	59.99	62.59	65.38	66.97	59.71	63.03	67.08
Magnitude	X	50%	46.94	47.61	53.83	62.74	51.14	52.85	60.93
SparseGPT	\checkmark	50%	54.94	58.61	63.09	66.30	56.24	60.72	67.28
Wanda	×	50%	54.21	59.33	63.60	66.67	56.24	60.83	67.03

WANDA

- This approach is called Wanda (Pruning by Weights and Activations; Sun et al., 2024).
- They also evaluated the language modeling perplexity on the WikiText dataset.

				LLaMA			L	LaMA-2	2
Method	Weight Update	Sparsity	7B	13B	30B	65B	7B	13B	70B
Dense	-	0%	5.68	5.09	4.77	3.56	5.12	4.57	3.12
Magnitude	X	50%	17.29	20.21	7.54	5.90	14.89	6.37	4.98
SparseGPT	\checkmark	50%	7.22	6.21	5.31	4.57	6.51	5.63	3.98
Wanda	×	50%	7.26	6.15	5.24	4.57	6.42	5.56	3.98

WHY IS PRUNING HELPFUL?

- So what if we zero out some values in parameter matrices?
 - How does this help if the overall sizes of the matrices is unchanged?
 - Isn't the cost of the matrix multiplication unchanged?
- Yes, if we use dense matrix multiplication algorithms.
- Consider the representation of a vector $\mathbf{v} \in \mathbb{R}^n$.
- In a dense representation, we simply store an array of floating-point values.
 - The length of the array does not change even if many of the values are 0.
- In a sparse representation, we can store a sorted list of tuples (i, v_i) ,
 - where the first value in the tuple stores an index i,
 - and the second value stores the value of the vector at that index v_i .

For example, if we have the dense vector:

$$[0.0, -4.1, 6.2, 0.0, 0.0, -0.7, 0.0, 0.0, 0.0, 1.9, 0.0, 0.0]$$

We can store a list of the only the non-zero elements:

indices: [1, 2, 5, 9]

values: [-4.1, 6.2, -0.7, 1.9]

This representation can be extended to matrices and tensors as well:

This representation can be extended to matrices and tensors as well:
$$\mathbf{A} = \begin{bmatrix} 1.0 & 0 & 0 & 2.0 & 0 \\ 3.0 & 4.0 & 0 & 5.0 & 0 \\ 6.0 & 0 & 7.0 & 8.0 & 9.0 \\ 0 & 0 & 10.0 & 11.0 & 0 \\ 0 & 0 & 0 & 0 & 12.0 \end{bmatrix} \xrightarrow{\text{data} = \begin{bmatrix} 12.0 & 9.0 & 7.0 & 5.0 & 1.0 & 2.0 & 11.0 & 3.0 & 6.0 & 4.0 & 8.0 & 10.0 \end{bmatrix}} \text{row} = \begin{bmatrix} 4 & 2 & 2 & 1 & 0 & 0 & 3 & 1 & 2 & 1 & 2 & 3 \end{bmatrix} \text{col} = \begin{bmatrix} 4 & 4 & 2 & 3 & 0 & 3 & 3 & 0 & 0 & 1 & 3 & 2 \end{bmatrix}$$

• This matrix/tensor representation is called coordinate format (COO).

$$\mathbf{A} = \begin{bmatrix} 1.0 & 0 & 0 & 2.0 & 0 \\ 3.0 & 4.0 & 0 & 5.0 & 0 \\ 6.0 & 0 & 7.0 & 8.0 & 9.0 \\ 0 & 0 & 10.0 & 11.0 & 0 \\ 0 & 0 & 0 & 0 & 12.0 \end{bmatrix} \longrightarrow \begin{array}{c} \text{data} = [12.0 & 9.0 & 7.0 & 5.0 & 1.0 & 2.0 & 11.0 & 3.0 & 6.0 & 4.0 & 8.0 & 10.0] \\ \text{row} = [4 & 2 & 2 & 1 & 0 & 0 & 3 & 1 & 2 & 1 & 2 & 3] \\ \text{col} = [4 & 4 & 2 & 3 & 0 & 3 & 3 & 0 & 0 & 1 & 3 & 2] \\ \end{array}$$

- This matrix/tensor representation is called coordinate format (COO).
- There are other sparse representations such as compressed sparse row (CSR, or Yale format).
 - Here, non-zero elements in the matrix are stored in a vector in row-major sorted order.
 - rowptr stores the indices within data that mark the beginning of each row.
 - (rowptr has length equal to the number of rows)
 - col specifies the column of each element of data.

$$\mathbf{A} = \begin{bmatrix} 1.0 & 0 & 0 & 2.0 & 0 \\ 3.0 & 4.0 & 0 & 5.0 & 0 \\ 6.0 & 0 & 7.0 & 8.0 & 9.0 \\ 0 & 0 & 10.0 & 11.0 & 0 \\ 0 & 0 & 0 & 0 & 12.0 \end{bmatrix} \xrightarrow{\text{data} = \begin{bmatrix} 1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 6.0 & 7.0 & 8.0 & 9.0 & 10.0 & 11.0 & 12.0 \end{bmatrix}} \text{col} = \begin{bmatrix} 0 & 3 & 0 & 1 & 3 & 0 & 2 & 3 & 4 & 2 & 3 & 4 \end{bmatrix} \xrightarrow{\text{rowptr} = \begin{bmatrix} 0 & 2 & 5 & 9 & 11 & 12 \end{bmatrix}}$$

- Consider the vector dot-product operation for dense vs sparse vectors.
- For dense vector dot-product,
 - There will be n multiplication operations and n addition operations,
 - For a total of 2n operations.
- For sparse vector dot-product (in COO),
 - We scan through the two ordered lists, only multiplying elements with matching indices.
 - In the worst case, both vectors will have the same non-zero elements.
 - So we need 2k comparison operations, k multiplication operations, and k addition operations.
 - For a total of 4k operations.

- Thus, if the number of nonzero elements is sufficiently small, sparse vector/matrix operations will be faster than their dense counterparts,
 - Even if the vectors/matrices have the same dimensions.
- The ratio of zero elements to total elements (1 k/n) is called the sparsity.
- What level of sparsity do we need for sparse operations to be faster than dense operations?

• Consider a simple Python benchmark to measure the speed of sparse vs dense matrix multiplication:

```
from scipy import sparse
import numpy as np
from time import perf_counter
def test(n, sparsity):
        A = sparse.random_array(shape=(n,n), density=(1.0 - sparsity), dtype=np.float32)
        B = sparse.random_array(shape=(n,n), density=(1.0 - sparsity), dtype=np.float32)
        # measure the duration of sparse matrix multiplication
        time_start = perf_counter()
        C = A @ B
       sparse_time = perf_counter() - time_start
        # convert the matrices to dense format
       A = A.toarray()
        B = B.toarray()
        # measure the duration of dense matrix multiplication
        time_start = perf_counter()
        C = A @ B
        dense_time = perf_counter() - time_start
        return (sparse_time, dense_time)
```

- Consider a simple Python benchmark to measure the speed of sparse vs dense matrix multiplication.
- Run on AMD EPYC 7543 CPU.
- For sparsity = 0.5, and matrix dimensions 1000 × 1000, each matrix product takes time: (averaged over 50 trials)

```
sparse time (ms): 436.3604660797864
dense time (ms): 713.994812448509
```

• For sparsity = 0.9:

```
sparse time (ms): 51.92083204397932
dense time (ms): 727.737107896246
```

- But these benchmarks were run on CPU.
- If we instead use PyTorch (package torch.sparse) to run the dense matrix product on an A30 GPU,
- For sparsity = 0.9 and 1000 trials:

```
sparse time (ms): 3.1558132271748036
dense time (ms): 0.24804117833264172
```

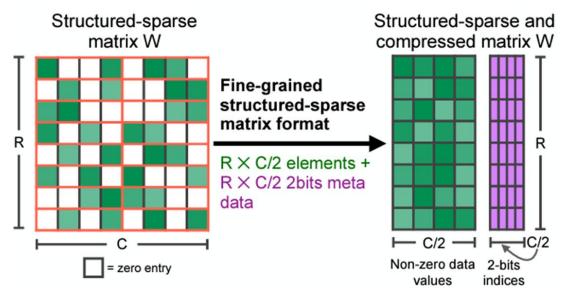
- GPUs are much better optimized to parallelize dense operations.
- But even if this sparse representation does not improve computation speed,
 - It does save memory,
 - With memory savings increasing linearly with sparsity.
- Maybe with better hardware optimizations, this representation may become faster in the future. (active area of research)

UNSTRUCTURED VS STRUCTURED PRUNING

- But can we use a different representation of sparse vectors/matrices that would enable faster computation?
- Magnitude pruning is an example of unstructured pruning,
 - Where there is no constraint on the positions of the pruned weights within each vector/matrix.
- What if we add a requirement that every n contiguous elements in the vector/matrix must contain at least k zeros?
- This representation is called k:n sparsity or k:n structured sparsity.
 - As suggested in the name, this sparse representation is an example of structured sparsity.
 - Pruning methods that utilize structured sparsity are called structured pruning methods.

2:4 SPARSITY

- Below is an example of 2:4 sparse representation of a matrix.
- We can reduce the number of columns by half,
 - But we also need to keep track of the indices of the non-zero elements within each block of 4 contiguous elements.



2:4 SPARSITY

- This representation is more amenable to block matrix multiplication methods.
- It's easier to exploit optimizations in the GPU.

Input Operands	Accumulator	Dense TOPS	vs. FFMA	Sparse TOPS	vs. FFMA
FP32	FP32	19.5	-	-	-
TF32	FP32	156	8X	312	16X
FP16	FP32	312	16X	624	32X
BF16	FP32	312	16X	624	32X
FP16	FP16	312	16X	624	32X
INT8	INT32	624	32X	1248	64X

- We can adapt magnitude pruning and Wanda to produce k:n structured matrices.
- For example, in 2:4 magnitude pruning, we inspect each contiguous block of 4 matrix elements
 - Select the two elements with smallest magnitude and set them to zero.
- In Wanda, we do the same, except we select the two elements with the smallest importance value.
- Sun et al. (2024) measured the accuracy of 2:4 and 4:8 sparsity using magnitude pruning, SparseGPT (Frantar and Alistarh, 2023), and Wanda,
 - On the same 7 zero-shot tasks as before.

				LLaMA			LLaMA-2		
Method	Weight Update	Sparsity	7B	13B	30B	65B	7B	13B	70B
Dense	-	0%	59.99	62.59	65.38	66.97	59.71	63.03	67.08
Magnitude	Х	50%	46.94	47.61	53.83	62.74	51.14	52.85	60.93
SparseGPT	\checkmark	50%	54.94	58.61	63.09	66.30	56.24	60.72	67.28
Wanda	X	50%	54.21	59.33	63.60	66.67	56.24	60.83	67.03
Magnitude	Х	4:8	46.03	50.53	53.53	62.17	50.64	52.81	60.28
SparseGPT	✓	4:8	52.80	55.99	60.79	64.87	53.80	59.15	65.84
Wanda	×	4:8	52.76	56.09	61.00	64.97	52.49	58.75	66.06

			LLaMA			LLaMA-2			
Method	Weight Update	Sparsity	7B	13B	30B	65B	7B	13B	70B
Dense	-	0%	59.99	62.59	65.38	66.97	59.71	63.03	67.08
Magnitude	×	50%	46.94	47.61	53.83	62.74	51.14	52.85	60.93
SparseGPT	\checkmark	50%	54.94	58.61	63.09	66.30	56.24	60.72	67.28
Wanda	×	50%	54.21	59.33	63.60	66.67	56.24	60.83	67.03
Magnitude	×	4:8	46.03	50.53	53.53	62.17	50.64	52.81	60.28
SparseGPT	\checkmark	4:8	52.80	55.99	60.79	64.87	53.80	59.15	65.84
Wanda	×	4:8	52.76	56.09	61.00	64.97	52.49	58.75	66.06
Magnitude	×	2:4	44.73	48.00	53.16	61.28	45.58	49.89	59.95
SparseGPT	✓	2:4	50.60	53.22	58.91	62.57	50.94	54.86	63.89
Wanda	×	2:4	48.53	52.30	59.21	62.84	48.75	55.03	64.14

22

- Sun et al. (2024) measured the speed of transformer operations in Llama-65B.
 - They compared operations on dense matrices vs 2:4 sparse matrices.
 - Computation times are shown in milliseconds (on A6000 GPUs).
 - q/k/v/o_proj are the linear layers in the attention matrix (the projections that produce the query, key, value, and output matrices).
 - up/gate_proj and down_proj are the two linear layers in the FF block.

LLaMA Layer	Dense	2:4	Speedup
q/k/v/o_proj	3.49	2.14	1.63×
up/gate_proj	9.82	6.10	$1.61 \times$
down_proj	9.92	6.45	$1.54 \times$

APPROXIMATION COST OF PRUNING

- While 2:4 pruning effectively halves the memory footprint of the model,
 - And improves its speed by ~1.6x,
 - There is an approximation cost, in terms of accuracy and perplexity.
- One idea to mitigate this approximation cost:
 - After pruning, fine-tune the model.
- Sun et al. (2024) ran this experiment where Llama-7B was fine-tuned on the C4 dataset (unstructured text data for language model training).

APPROXIMATION COST OF PRUNING

- With full fine-tuning, they were able to reduce the approximation cost considerably (though there is still a gap).
- But full fine-tuning is expensive, and not practical for large models without significant hardware resources.

Evaluation	Dense	Fine-tuning	50%	4:8	2:4
		×	54.21	52.76	48.53
Zero-Shot	59.99				
		Full	58.15	56.65	56.19

25

APPROXIMATION COST OF PRUNING

- Parameter-efficient fine-tuning methods, such as LoRA, can be used instead.
- While not as effective as fine-tuning at reducing the approximation gap,
- It is much more feasible to do with limited hardware resources.

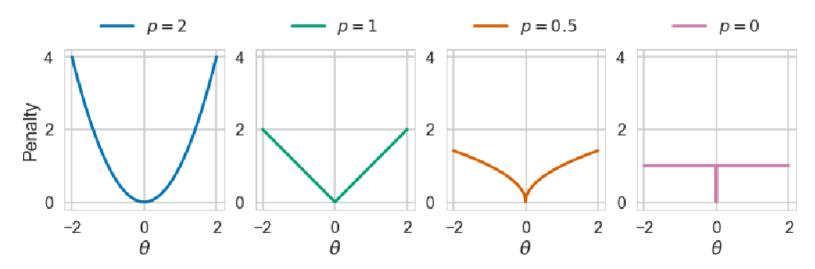
Evaluation	Dense	Fine-tuning	50%	4:8	2:4
		×	54.21	52.76	48.53
Zero-Shot	59.99	LoRA	56.53	54.87	54.46
		Full	58.15	56.65	56.19
	5.68	×	7.26	8.57	11.53
Perplexity		LoRA	6.84	7.29	8.24
		Full	5.98	6.63	7.02

26

LEARNING WHICH PARAMETERS TO PRUNE

- Suppose I have a model with n dense parameters.
- I want to prune it so that I only have k non-zero parameters.
- We have previously discussed methods that inspect the weights/activations after pretraining and decide which k parameters are most "important."
 - These methods produce an approximation cost.
- Can we have the training/fine-tuning select which parameters to keep/prune?
- One idea: L0 regularization.

- L0 regularization is a special case of Lp regularization.
 - L0 regularization is the limit of Lp regularization as p goes to 0.
 - $||x||_0 = 0$ if x = 0, otherwise $||x||_0 = 1$.
- This is useful for counting the number of non-zero parameters in a model.



[Louizos et al., 2018] 28

- L0 regularization is a special case of Lp regularization.
 - L0 regularization is the limit of Lp regularization as p goes to 0.
 - $||x||_0 = 0$ if x = 0, otherwise $||x||_0 = 1$.
- This is useful for counting the number of non-zero parameters in a model.
- If we have model with parameters θ and loss function $L(\theta)$,
 - We can add a constraint to the loss function:

$$\arg\min_{\theta} L(\theta)$$
 subject to $\sum_{i} ||\theta_{i}||_{0} = k$.

Using Lagrange multipliers, we can rewrite this as:

$$\arg \min_{\theta,\lambda} L(\theta) + \lambda (k - \sum_{i} ||\theta_{i}||_{0}).$$

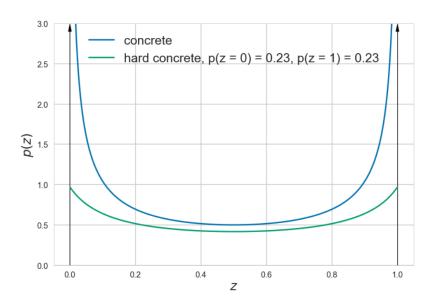
• Problem: The objective function is not differentiable.

- Solution: Introduce a mask variable z_i for each parameter θ_i :
 - Each z_i is either 0 or 1.
 - Each parameter θ_i is multiplied by \mathbf{z}_i in the model.
 - Effectively, we are pruning the parameters θ_i where $z_i = 0$.
- So our objective function is now:

$$\arg \min_{\theta, z} \max_{\lambda} L(\theta \odot z) + \lambda(k - \sum_{i} z_{i})$$

- But: z is discrete.
 - This is a combinatorial optimization problem.

- Instead, we relax the variable z_i to take any continuous value in [0,1].
- \mathbf{z}_i ~ HardConcrete(α_i , β_i)
- "Re-parameterization" trick.
- This is a distribution on [0,1] such that $p(z_i = 0) > 0$ and $p(z_i = 1) > 0$.



31

- Instead, we relax the variable z_i to take any continuous value in [0,1].
- \mathbf{z}_i ~ HardConcrete(α_i , β_i)
- "Re-parameterization" trick.
- This is a distribution on [0,1] such that $p(z_i = 0) > 0$ and $p(z_i = 1) > 0$.
- The hard concrete distribution is defined via the following sampling procedure:
 - u_i ~ Uniform(0,1)
 - $s_i' = \sigma((\log u_i \log(1 u_i) + \alpha_i)/\beta)$
 - $s_i = s_i'(1.2) 0.1$
 - $z_i = \min(1, \max(0, s_i))$
- If α_i is large, z_i will tend to be close to 1. If α_i is small, z_i will be close to 0.32

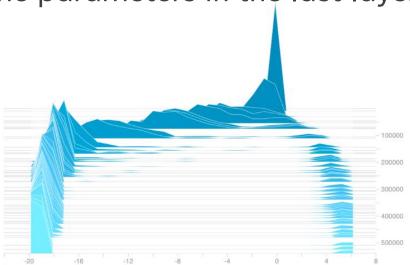
So the loss function is now:

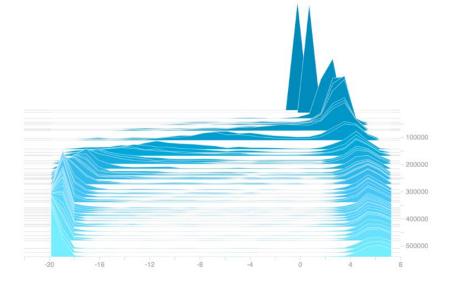
- We approximate the first term $\mathbb{E}_{u}[L(\theta \odot z)]$ using Monte Carlo sampling:
 - Randomly generate N samples of u,
 - For each sample, compute the loss function $L(\theta \odot z)$,
 - Compute the average of the losses.
- This loss function is differentiable, and we can use gradient descent to simultaneously train the model and learn the mask variables z_i .

- A real-world example of this technique applied to pruning the parameters of a language model.
- We see that as training progresses, the mask variables tend to 0 or 1:

• The left plot is for the parameters in the first layer and the right plot is for

the parameters in the last layer.

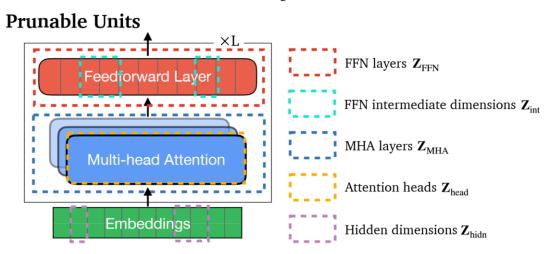




34

LO REGULARIZATION OF TRANSFORMER COMPONENTS

- We can apply this technique on transformer components.
- For each dimension of the embedding, we can introduce a mask variable.
- For each dimension in the FF layer, we can introduce another mask variable.
- We can introduce a mask variable for each attention head in every layer.
- As well as a mask variable for each layer.



LO REGULARIZATION OF TRANSFORMER COMPONENTS

- For this approach, we need a target number of non-zero mask variables.
 - So we need a target number of non-zero embedding dimensions,
 - A target number of non-zero FF dimensions,
 - A target number of attention heads and layers.
- These values can be obtained from existing smaller pretrained models.

Target Model $L_{\mathcal{T}}=2, d_{\mathcal{T}}=3, H_{\mathcal{T}}=2, m_{\mathcal{T}}=4$

LO REGULARIZATION OF TRANSFORMER COMPONENTS

- Xia et al. (2024) started with Llama2-7B as the source model and used the architecture of Pythia-1.4B as the target architecture.
 - (as a reference for the target embedding dimension, FF dimension, number of attention heads and layers)
- Then they use the reparameterization trick on the mask variables to train the model and learn which transformer components to prune.

 $L_{S} = 3, d_{S} = 6, H_{S} = 4, m_{S} = 8$

Source Model

Target Model $L_{\mathcal{T}}=2, d_{\mathcal{T}}=3, H_{\mathcal{T}}=2, m_{\mathcal{T}}=4$

LO REGULARIZATION OF TRANSFORMER COMPONENTS

- Xia et al. (2024) started with Llama2-7B as the source model and used the architecture of Pythia-1.4B as the target architecture.
 - (as a reference for the target embedding dimension, FF dimension, number of attention heads and layers)
- Then they use the reparameterization trick on the mask variables to train the model and learn which transformer components to prune.
 - This is another example of structured pruning.
- The result is a 1.4B parameter model that was obtained from Llama2-7B.
- They repeated their method using INCITE-Base-3B as the target architecture to obtain a 3B parameter model.

SHEARED-LLAMA

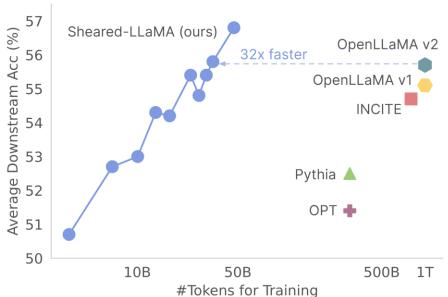
- They called the resulting models Sheared-Llama.
- In order to prune Llama, they trained on a dataset with 50B tokens.
- This is a lot, but smaller compared to pretraining a model from scratch:

Model	Pre-training Data	#Tokens
LLaMA1	LLaMA data	1T
LLaMA2	Unknown	2T
OPT	OPT data ⁵	300B
Pythia	The Pile	300B
INCITE-Base	RedPajama	800B
OpenLLaMA v1	RedPajama	1T
OpenLLaMA v2	OpenLLaMA data ⁶	1T
TinyLlama	TinyLlama data ⁷	3T
Sheared-LLaMA	RedPajama	50B

[Xia et al., 2024]

SHEARED-LLAMA

- They also found that the resulting models were more accurate than either Pythia or INCITE.
- They ran each model on 11 downstream benchmarks and compared their average accuracies.



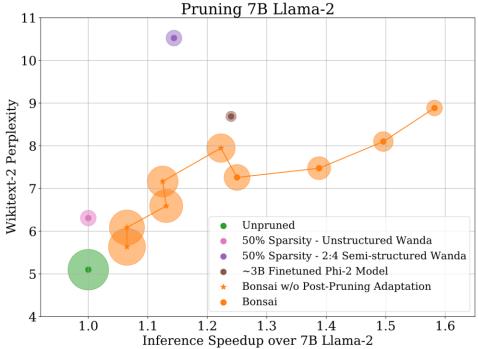
[Xia et al., 2024]

PRUNING VIA LO REGULARIZATION

- Pruning via L0 regularization and training can be expensive.
 - Especially in terms of memory (we need to store gradients for the mask variables).
- Can we avoid training?
- What if the model is so large that we can only do forward passes?
- One idea is to use forward passes to estimate the "relevance" of various model components.
 - As before, the model components can be attention heads, FF dimensions, embeddings dimensions, or even entire layers.
- Once we have an estimated relevance value for each component, prune the components with the lowest relevance.

PRUNING VIA FORWARD PASSES

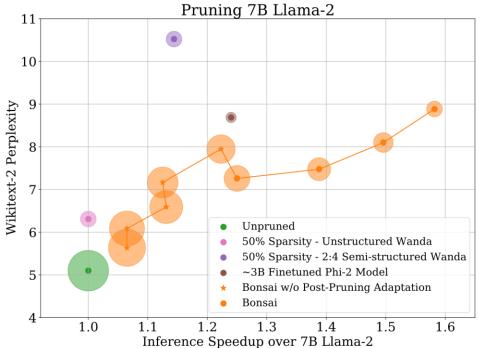
- This approach was proposed by Dery et al. (2024) and is called Bonsai.
- The size of the circle indicates the model size.



[Dery et al., 2024]

PRUNING VIA FORWARD PASSES

- The resulting pruned model can be made significantly faster than 2:4 structured Wanda,
 - But is also more accurate (lower perplexity).



43

[Dery et al., 2024]

- We find that pruning generally causes decrease in model performance on downstream tasks.
- But what about other aspects of the model?
 - Out-of-distribution performance?
 - Hallucination frequency?
 - etc...
- Much remains unexplored.
- Chrysostomou and Zhao and Williams et al. (2024) examined some of these other properties of pruned models (using SparseGPT and Wanda).

- Chrysostomou and Zhao and Williams et al. (2024) used automated metrics to quantify hallucination risk.
- They focus on the summarization task:
 - Given a document, output a short summary that contains all the important high-level information in the given document.
- Then they compute the hallucination risk ratio,
 - Where a ratio of less than 1 indicates the pruned model has lower hallucination risk than the original model.
 - A ratio of greater than 1 indicates the pruned model has greater hallucination risk than the original model.

			Llama	a-2 7B		Llama-2 13B		Llama-2 70B			Mistral 7B			OPT-IML 30B							
		Spars	eGPT	Wa	nda	Spars	eGPT	Wa	nda	Spars	eGPT	Wa	nda	Spars	eGPT	Wa	nda	Spars	eGPT	Wa	nda
Dataset	Metric	2:4	50%	2:4	50%	2:4	50%	2:4	50%	2:4	50%	2:4	50%	2:4	50%	2:4	50%	2:4	50%	2:4	50%
FactCC Summa	HaRiM ⁺	0.98	0.95	0.94	0.95	0.77	0.95	0.69	0.91	0.93	0.96	0.93	0.96	0.93	0.94	0.91	0.94	0.83	0.87	0.87	0.85
	SummaCconv	0.64	0.82	0.56	0.81	0.76	0.83	0.64	0.84	0.76	0.92	0.77	0.90	0.79	0.88	0.74	0.86	0.80	0.86	0.84	0.83
	SummaCzs	0.47	0.65	0.39	0.65	0.50	0.61	0.41	0.61	0.63	0.86	0.63	0.83	0.76	0.85	0.68	0.82	0.80	0.87	0.85	0.83
Polytope S	HaRiM ⁺	0.97	0.97	0.97	0.97	0.78	0.93	0.71	0.85	0.94	0.96	0.95	1.00	0.95	0.95	0.94	0.96	0.87	0.93	0.92	0.88
	SummaCconv	0.67	0.83	0.69	0.83	0.70	0.78	0.65	0.79	0.77	0.93	0.78	0.92	0.78	0.82	0.76	0.84	0.86	0.95	0.91	0.92
	SummaCzs	0.64	0.85	0.64	0.75	0.58	0.69	0.56	0.69	0.75	0.88	0.74	0.83	0.76	0.81	0.75	0.84	0.88	0.95	0.92	0.93
Н	HaRiM ⁺	0.88	0.93	0.81	0.93	0.80	0.97	0.69	0.96	0.95	0.98	0.95	0.98	0.93	0.94	0.92	0.95	0.91	0.92	0.90	0.89
SummEval	SummaCconv	0.55	0.81	0.46	0.76	0.67	0.81	0.59	0.81	0.78	0.96	0.79	0.93	0.79	0.85	0.77	0.87	0.86	0.88	0.83	0.85
	SummaCzs	0.49	0.75	0.4	0.68	0.56	0.71	0.49	0.66	0.70	0.92	0.70	0.88	0.79	0.84	0.76	0.88	0.86	0.89	0.85	0.86
Lagal	HaRiM ⁺	0.99	0.85	0.90	0.85	0.83	0.88	0.76	0.88	0.87	0.92	0.89	0.95	0.85	0.94	0.89	0.93	0.85	0.89	0.81	0.83
Legal Contracts	SummaCconv	0.98	0.85	0.93	0.94	0.82	0.81	0.76	0.81	0.79	0.88	0.83	0.91	0.83	0.92	0.92	0.89	0.85	0.88	0.81	0.86
Contracts	SummaC _{zs}	1.01	0.86	0.96	0.90	0.93	0.86	0.88	0.88	0.85	0.93	0.88	0.95	0.88	0.92	0.93	0.92	0.93	0.96	0.94	1.00
RCT	HaRiM ⁺	0.92	0.96	0.87	0.92	0.86	0.99	0.80	0.97	0.93	0.96	0.93	0.97	0.93	0.96	0.93	0.95	0.85	0.88	0.83	0.87
	SummaCconv	0.69	0.86	0.70	0.88	0.78	0.89	0.79	0.88	0.82	0.92	0.82	0.93	0.82	0.88	0.81	0.87	0.83	0.88	0.79	0.88
	SummaCzs	0.71	0.83	0.71	0.82	0.69	0.81	0.70	0.82	0.79	0.90	0.79	0.90	0.84	0.89	0.82	0.89	0.77	0.80	0.77	0.83
Average	HaRiM ⁺	0.95	0.93	0.90	0.92	0.81	0.95	0.73	0.91	0.92	0.96	0.93	0.97	0.92	0.95	0.92	0.95	0.87	0.90	0.87	0.87
	SummaCconv	0.70	0.83	0.67	0.85	0.74	0.82	0.68	0.83	0.78	0.92	0.80	0.92	0.80	0.87	0.80	0.87	0.84	0.89	0.84	0.87
	SummaCzs	0.67	0.79	0.62	0.76	0.65	0.74	0.61	0.73	0.74	0.90	0.75	0.88	0.81	0.86	0.79	0.87	0.85	0.90	0.86	0.89

- Interestingly, pruned models are less likely to hallucinate.
- 2:4 structured pruned models are less likely to hallucinate than 50% unstructured pruned models.
- The reduction in hallucination risk was larger in the smaller Llama models, as compared to Llama2-70B, Mistral-7B, and OPT-IML-30B.

- They also performed human evaluation on these models to validate the results from their automated hallucination risk metrics.
 - They gave each human evaluator 100 news articles as well as summaries from both the pruned model and original model.
 - Each evaluator was tasked to annotate:
 - Which summary has more hallucinations?
 - Which summary has more omissions?
 - Which summary has more repetitive information?
 - Which summary is more semantically aligned with the original article?

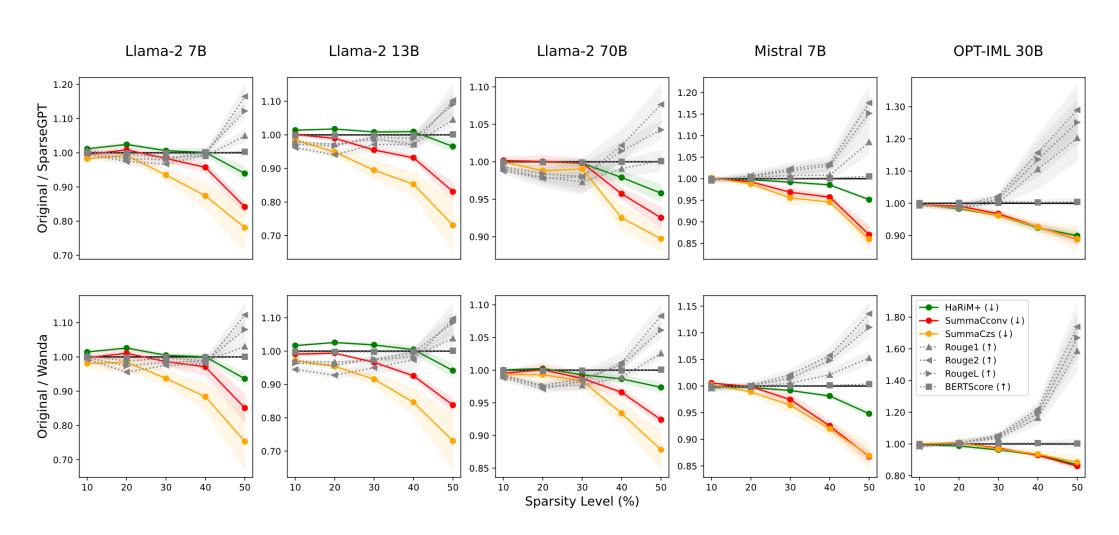
- Inter-annotator agreement (IAA) is measured using Cohen's kappa score.
 - A score closer to 1 indicates better agreement.
- Humans also find that the pruned model produces fewer hallucinations.

Model	Halluc. Q1 (↓)	Omiss. Q2 (\dagger)	Repet. Q3 (↓)	Align. Q4 (†)
Llama-2 7B w/ SparseGPT	31 14	5 18	0 9	28 21
$IAA(\kappa)$	0.82	0.63	0.62	0.53
Mistral 7B w/ SparseGPT	12 10	9 13	0 5	31 23
IAA (κ)	0.87	0.61	0.67	0.59

- But humans find that the pruned models omitted important information more often.
 - And the pruned models had more repetition.

Model	Halluc. Q1 (↓)	Omiss. Q2 (↓)	Repet. Q3 (↓)	Align. Q4 (†)
Llama-2 7B w/ SparseGPT	31 14	5 18	0 9	28 21
IAA (κ)	0.82	0.63	0.62	0.53
Mistral 7B w/ SparseGPT	12 10	9 13	0 5	31 23
IAA (κ)	0.87	0.61	0.67	0.59

HALLUCINATION RISK VS SPARSITY



PRUNING SUMMARY

- In this lecture, we discussed pruning as a strategy to reduce the memory footprint of large models.
 - Pruning can also be used to make models faster.
 - But this is less likely for unstructured pruning methods.
- Structured pruning can produce models that are both smaller and faster.
- But there is an approximation cost.
- Next time, we will finish the lecture series on model compression and discuss model distillation.

