

Lecture 25: Semantics II

SEMANTICS

- We discussed how to represent meaning of natural language sentences.
- We looked at using logic to represent truth-functional meaning:
 - Propositional logic
 - First-order logic
- Today, let's talk about whether FOL is a good meaning representation.
 - Are there better meaning representations?
 - What makes one representation better than another?
- How do we model the conversion from natural language to logical form?
 - Semantic parsing

IS FOL A GOOD REPRESENTATION OF MEANING?

- Consider the sentence 'Mark drives'.
 - We could represent it in logic as drive(mark).
- But what about 'Mark drove'?
 - Or 'Mark drives quickly'?
- Maybe drive_past(mark) and drive_quickly(mark)?
 - But drive, drive_past, and drive_quickly are distinct concepts. (they are different symbols)
 - The meaning representation doesn't tell us that they're related.
- What about 'Mark drives more slowly than Alice'?

IS FOL A GOOD REPRESENTATION OF MEANING?

- In first-order logic, we can only have predicates that take objects as arguments (i.e., variables or constants).
 - drive(mark) is allowed.
 - quickly(drive) is not allowed since drive is a predicate.
- In second-order logic, there are two kinds of predicates:
 - First-order predicates that only take objects as arguments (as in FOL).
 - Second-order predicates that take objects or 1st order predicates as arguments.
- Possible logical form assignments in 2nd order logic:
 - 'Mark drove' -> past(drive)(mark)
 - 'Mark drives quickly' -> quickly(drive)(mark)

SECOND-ORDER LOGIC

- 'Mark drives more slowly than Alice'
 - slower_than(drive, alice)(mark)
- 2nd order logic also enables quantification over first-order predicates.
 - 'Mark and Alice are siblings.'
 - siblings(mark,alice)
 - 'Mark and Alice are related.'
 - $\exists R(R(mark, alice))$

HIGHER-ORDER LOGICS

- Why stop at second-order predicates?
- Why not allow second-order predicates to be arguments to other predicates?
 - I.e., third-order predicates?
- This is third-order logic.
- In general, n^{th} order logic is one where $(n-1)^{\text{th}}$ -order predicates can be arguments of other predicates,
 - And we can quantify over $(n-1)^{th}$ -order predicates.
- Taking the limit as $n \rightarrow \infty$, we obtain higher-order logic.

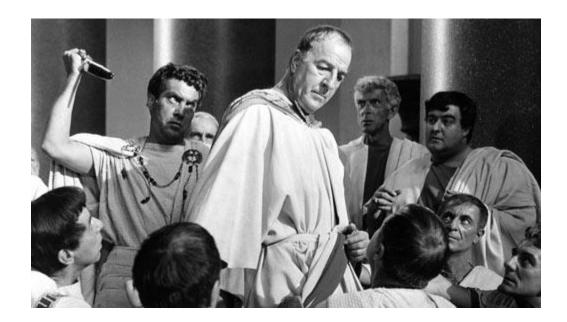
HIGHER-ORDER LOGIC

- In higher-order logic (HOL), there is no fundamental distinction between predicates (of any order) and constants/objects.
 - Everything is a term.
- In, HOL we can define new functions using lambda abstraction:
 - $\lambda x(2*x)$ is a function that takes one argument x, and returns 2*x.
 - We can use it like any other function:
 - $(\lambda x(2*x))(4) = 8$
 - $\lambda x . \lambda y (x + y)$ just adds its two inputs (it has arity 2).
 - $\lambda x . \lambda y (x = y)$ returns true if and only if x and y are the same.
 - $\lambda f. \forall x. \forall y (f(x,y) \rightarrow f(y,x))$ is true iff f is a symmetric function.
- This language is also called lambda calculus.

HIGHER-ORDER LOGIC

- Lambda calculus is very expressive.
- Any computable function can be written as a lambda calculus expression.
 - For any Turing machine, there is a lambda calculus expression that computes the same thing.
 - For any lambda calculus expression, there is a Turing machine that computes the same thing.

(Church-Turing thesis)


• There are richer logics beyond HOL, such as type theories.

IS HIGHER-ORDER LOGIC NECESSARY FOR NATURAL LANGUAGE?

- Are there other ways we can represent the meaning of tense or adverbs using only first-order logic?
- We'll work with the following running example:
 - 'Brutus stabs Caesar'
- Try first-order logic:
 - stab(brutus, caesar)

- That was easy.
- Let's make it more complicated:
 - 'Brutus stabs Caesar with a knife'

- That was easy.
- Let's make it more complicated:
 - 'Brutus stabs Caesar with a knife'
- The knife is a participant in the action.
 - It's an instrument.
- Maybe: Make it an argument of the stab predicate?
 - stab(brutus, caesar, knife)
- Well, 'knife' itself is not a singular concept.
 - Rather, it's an instance of an object that has type knife.
 - $\exists k(knife(k) \& stab(brutus, caesar, k))$

• 'Brutus stabs Caesar in the agora'

- 'Brutus stabs Caesar in the agora'
- The agora is also a participant in the action.
- So maybe: stab(brutus, caesar, agora)?
- But the agora is not participating in the same way as the knife.
 - The agora is a location, whereas the knife is an instrument.
 - So the third argument of stab is ambiguous.
- Or add a fourth argument:
 - stab(brutus, caesar, _, agora)

- What if we split up the predicate?
 - stab(brutus, caesar) & in(agora)
 - This is a bit better.
- 'Brutus stabs Caesar with a knife in the agora.'
 - stab(brutus, caesar) & with(knife) & in(agora)
 - $\exists k (knife(k) \& stab(brutus, caesar) \& with(k) \& in(agora))$
- 'Brutus stabs Caesar with a knife in the agora and twists it hard.'
 - $\exists k (knife(k) \& stab(brutus, caesar) \& with(k) \& in(agora) \& twists(brutus,k) \& hard)$
 - It's difficult to represent the adverb hard.

- The main difficulty is referring to predicates.
 - First-order logic does not allow us to refer to predicates.
 - In natural language, there is very rich variety of ways to refer to predicates.
 - Adverbial modifiers, relative clauses, etc.
- It's easy to represent modifiers of nouns in FOL.
 - 'some clever driver in America'
 - $\exists x (driver(x) \& clever(x) \& location(x, america))$
- Can we borrow this idea for verbs?
 - 'Bob drives cleverly in America'

DAVIDSON'S SOLUTION

- Davidson (1989) quoted in Maienborn (2010):
 - "Adverbial modification is thus seen to be logically on a par with adjectival modification: what adverbial clauses modify is not verbs but the events that certain verbs introduce."
- A verb (e.g., 'stab') is actually a description of an event.
 - An event is an object rather than a predicate.
 - We can quantify over events,
 - Just as we can quantify over any other object.

DAVIDSON'S SOLUTION

```
• 'Brutus stabs Caesar with a knife in the agora.'
   • \exists k(knife(k))
       & \exists e(stab(e,brutus,caesar) \& with(e,k) \& location(e,agora))

    We now have a flexible way to refer to the event of stabbing.

• 'Brutus stabs Caesar with a knife in the agora and twists it hard.'
   • \exists k(knife(k))
       & \( \mathbb{H}\) e(stab(e,brutus,caesar) & with(e,k) & location(e,agora)
          & \(\frac{1}{2}\) t(twist(t,brutus,k) & hard(t))
```

EVENT SEMANTICS

- This idea is called event semantics (or Davidsonian semantics; Davidson, 1967).
 - 'Mark drove' -> ∃d(drive(d,mark) & past(d))
 - 'Mark drives quickly' -> \(\frac{1}{2}\) drive(d, mark) & quickly(d))
- Parsons (1990) proposed an updated form where thematic roles (or semantic roles) are explicit.
- In 'Brutus stabbed Caesar' (active voice)
 - The subject is Brutus, and the object is Caesar
- In 'Caesar was stabbed by Brutus' (passive voice)
 - The subject is Caesar, and the object is Brutus
- Even if the grammatical roles have switched, the semantic roles have not!

SEMANTIC ROLES

- Every event has a set of semantic or thematic roles.
- The exact set of roles is debated, but here are some candidates:
 - Agent: the performer of the action (e.g., 'Brutus stabs')
 - Patient: the thing undergoing the action that changes state (e.g., 'Brutus stabs Caesar')
 - Theme: the thing undergoing the action but does not change state (e.g., 'I gave them the food')
 - Instrument
 - Location
 - Time
 - etc...

SEMANTIC ROLE LABELING

- Semantic role labeling is the task of identifying the semantic roles for a given sentence and verb.
 - Sometimes the verb is not specified.
- Example input:

```
'The batter hit the ball yesterday.'
```

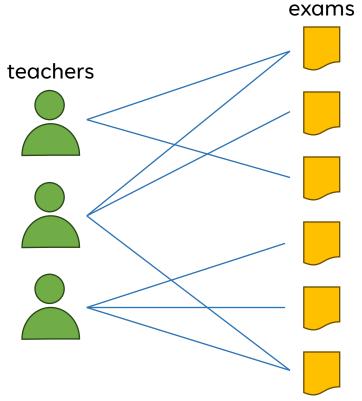
Example output:

```
'[agent The batter] hit [patient the ball] [time yesterday].'
```

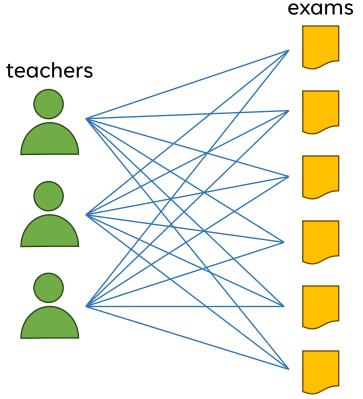
- Not really full compositional semantic parsing,
 - But a "shallow" form of it.
 - Can be thought of as something between syntactic and semantic parsing.

EVENT SEMANTICS

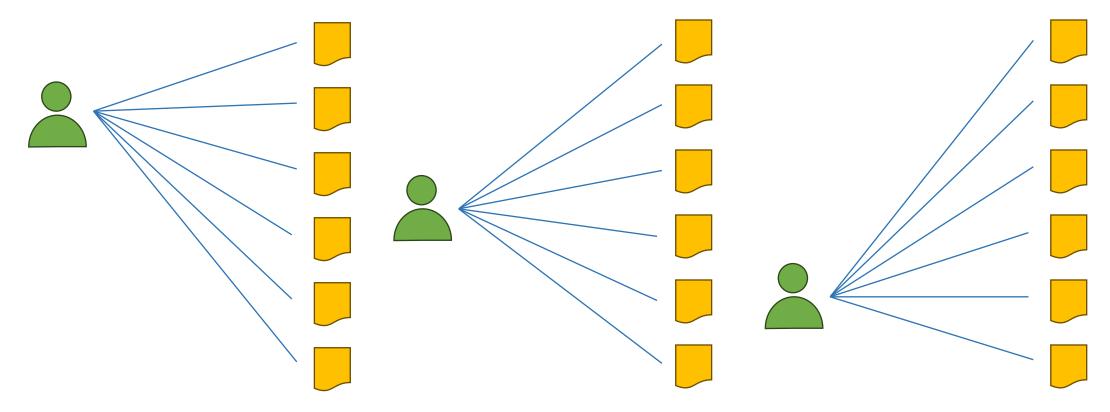
- 'Caesar was stabbed by Brutus'
 - Caesar is the patient (or theme)
 - Brutus is the agent
- In Davidsonian semantics, we would write this as:
 - <code>∃e.stab(e,brutus,caesar)</code>
 - But how would we write the meaning of 'Caesar was stabbed'?
- In neo-Davidsonian semantics, we separate the semantic roles explicitly:
 - $\exists e(stab(e) \& agent(e,brutus) \& patient(e,caesar))$
 - $\exists e(stab(e) \& arg1(e,brutus) \& arg2(e,caesar))$
 - $\exists e(stab(e) \& arg1(e)=brutus \& arg2(e)=caesar)$


- First-order logic is not just one monolithic logical formalism.
 - There are different ways we can use FOL to represent meaning.
 - Each with advantages and disadvantages.
- What makes a good logical formalism/meaning representation?
 - Coverage:
 - If there are two sentences with different meanings, they should have different logical forms.
 - If there are multiple readings/interpretations of the same sentence, there should be a logical form for each reading.

- We have seen ambiguity in syntax:
 - 'Sally caught a butterfly with a net.'
 - 'Sally caught a butterfly with a stripe.'
- We can also have ambiguity in semantics:
 - 'The trophy didn't fit in the suitcase because it's too big.'
 - 'The trophy didn't fit in the suitcase because it's too small.'
 - These sentences have the same syntactic structure.
 - Coreference resolution:
 - Does 'it' refer to the same thing as 'trophy'?
 - Or to the same thing as 'suitcase'?
- A good logical formalism will have 2 LFs for each sentence.


- Lexical ambiguity is another source of ambiguity in semantics:
 - 'I went to the bank to withdraw cash.'
 - 'I went to the bank to catch some fish.'
- The word 'bank' refers to the financial institution sense in the first sentence.
 - Whereas it refers to a riverbank in the second.
- A good logical formalism will produce two logical forms for each of the above two sentences:
 - 1 LF for the financial institution sense,
 - And 1 LF for the riverbank sense.
- The logical formalism itself has no background knowledge of the world.
 - ullet Maybe there's a possible world where you withdraw money near rivers. $_{24}$

- Quantifier scope ambiguity is another source of ambiguity in semantics:
 - 'Every dog chases a cat.'
- There are two valid readings:
 - $\forall d(dog(d) \rightarrow \exists c(cat(c) \& chase(d,c)))$
 - ∃c(cat(c) & ∀d(dog(d) → chase(d,c)))
- The only difference is the order of the quantifiers,
 - But there is a stark difference in meaning.
- Negation scope ambiguity: 'All that glitters is not gold.'
 - ∀g(glitter(g) -> ¬gold(g))
 - ¬∀g(glitter(g) -> gold(g))


- More extreme example of quantifier scope ambiguity:
 - '3 teachers graded 6 exams'

- More extreme example of quantifier scope ambiguity:
 - '3 teachers graded 6 exams'

- More extreme example of quantifier scope ambiguity:
 - '3 teachers graded 6 exams'

- What makes a good logical formalism/meaning representation?
 - Coverage
 - Language-independence:
 - This depends on the application.
 - If we wish to model translation from one natural language to another, Where the meaning is language-independent,
 - Ideally, two sentences in different languages but with the same meaning should map to the same logical form.

- What makes a good logical formalism/meaning representation?
 - Coverage
 - Language-independence
 - Uniqueness:
 - Two sentences with the same meaning should map to the same LF.
 - Not always needed.
 - Amenable for reasoning:
 - If we want to reason over the logical forms,
 - It would help to have a set of inference rules with which we can construct proofs.

- What makes a good logical formalism/meaning representation?
 - Coverage
 - Language-independence
 - Uniqueness
 - Amenable for reasoning
 - Easy to parse:
 - It shouldn't be too difficult to parse from natural language into LF.
 - If the logical form is more similar to the natural language utterance, semantic parsing is easier.
 - We will discuss semantic parsing in more detail later.

- What makes a good logical formalism/meaning representation?
 - Coverage
 - Language-independence
 - Uniqueness
 - Amenable for reasoning
 - Easy to parse
 - Compositional:
 - The logical form of larger phrases should be composed of the logical forms of subphrases.

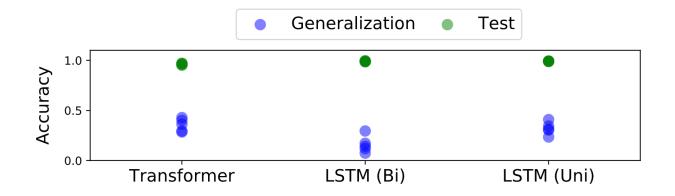
COMPOSITIONALITY

- Compositionality is also relevant in syntactic analysis.
 - The syntax tree of a larger phrase is composed of the syntax trees of its constituents.
 - Grammars with recursion enable syntactic compositionality.
 - E.g., context-free grammars.
- Semantic compositionality:
 - 'a barn' -> \(\frac{1}{2}\)barn(b)
 - 'a dog' -> \(\frac{1}{2} \) d.dog(d)
 - 'in a barn' -> ∃b(barn(b) & location(_,b))
 - 'a dog in a barn' -> \(\frac{1}{2} \) (\(\dog(d) \) \(\dog(b) \) (\(\dog(b) \) \(\dog(d) \) \(\dog(d) \)
- Exceptions: Idioms such as 'break a leg', 'on the other hand', etc.

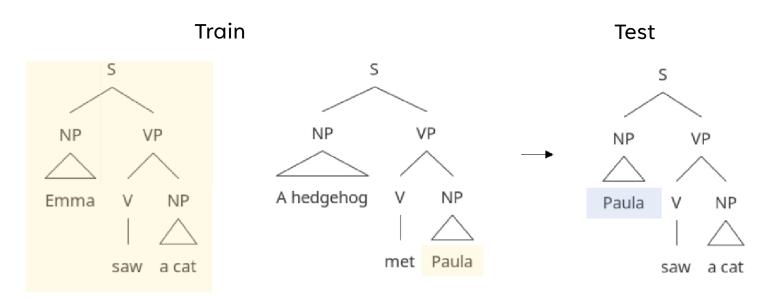
COMPOSITIONALITY

- Compositionality is very useful for efficient parsing.
 - We can parse a sentence by first parsing smaller phrases.
 - Enables dynamic programming approaches.
- Compositionality is also important for generalization.
 - We can predict the syntactic/semantic structure of larger phrases/sentences based on its smaller constituent phrases.
 - Compositional generalization:
 - If a model correctly "understands" some phrases/sentences, How well does it "understand" larger phrases/sentences that contain those phrases?

COMPOSITIONAL GENERALIZATION

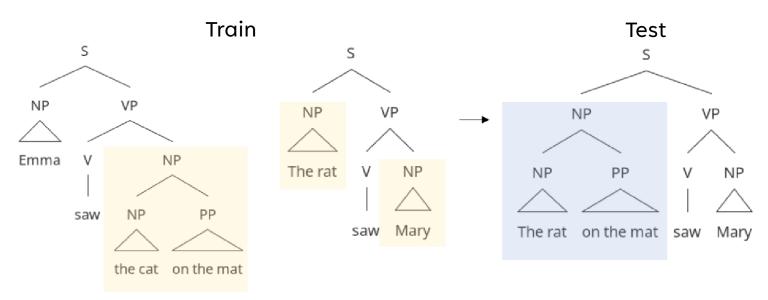

- Kim and Linzen (2020) introduced a dataset called COGS to test the semantic compositional generalization ability of NLP models.
- Some examples from COGS:

```
TRAINING
[[The girl]] = \iota x. girl'(x), [[The cat]] = \iota x. cat'(x), [[The boy]] = \iota x. boy'(x)
[[The cat loves the girl]] = love'(\iota x. cat(x), \iota x. girl'(x))
[[The hedgehog sees the cat]] = see'(\iota x. hedgehog'(x), \iota x. cat'(x))
[[The boy loves the hedgehog]] = love'(\iota x. boy'(x), \iota x. hedgehog(x))
```


COMPOSITIONAL GENERALIZATION

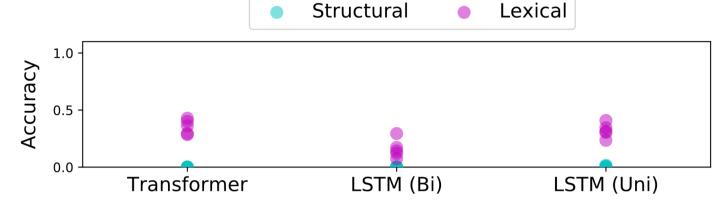
- Kim and Linzen (2020) introduced a dataset called COGS to test the semantic compositional generalization ability of NLP models.
- They evaluated transformers, unidirectional LSTMs, and bidirectional LSTMs.

Model	Dev.	Test	Gen.
Transformer	0.96	0.96	$0.35 (\pm 0.06)$
LSTM (Bi)	0.99	0.99	$0.16 (\pm 0.08)$
LSTM (Uni)	0.99	0.99	$0.32 \ (\pm \ 0.06)$



- They considered two types of generalization:
 - Lexical generalization: A word is used in a previously-unseen context.

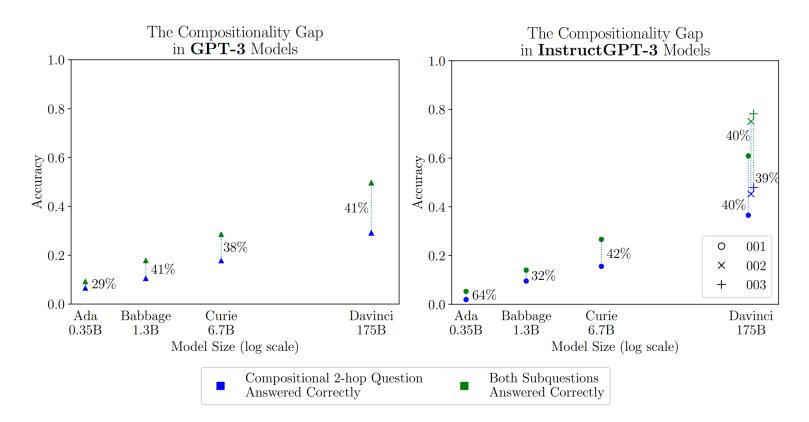
[Kim and Linzen, 2020]


- They considered two types of generalization:
 - Lexical generalization: A word is used in a previously-unseen context.
 - Structural generalization: Familiar structures are combined into a novel larger structure.

[Kim and Linzen, 2020]

- They considered two types of generalization:
 - Lexical generalization: A word is used in a previously-unseen context.

• Structural generalization: Familiar structures are combined into a novel larger structure.



- They found that the tested models are incapable of structural generalization.
 - Newer models may do better?

39

- Compositionality is also a feature of reasoning.
- A proof can consist of simpler subproofs.
 - In order to find the full proof, an intelligent system must first find the subproofs,
 - Then combine them to produce the full proof.
- E.g., 2-hop question answering:
 - 'Who won the Master's Tournament the year Justin Bieber was born?'
- To answer this, you must prove:
 - The year Justin Bieber was born is 1994.
 - Jose Maria Olazabal won the Master's Tournament in 1994.

• Press et al. (2023) measured the difference in accuracy of LM responses to the two individual questions and the compositional question.

LOGICAL FORMALISMS

- What makes a good logical formalism/meaning representation?
 - Coverage
 - Language-independence
 - Uniqueness
 - Amenable for reasoning
 - Easy to parse
 - Compositional
 - Human-readable:
 - Logical forms should be easy to understand by humans.
 - Ideally, they shouldn't require extensive special training (e.g., a university course on formal semantics).

LOGICAL FORMALISMS

- However, there is a tradeoff between coverage and human-readability.
- At one extreme, we have domain-specific logical formalisms.
 - Since the domain is restricted, we don't have to worry about coverage.
 - We can ignore sentences outside the domain.
- As we extend the coverage of the formalism and make it more domainindependent,
 - We have to make sure the formalism can capture the semantic expressivity of natural language.
 - E.g., natural language can refer to actions described as verbs,
 - The correct representation of adverbial modifiers, etc.
- As a result, they become more difficult to read. (perhaps unavoidably)

- Do LLMs have a latent meaning representation?
- Or do they use natural language?
- Do they "think in English"?
- Wendler, Veselovsky, Monea, and West (2024) inspected the intermediate activations of Llama-2 models.
 - They applied a mechanistic interpretability technique called logit lens.
 - Instead of waiting until the last layer to decode the activations into vocabulary space (via unembedding and softmax),
 - Apply the unembedding+softmax to activations of intermediate layers.

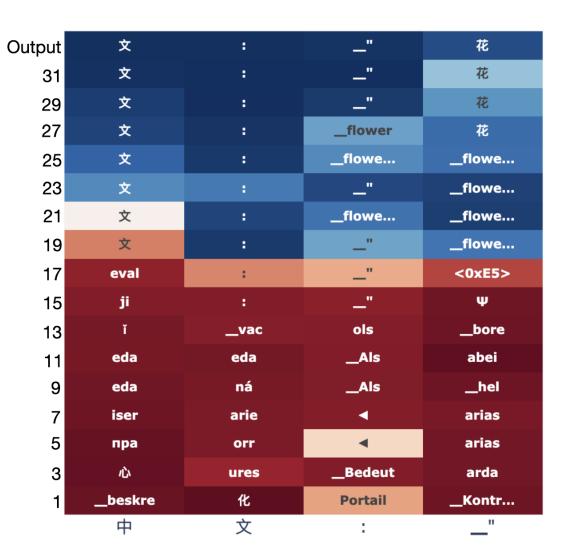
- They tested three tasks:
 - Translation

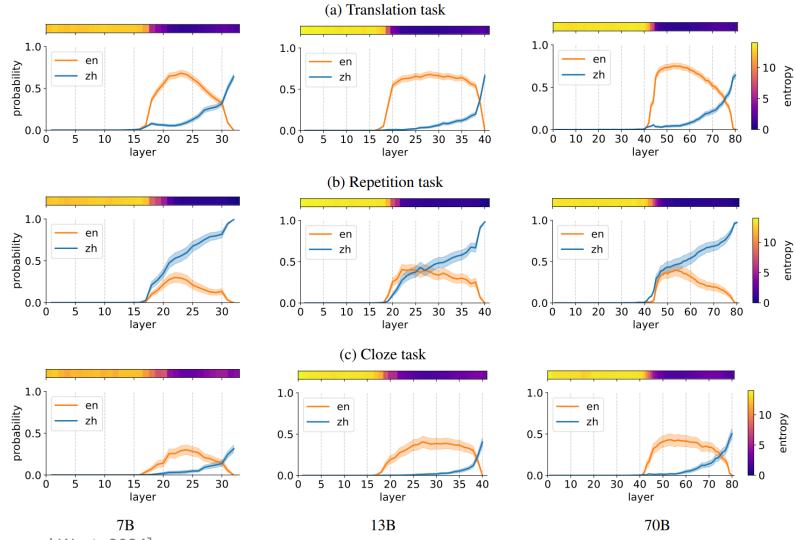
```
Français: "vertu" - 中文: "德"
Français: "siège" - 中文: "座"
Français: "neige" - 中文: "雪"
Français: "montagne" - 中文: "山"
Français: "fleur" - 中文: "
```

- They tested three tasks:
 - Translation
 - Repetition

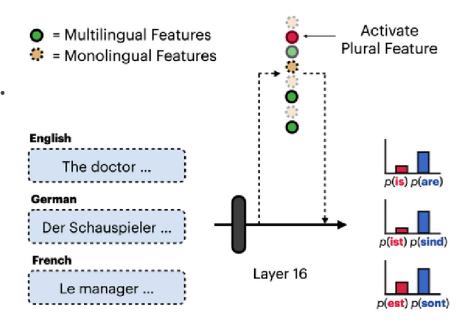
```
中文: "德" - 中文: "德"
中文: "座" - 中文: "座"
中文: "雪" - 中文: "雪"
中文: "山" - 中文: "山"
中文: "花" - 中文: "
```

- They tested three tasks:
 - Translation
 - Repetition
 - Cloze

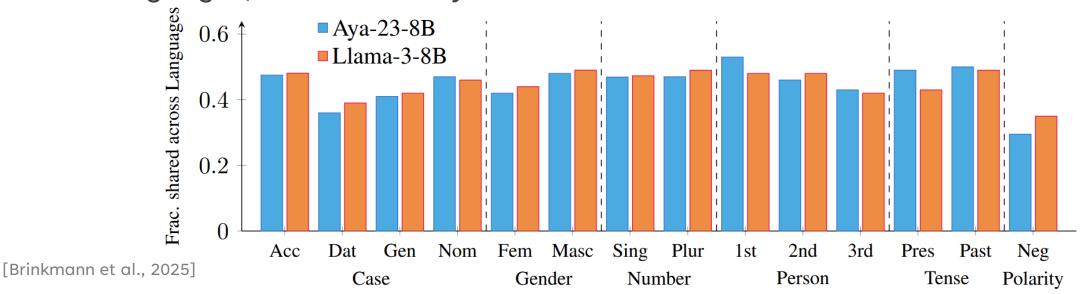

A "___" is used to play sports like soccer and basket-ball. Answer: "ball".


A "___" is a solid mineral material forming part of the surface of the earth. Answer: "rock".

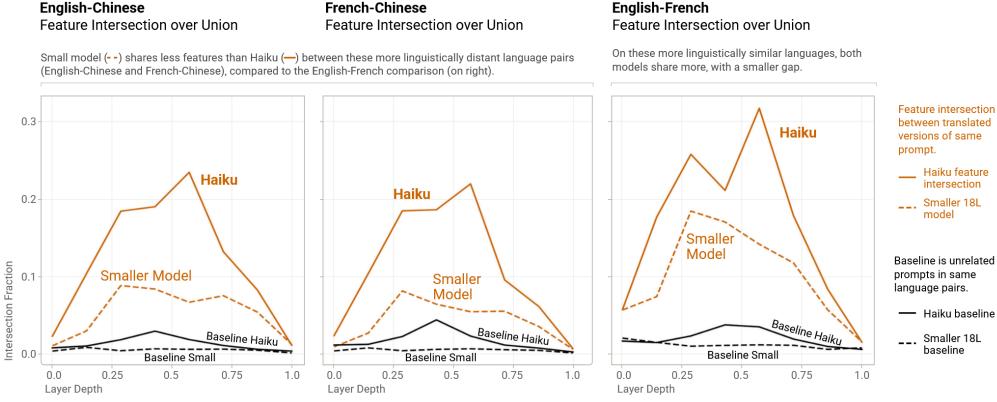
A "___" is often given as a gift and can be found in gardens. Answer: "


- Example of logit lens on translation:
 - Input: 'Français: "fleur" 中文: '
- Note that layers 19-27 contain the English word 'flower',

Despite the translation being from French into Chinese.



- But perhaps LLMs do use a meaning representation,
 - Except this representation is "close" to English.
- Brinkmann et al (2025) used sparse autoencoders (another tool for mechanistic interpretability analysis) to identify grammatical features.
 - E.g., plural, singular, 1st person, 2nd person, 3rd person, past tense, etc.
 - They analyzed Llama-3-8B and Aya-23-8B.


- They tested the LM on inputs from 23 languages.
- For each grammatical aspect (e.g., plural), they found the top 32 features for each language.
- They then computed the number of features in the intersection over all languages, and divided by the number of features in the union.

51

- Lindsey et al. (2025) performed a similar analysis on Claude 3.5 Haiku.
- They show the LM a paragraph in one language and the translated paragraph in another language.
- They record which features activate.
- They compute the number of features that were active during both paragraphs, and divide by the total number of active features.
- They compare this to a baseline where the LM is shown two unrelated paragraphs in the same language pair.

• Lindsey et al. (2025) performed a similar analysis on Claude 3.5 Haiku.

[Lindsey et al., 2025] 53

SEMANTICS

- We have discussed meaning representations/logical formalisms:
 - Second-order logic
 - Higher-order logic
 - Event semantics
- What makes a logical formalism good?
 - Compositionality
- Next time: How to convert natural language into logical forms?
 - Semantic parsing

