

Lecture 26: Semantics III

FINAL EXAM LOGISTICS

- Thursday, December 18th (next week)
 - 10:30am-12:30pm
 - LILY G126
- Bring your ID for verification
- You may bring one 8.5" × 11" cheat sheet
 - Practice questions are available on Ed and course website

SEMANTICS

- We have discussed how to represent the meaning of natural language.
- Example meaning representations
 - Logic
- What makes a logical formalism good?
 - Compositionality
 - Coverage
 - Amenable to reasoning
 - etc.
- How do we convert natural language into logical forms?
 - Semantic parsing

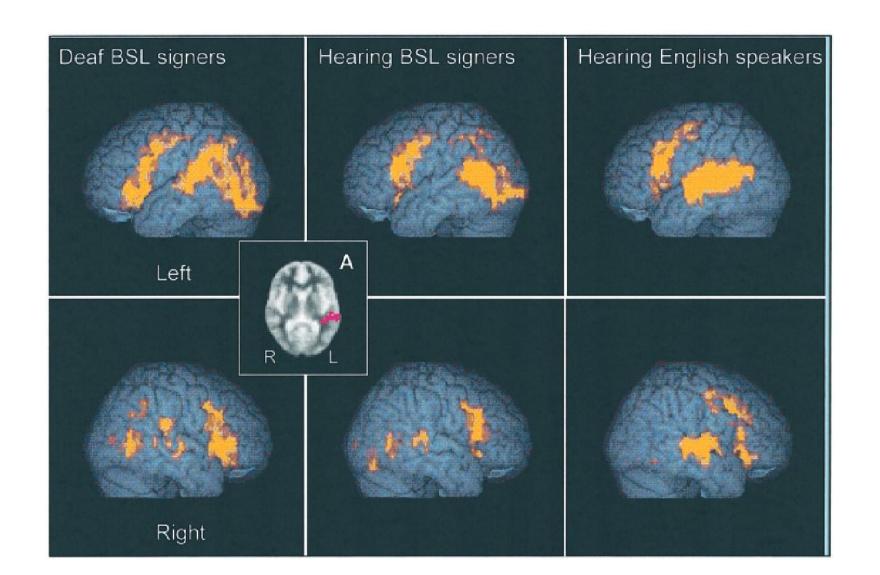
DO WE NEED A LOGICAL FORM?

- It's not obvious that human language processing involves converting natural language into logical form.
- Counterargument: Logical forms enable reasoning.
- But why not do reasoning in natural language?
 - I.e., natural language is the logical formalism.
- One potential roadblock: Ambiguity.
- Logical forms in a formal language are unambiguous.
 - Natural language is infamously ambiguous.

DO WE NEED A LOGICAL FORM?

- Consider the example:
 - 'All dogs chase a cat.'
 - $\forall d(dog(d) \rightarrow \exists c(cat(c) \& chase(d,c)))$
 - \(\frac{1}{2} \) \(\text{dog(d)} \) \(\text{chase(d,c)} \)
 - 'Sif and Fen are dogs.'
 - dog(sif) & dog(fen)
 - 'Sif only chases Felix.'
 - chase(sif,felix) & ¬∃x(x≠felix & chase(sif,x))
- If we take the second reading of 'All dogs chase a cat', we can prove that 'Fen chases Felix.'
- If we take the first reading, the proof is no longer valid.

- We discussed whether LLMs "use logical forms", but what about humans?
- There is some neuroscientific evidence that humans perform reasoning in a more abstract, modality-independent fashion.
- MacSweeney (2002) performed brain scans of 11 volunteers while they performed a reading comprehension task.
 - 4 deaf subjects who know British Sign Language (BSL).
 - 4 hearing subjects who know BSL.
 - 3 hearing subjects who don't know BSL.
 - Scanned subjects using fMRI (functional magnetic resonance imaging).



- There are brain regions that are active across both deaf and hearing subjects.
- But maybe this is due to common syntactic processing across modalities?
 - Not likely since BSL and spoken English are very different grammatically.
 - BSL has OSV word order and nouns are head-initial (e.g., 'car blue').

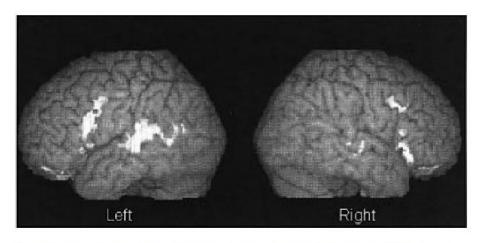
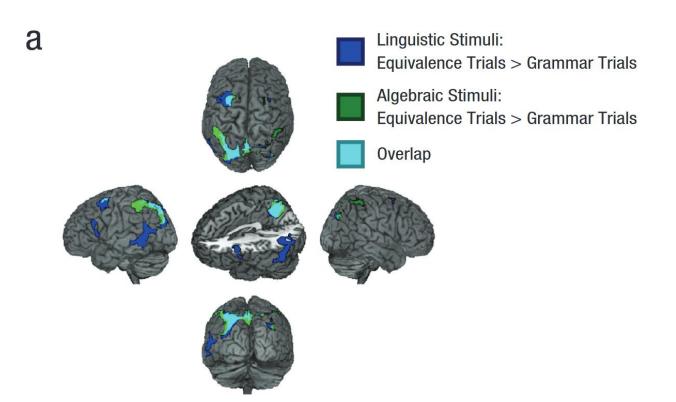
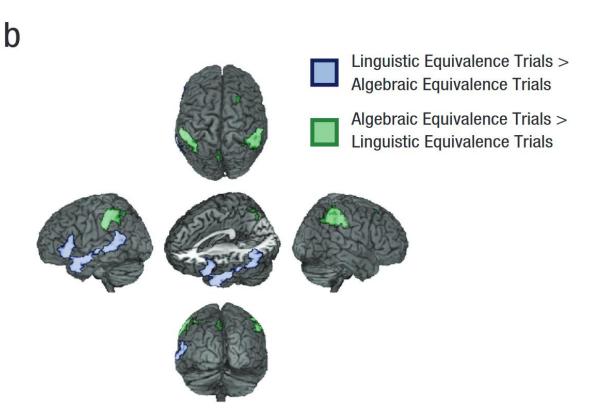


Fig. 2 Locations of common activation for audio-visual English (hearing) and BSL sentences (deaf). Activation up to 5 mm under the surface of the cortex is displayed.

• Monti et al. (2012) used fMRI to localize which brain areas were active when subjects are given a language task vs a mathematical reasoning task.



• Monti et al. (2012) used fMRI to localize which brain areas were active when subjects are given a language task vs a mathematical reasoning task.



DO WE NEED LOGICAL FORMS?

- Monti et al. (2012) used fMRI to localize which brain areas were active when subjects are given a language task vs a mathematical reasoning task.
- Neuroscientific evidence supports the notion of a "language network" within the brain that is highly specialized for language processing.
- But this language network is not heavily involved in high-level reasoning.
 - E.g., mathematical reasoning.
- Logical forms are useful for other applications in NLP.
 - E.g., code generation
 - Text-to-SQL
 - etc...
 - Programs are logical forms!

SEMANTIC PARSING

- Semantic parsing is the task of converting natural language to logical form.
 - NLP models that are trained to convert natural language into logical form (e.g., code) are effectively performing semantic parsing.
- Consider the following example:
 - We want to parse 'Sif chases Felix' into chase(sif,felix)
 - We can model the syntax of the natural language with a grammar.
 - Logic (and any formal language) can easily be described with a CFG.

SEMANTIC PARSING

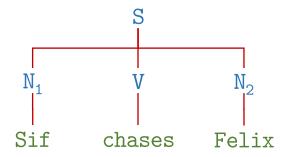
A simple CFG for English:

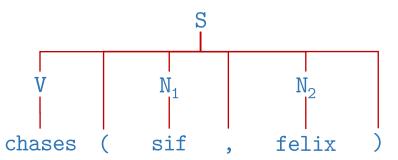
CFG for first-order logic:

SYNCHRONOUS GRAMMARS

Combine these grammars to model both English and FOL simultaneously?

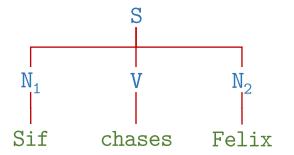
- This is a synchronous context free grammar (SCFG).
- We derive/parse the sentence and logical form simultaneously:

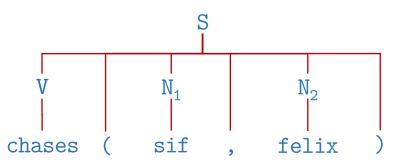




SYNCHRONOUS GRAMMARS

- But this grammar looks "flatter" than our earlier English grammar.
 - Notice the VP -> V N rule was "flattened" into the S -> N VP rule.
 - But it is impossible to avoid this in SCFG.
 - Consider the rule for the logical form: $S \rightarrow V$ '(', N_1 ', N_2 ')'
 - The VP is split into V and N_2 , which are separated by many symbols.
- But it is possible to write synchronous grammars where VP is preserved using richer grammar formalisms (e.g., STAG).

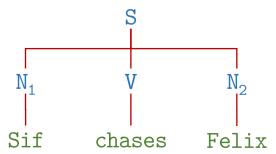




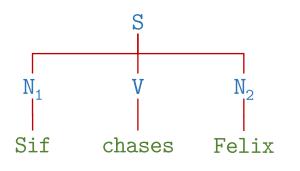
- In semantic parsing, however, we only have 'Sif chases Felix'.
 - How do we obtain the logical form?
- Consider the grammar:

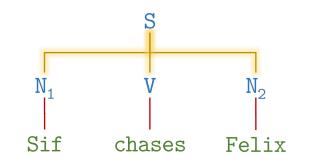
Focus on just the natural language part of the grammar:

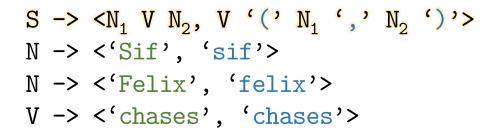
- Use any CFG parsing method to parse 'Sif chases Felix'.
 - E.g., Earley parsing

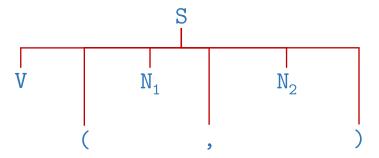


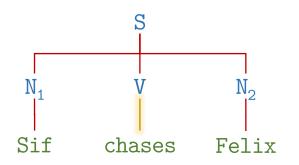
- Then we can reconstruct the derivation tree for the logical form by inspecting each rule in the above tree.
 - For each rule, we look at the right-hand side to determine how to construct the logical form.

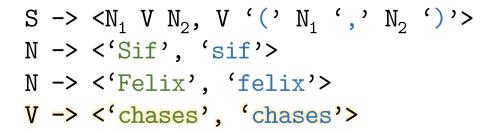


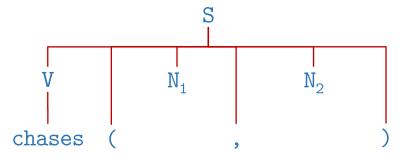


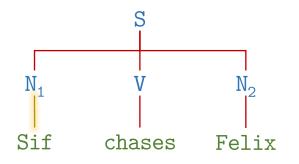


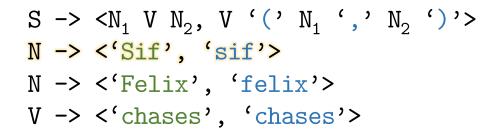


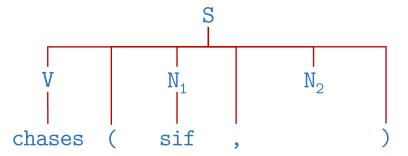


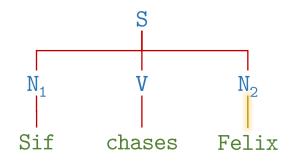


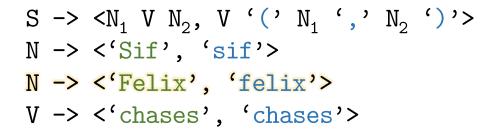












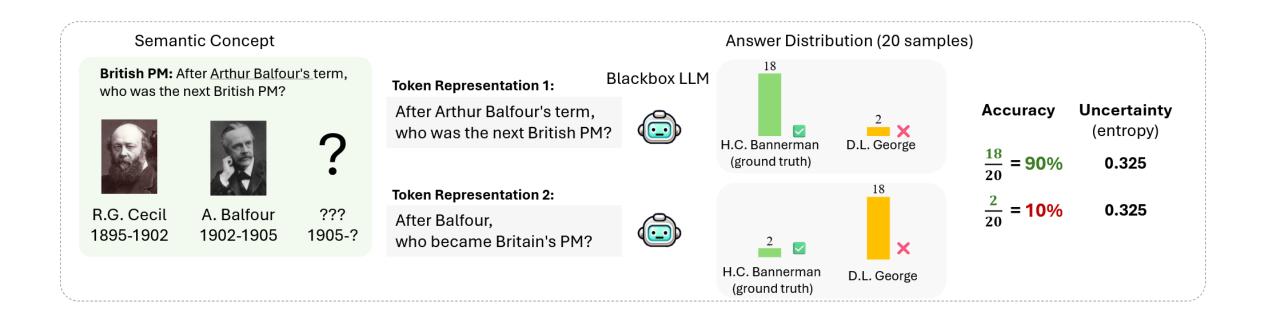


- Note that, when we reconstruct the logical form, there may be more than one matching rule.
- Consider the slightly modified grammar:
- When we parse 'Sif chases Felix' and inspect the rule N -> 'Felix', there are two matching rules.

```
S -> <N<sub>1</sub> V N<sub>2</sub>, V '(' N<sub>1</sub> ', ' N<sub>2</sub> ')'>
N -> <'Sif', 'sif'>
N -> <'Felix', 'felix_lee'>
N -> <'Felix', 'felix_mendelssohn'>
V -> <'chases', 'chases'>
```

- We can choose either rule to produce a valid logical form.
- There are two valid logical forms:
 - chases(sif,felix_lee) and chases(sif,felix_mendelssohn)
 - Example of semantic ambiguity.
- SCFG can capture both syntactic and semantic ambiguity.

- If LLMs have some kind of internal meaning representation, they need a way to convert natural language into this representation.
- How do we test for this ability?
- Idea: End-to-end test.
 - Give the model a natural language reasoning task and measure its performance.
 - But this could confound semantic parsing ability with reasoning ability.
- Idea: Rephrase the natural language input such that the meaning does not change, then evaluate model performance.
 - Prompt sensitivity suggests LLMs are not mapping semanticallyequivalent inputs into the same "logical form".



- Idea: Rephrase the natural language input such that the meaning does not change, then evaluate model performance.
 - Prompt sensitivity suggests LLMs are not mapping semanticallyequivalent inputs into the same "logical form".

[Cox et al., 2025]

- Another idea: Use the LLM to perform semantic parsing directly.
- Liu et al. (2023) measured the zero-shot parsing performance of ChatGPT on the text-to-SQL task.
 - They compared against supervised baselines which were trained specifically for this task.
 - The measured three metrics:
 - Validity: Does the predicted SQL have valid syntax?
 - Execution accuracy: Does the predicted SQL produce the same result as the ground truth SQL?
 - Test-suite accuracy: Similar to execution accuracy, but tested over many databases (a test suite).

- Another idea: Use the LLM to perform semantic parsing directly.
- Liu et al. (2023) measured the zero-shot parsing performance of ChatGPT on the text-to-SQL task.

Methods / Datasets	SPIDER			SPIDER-SYN			SPIDER-REALISTIC		
Tylethods / Butusets	VA	EX	TS	VA	EX	TS	VA	EX	TS
T5-3B + PICARD	98.4	79.3	69.4	98.2	69.8	61.8	97.1	71.4	61.7
RASAT + PICARD	98.8	80.5	70.3	98.3	70.7	62.4	97.4	71.9	62.6
RESDSQL-3B + NatSQL	99.1	84.1	73.5	98.8	76.9	66.8	98.4	81.9	70.1
ChatGPT	97.7	70.1(14↓)	60.1	96.2	58.6(18.3↓)	48.5	96.8	63.4(18.5 ↓)	49.2

- Another idea: Use the LLM to perform semantic parsing directly.
- Liu et al. (2023) measured the zero-shot parsing performance of ChatGPT on the text-to-SQL task.

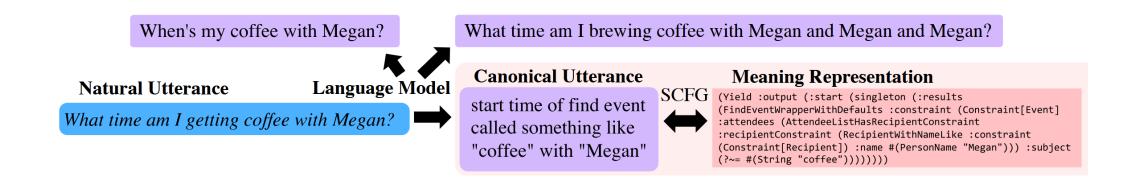
Methods / Datasets	SPIDER-DK			ADVETA(RPL)			ADVETA(ADD)		
	VA	EX	TS	VA	EX	TS	VA	EX	TS
T5-3B + PICARD	97.8	62.5	-	92.7	50.6	-	97.2	69.4	-
RASAT + PICARD	98.5	63.9	-	92.9	51.5	-	97.4	70.7	-
RESDSQL-3B + NatSQL	98.8	66.0	-	93.9	54.4	-	97.9	71.9	-
ChatGPT	96.4	62.6(3.4 ↓)	-	91.4	58.5(4.1 ↑)	-	93.1	68.1(3.8 ↓)	-

• Few-shot prompting may help further.

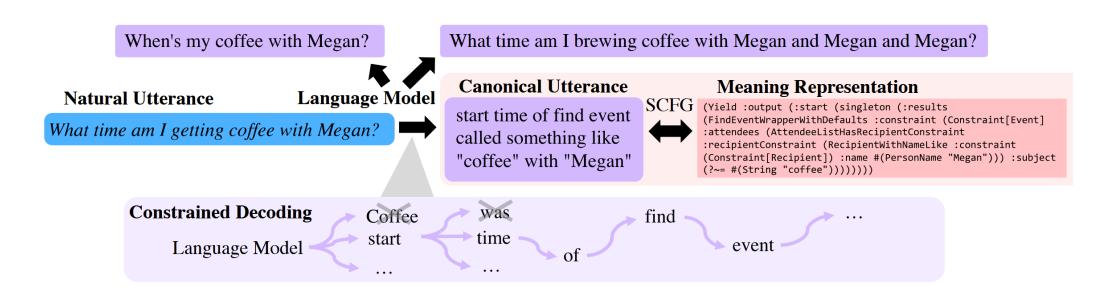
(since validity is already very high, constrained decoding may not be as helpful)

- Another idea: Suppose we have a synchronous grammar of English and SQL.
 (or more generally, a natural language and a formal language)
- But it is difficult to write a full grammar of English.
- What if, instead, we wrote a synchronous grammar for a simplified subset of English and the formal language.
 - This subset is called "canonical form."
 - And we use an LLM to translate from general English into canonical form.

• This was the idea proposed by Shin et al (2021).



- This was the idea proposed by Shin et al (2021).
- Since we have an SCFG of the canonical form, we can use constrained decoding to ensure the LLM outputs the correct form.



 They used few-shot prompting to convert the natural sentence into canonical form.

```
Let's translate what a human user says into what a computer might say.
```

Human: when is the weekly standup
Computer: start time of weekly standup

Human: what date is the weekly standup

Computer: date of weekly standup

. . .

Human: how long is the weekly standup

Computer:

- Once we have the canonical form, we can use the SCFG to semantically parse it into logical form.
- They experimented with a number of semantic parsing datasets.
 - One such dataset is called Overnight, which uses a Lisp-like LF.

which january 2nd meetings is alice attenting [sic]

meeting whose date is jan 2 and whose attendee is alice

```
(call listValue (call filter

(call filter (call getProperty

(call singleton en.meeting) (string !type))

(string date) (string =) (date 2015 1 2))

(string attendee) (string =) en.person.alice))
```

- Once we have the canonical form, we can use the SCFG to semantically parse it into logical form.
- They experimented with a number of semantic parsing datasets.
 - Another dataset is Break, which uses QDMR (Question Decomposition Meaning Representation).

What color are a majority of the objects?

(colors of (objects)) where (number of (objects for each (colors of (objects))) is highest)

- 1. objects
- 2. colors of #1
- 3. number of #1 for each #2
- 4. #2 where #3 is highest

• Results on the Break dataset:

Model	Train n	nem
Wolfson et al. Coleman & Reneau	44,321 44,321	0.42 0.42
GPT-3 Constrained Canonical GPT-3 Constrained Canonical GPT-3 Constrained Canonical	1,000 100 25	0.32* 0.24* 0.20*
GPT-3 Constrained Canonical GPT-3 Constrained Meaning GPT-3 Unconstrained Canonical GPT-3 Unconstrained Meaning	200 200 200 200 200	0.31* 0.24* 0.20* 0.17*
GPT-3 Constrained Canonical BART ^f Constrained Canonical BART ^f Constrained Meaning BART ^f Unconstrained Canonical BART ^f Unconstrained Meaning	200 200 200 200 200 200	0.24 0.22 0.22 0.18 0.19

35

COMBINATORY CATEGORIAL GRAMMAR

- CCG can also be used for semantic parsing.
- Recall that CCG is a mildly-context sensitive grammar formalism.
- We discussed how it can be used to model syntax.
 - E.g., for the sentence 'Mary kicks John':

Mary	kicks	John
NP	$\overline{(S \setminus NP)/NP}$	NP
	S\NP	> ⁰
	S	— < ⁰

- To use CCG for semantic parsing, add a LF term to each lexicon item.
 - E.g., 'Mary kicks John':

Mary	kicks	John
NP : mary	$\overline{(S \setminus NP)/NP : \lambda x. \lambda y. \mathit{kicks}(y, x)}$	NP : john

- To use CCG for semantic parsing, add a LF term to each lexicon item.
 - E.g., 'Mary kicks John':

Mary	kicks	John
NP : mary	$\overline{(S \setminus NP)/NP : \lambda x. \lambda y. \mathit{kicks}(y, x)}$	NP : john
	$S \setminus NP : \lambda y.kicks(y, john)$) > "

- In the forward and backward application rules, we combine the respective logical forms using function application.
 - I.e., we apply the function $\lambda x \cdot \lambda y \cdot kicks(y,x)$ to the argument john.

- To use CCG for semantic parsing, add a LF term to each lexicon item.
 - E.g., 'Mary kicks John':

Mary	kicks	John
NP : mary	$\overline{(S \setminus NP)/NP : \lambda x. \lambda y. \mathit{kicks}(y, x)}$	NP : john
	$S \setminus NP : \lambda y.kicks(y, john)$)
	S : kicks(mary, john)	<°

• E.g., 'Mary sings and dances':

Mary	sings	and	dances
NP	S\NP	$\overline{((S \setminus NP) \setminus (S \setminus NP))/(S \setminus NP)}$	S\NP
mary	$\lambda x.sings(x)$	$\lambda f.\lambda g.\lambda x.g(x) \wedge f(x)$	$\lambda x.dances(x)$
		$(S \setminus NP) \setminus (S \setminus N)$ $\lambda g. \lambda x. g(x) \wedge dan$,
		S\NP	<0 <0
		$\lambda x.sings(x) \land dances(x)$	0
		S	<0
	sing	$gs(mary) \land dances(mary)$	

• E.g., 'Mary and John sing':

Mary	and	John	sing
NP	$\overline{((S/(S\setminusNP))\backslash(S/(S\setminusNP)))/(S/(S\setminusNP))}$	NP	S\NP
mary	$\lambda f.\lambda g.\lambda h.g(h) \wedge f(h)$	john	$\lambda x.sings(x)$
${S/(S \setminus NP)}$) S	/(S\NF	T > ')
$\lambda f.f(mar)$	λ_{j}	f.f(joh	n)
	$(S/(S \setminus NP)) \setminus (S/(S \setminus NP))$		>0
	$\lambda g.\lambda h.g(h) \wedge h(john)$		0
	S/(S\NP)		<0
	$\lambda h.h(mary) \wedge h(john)$		0
	S		>0
	$sing(mary) \land sing(john)$		

- Recall that with syntactic CCG parsing, we could extend CKY and obtain a parsing algorithm with worst-case running time $O(n^6)$.
 - In the chart, we have a cell for each span (i,j).
 - But for semantic parsing, we need a cell for each (i,j,x) where i < j are sentence positions and x is any logical form.
 - The number of possible logical forms is very large.
- Thus, exact CCG semantic parsing is very expensive.
 - Non-polynomial running time.
- Instead, we typically use beam search:
 - For each span, only keep the top k search states.

- We have established that ambiguity is ubiquitous in natural language.
 - Both syntactic and semantic ambiguity.
 - Humans automatically disambiguate sentences using context.
 - We don't even realize how widespread it is.
- Liu et al. (2023) designed a corpus of natural language entailment examples to test whether models correctly deal with ambiguity.
 - They tested for several different types of ambiguity.

Example	Disambiguation 1	Disambiguation 2	Type
P: I'm afraid the cat was hit by a car. H: The cat was not hit by a car. [NEUTRAL, CONTRADICT] : [7 N, 2 C]	P: I'm worried NEUTRAL 2: [9 N]	P: I'm sorry to share that CONTRADICT : [9 C]	Pragmatic (44.8%)

Example	Disambiguation 1	Disambiguation 2	Type
P: I'm afraid the cat was hit by a car. H: The cat was not hit by a car. [NEUTRAL, CONTRADICT] : [7 N, 2 C]	P: I'm worried NEUTRAL : [9 N]	P: I'm sorry to share that CONTRADICT : [9 C]	Pragmatic (44.8%)
P: John and Anna are <u>married</u> . H: John and Anna are not a couple. [NEUTRAL, CONTRADICT] : [5 N, 4 C]	P: are both married. NEUTRAL 2: [7 N, 2 E]	P: are married to each other. CONTRADICT : [9 C]	Lexical (20.0%)

Example	Disambiguation 1	Disambiguation 2	Type
P: I'm afraid the cat was hit by a car. H: The cat was not hit by a car. [NEUTRAL, CONTRADICT] : [7 N, 2 C]	P: I'm worried NEUTRAL : [9 N]	P: I'm sorry to share that CONTRADICT : [9 C]	Pragmatic (44.8%)
P: John and Anna are <u>married</u> . H: John and Anna are not a couple. ⟨NEUTRAL, CONTRADICT⟩ ♣: [5 N, 4 C]	P: are both married. NEUTRAL 2: [7 N, 2 E]	P: are married to each other. CONTRADICT : [9 C]	<i>Lexical</i> (20.0%)
P: This seminar is full now, but interesting seminars are being offered next quarter too. H: There will be more interesting seminars [ENTAIL, NEUTRAL] : [7 E, 2 N]	H: There will be more seminars that are interesting. ENTAIL : [9 E]	H: There will be seminars that are more interesting. NEUTRAL 2: [9 N]	Syntactic (8.6%)

Example	Disambiguation 1	Disambiguation 2	Type
P: I'm afraid the cat was hit by a car. H: The cat was not hit by a car. [NEUTRAL, CONTRADICT] : [7 N, 2 C]	P: I'm worried NEUTRAL : [9 N]	P: I'm sorry to share that CONTRADICT : [9 C]	Pragmatic (44.8%)
P: John and Anna are <u>married</u> . H: John and Anna are not a couple. [NEUTRAL, CONTRADICT] : [5 N, 4 C]	P: are both married. NEUTRAL 2: [7 N, 2 E]	P: are married to each other. CONTRADICT : [9 C]	Lexical (20.0%)
P: This seminar is full now, but interesting seminars are being offered next quarter too. H: There will be more interesting seminars [ENTAIL, NEUTRAL] : [7 E, 2 N]	H: There will be more seminars that are interesting. ENTAIL : [9 E]	H: There will be seminars that are more interesting. NEUTRAL : [9 N]	Syntactic (8.6%)
P: The novel has been banned in many schools because of its explicit language. H: The novel has not been banned in many schools. [NEUTRAL, CONTRADICT] : [4 N, 5 C]	H: There are many schools where the novel has <u>not been banned</u> . NEUTRAL : [9 N]	H: It is <u>not the case</u> that the novel has been banned in many schools. CONTRADICT : [9 C]	Scopal (7.6%)

[Liu et al., 2023]

Example	Disambiguation 1	Disambiguation 2	Type
P: It is currently March, and they plan to schedule their wedding for next December . H: They plan to schedule for next year. [ENTAIL, CONTRADICT] : [3 E, 2 N, 4 C]	P: for December next year. ENTAIL : [9 E]	P: for the coming December. CONTRADICT : [9 C]	Coreference (2.9%)

Example	Disambiguation 1	Disambiguation 2	Type
P: It is currently March, and they plan to schedule their wedding for next December . H: They plan to schedule for next year. [ENTAIL, CONTRADICT] : [3 E, 2 N, 4 C]	P: for December next year. ENTAIL : [9 E]	P: for the coming December. CONTRADICT : [9 C]	Coreference (2.9%)
P: It is <u>difficult to believe</u> that the author of such a masterpiece could have been only 23 years old. H: The author of the masterpiece was only 23. [ENTAIL, NEUTRAL] : [3 E, 6 N]	P: It is shocking that ENTAIL : [9 E]	P: It is questionable that NEUTRAL 2: [9 N]	Figurative (1.9%)

Example	Disambiguation 1	Disambiguation 2	Type
P: It is currently March, and they plan to schedule their wedding for next December . H: They plan to schedule for next year. [ENTAIL, CONTRADICT] : [3 E, 2 N, 4 C]	P: for December next year. ENTAIL : [9 E]	P: for the coming December. CONTRADICT : [9 C]	Coreference (2.9%)
P: It is <u>difficult to believe</u> that the author of such a masterpiece could have been only 23 years old. H: The author of the masterpiece was only 23. [ENTAIL, NEUTRAL] : [3 E, 6 N]	P: It is shocking that ENTAIL : [9 E]	P: It is questionable that NEUTRAL 2: [9 N]	Figurative (1.9%)
P: A new study has found that nearly half of all Americans are in favor of gun control. H: The study found that half of all Americans are in favor of gun control. [ENTAIL, CONTRADICT] : [1 E, 2 N, 6 C]	H: that exactly half of all Americans CONTRADICT : [8 C, 1 N]	H: that <u>about half</u> of all Americans ENTAIL \(\begin{align*} \text{E} : [9 E] \)	Other (14.3%)

- They test several LLMs with a handful of metrics:
 - Edit-F1: Compare the predicted with the reference disambiguation.
 - Treat them as unigrams and compute the F1 score.
 - Human: Judged correct by human annotators.
 - True/false accuracy: Only check the correctness of the final label ('true', 'false', vs 'inconclusive').

	EDIT-F1	Correct (human)	T/F Acc.
FLAN-T5	5.2	0.0	56.4
LLaMa	10.0	10.0	55.0
GPT-3	10.1	2.0	57.8
InstructGPT	14.5	4.0	49.6
ChatGPT	13.0	18.0	57.7
GPT-4	18.0	32.0	63.0

• Saparina and Lapata (2025) proposed a method to improve text-to-SQL under ambiguity.

rating					
id	hotel_id	stars	guest_score		
1	1	****	8.5		

hotels			
id	name		
1	Radisson		

Question:

return the **rating** of each hotel

Interpretations:

How many stars were assigned to each hotel?

SELECT h.name, r.stars FROM rating r JOIN hotels h
ON h.id = r.hotel_id

How did the customers review each hotel?

SELECT h.name, r.guest_score FROM rating r ...

Show me the guest scores and star rating of each hotel.

SELECT h.name, r.stars, r.guest_score FROM rating r ...

- They propose a disambiguate-first parse-later approach:
 - They use an LLM (0-shot) to generate an initial list of interpretations.
 - But this list is often incomplete, so they train a supervised "infilling" model to predict missing interpretations.

Ambiguous Question return the rating of each hotel

I. Disambiguation

1. Initial Intereptation Generation

Return the number of stars given to each hotel.

Show each hotel with their corresponding number of stars.

2. Interpretation Infilling

How did the customers review each hotel?

Show me the guest scores and star rating of each hotel.

II. Text-to-SQL Parsing

SELECT h.name, r.stars FROM rating r JOIN hotels h ON h.id = r.hotel_id

SELECT h.name, r.guest_score FROM rating r JOIN hotels h ...

SELECT h.name, r.stars, r.guest_score FROM rating r JOIN hotels h ...

[Saparina and Lapata, 2025]

- They measure performance using two metrics:
 - Full interpretation coverage: Did you predict all valid interpretations?
 - Single interpretation coverage: Did you predict any valid interpretation?
- They test on two ambiguous SQL parsing datasets: AmbiQT and Ambrosia.

	AmbiQT		Ambrosia	
Method	Single	Full	Single	Full
End-to-	-End Tex	ct-to-SQ	QL	
0-shot Prompt	62.3	12.3	29.4	0.9
3-shot Prompt	44.3	10.9	35.7	1.3
SFT	82.1	63.2	38.0	0.4
Disamb	oiguate-c	and-Pa	rse	
Interp. Prompt	81.8	26.0	81.9	16.9
w. Self-Correction	77.4	13.9	65.7	5.9
Gold Interp. SFT	87.4	61.2	62.6	0.3
Ours	92.3	53.2	84.4	18.8

