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MULTI-LAYER PERCEPTRON
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• We can swap  with other machine learning models.

 are the connection 

weights in the first layer.

 is a matrix:

Number of rows is the number 

of neurons in the next layer.
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previous layer.
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MULTI-LAYER PERCEPTRON
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 and  are activation 

functions.
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otherwise, adjacent layers 
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linear transformation.

(compositions of linear 

functions are linear)

  



MULTI-LAYER PERCEPTRON

5[Shruti Jadon, Introduction to Different Activation Functions for Deep Learning]



MULTI-LAYER PERCEPTRON
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• If we want the output to be a probability distribution, we can add a  at the end.

• Multi-layer perceptrons (MLPs) are also called fully-connected feed-forward (FF) networks.

• We can increase the number of layers, and/or the number of neurons in the hidden layers, to 
increase the complexity and expressiveness of the model.



TRAINING THE MLP
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• How do we learn the weight matrices , given a training dataset?

• We can use gradient descent!

• There is an efficient algorithm for computing the gradients in neural networks, called 
backpropagation (or backprop).

• Not that difficult to derive. I encourage you to try.

• Essentially repeated use of the chain rule.

• MLPs, like all neural networks, can learn nonlinear decision boundaries, and can be very 
expressive (especially if there are many neurons/layers).

• But they need more data to train (and to avoid overfitting) than simpler models.



EXPRESSIVENESS OF MLPS
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• Universal approximation theorem: MLPs with one hidden layer and non-polynomial 
activation functions can approximate any function, with sufficiently many neurons 
in the hidden layer.

• There are similar theorems that look at the arbitrary-depth case.

• But keep in mind expressiveness doesn’t imply learnability.

• Just because a machine learning model can express a function does not mean that it 
can easily learn it from data.



LANGUAGE MODELING



WHAT IS LANGUAGE MODELING?
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• In simple terms, it is the task of predicting the next word, given the previous n words.

• Language modeling is a multi-class classification task.

• Each word in the vocabulary is an output class.

f“The quick brown fox 

jumped over the lazy”
“dog”

prompt



LANGUAGE MODELING
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• In simple terms, it is the task of predicting the next word, given the previous n words.

• Language modeling is a multi-class classification task.

• Each word in the vocabulary is an output class.

• More precisely: if {xi} is a sequence of words, f(x1, …, xn) = p(xn | x1, …, xn-1)

• Language is ambiguous, and so language modeling is a probabilistic task.
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LANGUAGE MODELING
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• What is f?

• It is a machine learning model, trained on many examples of input-output pairs.

• It is easy to find training data:

• Take any n-word sequence of text (such as from the internet),

• The first n-1 words are the input, and the last word is the output.

• Language modeling is unsupervised/self-supervised.

• But we must be mindful of the training data. There may be inaccuracies or noise.
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LANGUAGE MODELING
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• What is f?

• It is a machine learning model, trained on many examples of input-output pairs.

• We can use language models to assign probabilities of phrases, or sentences.

p(“The quick fox”) = p(“The”) p(“quick” | “The”) p(“fox” | “The”, “quick”)

• By the chain rule of probability theory:

p(x1, …, xn) = p(xn | x1, …, xn-1) p(x1, …, xn-1)   

           = p(x1) p(x2 | x1) p(x3 | x1, x2) … p(xn | x1, …, xn-1)

• We can use language models to compare the probabilities of different phrases/sentences of arbitrary 

length:

• p(“The quick fox”) > p(“The quick turtle”)

• p(“The quick fox”) > p(“The quikc fox”)



LANGUAGE MODELING
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• What is f?

• It is a machine learning model, trained on many examples of input-output pairs.

• We can use language models to assign probabilities of phrases, or sentences.

log p(“The quick fox”) = log p(“The”) + log p(“quick” | “The”) + log p(“fox” | “The”, “quick”)

• By the chain rule of probability theory:

 log p(x1, …, xn) = log p(xn | x1, …, xn-1) + log p(x1, …, xn-1)    

 = log p(x1) + log p(x2 | x1) + log p(x3 | x1, x2) + … + log p(xn | x1, …, xn-1)

• We can use language models to compare the probabilities of different phrases/sentences of arbitrary 

length:

• log p(“The quick fox”) > log p(“The quick turtle”)

• log p(“The quick fox”) > log p(“The quikc fox”)



OTHER NLP TASKS AS LANGUAGE MODELING
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• Many other NLP tasks can be “reduced” into language modeling:

• Spam detection

• Prompt: “Email: Dear customer, … Question: Is this (a) spam, or (b) not spam? Answer:”

• Machine translation

• Prompt: “Translate the following into Spanish: ‘The quick brown fox...’ Translation:”

• Sentiment analysis

• Prompt: “Review: This product was not great… Is this review (a) positive, (b) negative, or (c) 

neutral? Answer:”

• Question answering

• Prompt: “Question: Bob has 5 apples. Alice gave 10 apples to Bob. Bob now has 23 apples. How 

many apples did Alice start with? Answer:”

     …

• Thus, if we can train a model to do well on language modeling, it may be able to perform well on 

many other NLP tasks.



• What machine learning model can we use to learn f?

• You could use methods we covered in the previous lecture:

• Logistic regression

• Multi-layer perceptron

• But language modeling is an old problem.

• There is a long history of different methods.

• We will introduce some methods that were specifically designed for this task.

• Followed by more recent methods.

ML METHODS FOR LANGUAGE MODELING
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• If we assume that each word is independent, we obtain a simple model.

 for all 

• Imagine putting all words of a large corpus in a bag, shuffling their order, 
and picking one at random.

• How can we estimate the probability of picking a specific word, say “ ”?

• Simple approach:
• Count the number of times “ ” appears in your training data,

• Then divide by the total number of words in the data.

• This is called a unigram model.

UNIGRAM MODEL
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• What are some shortcomings of this model?

• The strong independence assumption causes the model to throw away all 
word order information.

• What if we instead made a slightly weaker assumption:

 for all 

• Each word depends on only the previous word.

• We can extend the counting procedure from the unigram model:
• For every pair of words in the vocabulary ( ), count the number of times  appears 

after .

• Then we can estimate: 

BIGRAM MODEL
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# of times  appeared after  in the training set

# of times  appeared in the training set



• We can extend this to n-gram models, for arbitrary n.

• Each word depends on only the previous n - 1 words.

• We can extend the counting procedure:
• For every sequence of n words in the vocabulary ( ), count the number of times 

 appears after ( ).

• Then we can estimate:

          

N-GRAM MODEL
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# of times  appeared after  in the training set

# of times  appeared in the training set



• One way to sample from language models is to generate the output word-
by-word.

• Suppose we have sampled  so far.

• We compute  for all words t in the vocabulary.

• Then we choose the word  with probability .

• We then repeat the procedure for the next token.

• There are other sampling schemes:

• Greedy sampling:
• At each step, pick the word  that has the highest probability.

SAMPLING FROM LANGUAGE MODELS
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• A middle-ground between greedy sampling and standard sampling:

• Choose word  with probability proportional to

•  is the temperature parameter.

• If  = 1, this is standard sampling.

• At  = 0 (at the limit, more precisely), this is greedy sampling.

• Why?

• Consider the difference in the log probability of the most likely word and the log 
probability of the 2nd most likely word.

• As  gets smaller, then this difference is scaled larger.

• After renormalizing, the most likely word will reach probability 1, in the limit.

TEMPERATURE SAMPLING
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• A middle-ground between greedy sampling and standard sampling:

• Choose word  with probability proportional to

•  is the temperature parameter.

• You can also set  > 1.

• As  goes to infinity, the term inside the exponent goes to 0.

• After renormalizing, this results in a uniform distribution.

• So setting  > 1 adds more “randomness” to the language model’s predictions.

TEMPERATURE SAMPLING
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• From language models trained on a Shakespeare corpus:

• Unigram/1-gram:
•

•

• Bigram/2-gram:
•

•

SAMPLES FROM N-GRAM MODELS

23[Speech and Language Processing. Daniel Jurafsky & James H. Martin 2024]



• From language models trained on a Shakespeare corpus:

• Trigram/3-gram:
•

•

• 4-gram:
•

•

SAMPLES FROM N-GRAM MODELS

24[Speech and Language Processing. Daniel Jurafsky & James H. Martin 2024]



• From language models trained on Wall Street Journal text:

• Unigram/1-gram:
•

• Bigram/2-gram:
•

• Trigram/3-gram:
•

SAMPLES FROM N-GRAM MODELS

25[Speech and Language Processing. Daniel Jurafsky & James H. Martin 2024]



• How to measure the performance of a language model (LM)?

• One way is to measure its performance on a downstream task:

• E.g., apply the LM to a question-answering dataset and measure the accuracy of the 
answers.

• (and/or precision, recall, F1-score, etc)

• Or sentiment analysis, spam detection, document classification, etc.

• This is called extrinsic evaluation.

• Disadvantages:

• What if we don’t have a labeled dataset for the downstream task?

• Good performance on one downstream task doesn’t necessarily transfer to good 
performance on other tasks.

EVALUATING LANGUAGE MODELS

26



• How to measure the performance of a language model (LM)?

• The alternative is intrinsic evaluation.

• Where we measure perplexity:
• Given some text , the perplexity of a language model is

෍  | 

• If the LM assigns high probability to each token, the perplexity will be low.

• Thus, LMs with lower perplexity are better.

• Disadvantage: Doesn’t necessarily correspond to real-world performance.

EVALUATING LANGUAGE MODELS
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• How to measure the performance of a language model (LM)?

• The alternative is intrinsic evaluation.

• Where we measure perplexity:
• Given some text , the perplexity of a language model is

෍  | 

• The term inside the exponent is related to the cross-entropy!

EVALUATING LANGUAGE MODELS
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• When using either intrinsic or extrinsic evaluation, we must be careful to 
evaluate using unseen/novel test data.

• We must absolutely avoid training the model on test data.

• This is called data leakage or training data contamination.

• This will overestimate model performance.

• Bad science!

• As you imagine, this makes evaluating large language models difficult.

• Oftentimes, we don’t know the training data.

• Most things on the internet are included in the training data.

EVALUATING ML MODELS

29



• GPT-4 was evaluated on Codeforces programming puzzles.

• Codeforces periodically releases new puzzles.

• GPT-4 scored  on puzzles released before September 5, 2021:

DATA LEAKAGE EXAMPLE

30[Horace He, x.com/cHHillee/status/1635790330854526981]

x.com/cHHillee/status/1635790330854526981


• GPT-4 was evaluated on Codeforces programming puzzles.

• Codeforces periodically releases new puzzles.

• GPT-4 scored  on puzzles after September 12, 2021:

DATA LEAKAGE EXAMPLE

31[Horace He, x.com/cHHillee/status/1635790330854526981]

x.com/cHHillee/status/1635790330854526981


• GPT-4 was evaluated on Codeforces programming puzzles.

• Codeforces periodically releases new puzzles.

• Ask GPT-4 directly whether it has memorized a puzzle:

DATA LEAKAGE EXAMPLE

32[Narayanan and Kapoor, GPT-4 and professional benchmarks: the wrong answer to the wrong question]



• How to avoid data leakage in LLM evaluation?

• Evaluate with new data.

• Could be expensive to annotate new data.

• Evaluate on synthetic data.

• Synthetic data may not accurately reflect real-world settings.

• Keep a private test set.

• Access to this test set is restricted.

• Others may submit their model for evaluation.

• Infeasible to submit a very large model (billions/trillions of parameters).

EVALUATING (LARGE) LANGUAGE MODELS
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• Suppose you are practicing good machine learning and divide a dataset 
into a training set and test set.

• You train a model on the training set and evaluate on the test set.

• But you notice that after tweaking some hyperparameters and retraining 
the model on the training set, performance on the test set increases.

• If you do this repeatedly, you are effectively training on the test set.

• One common practice:

• Divide the dataset into three portions: train, dev (also called validation), test

• Train the model on the training set, and perform tuning on the dev set.

• Only evaluate on the test set once, or at most a few times.

DEV / VALIDATION SETS

34



• Consider these samples from the 4-gram model trained on Shakespeare:

• “King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A 
great banquet serv’d in;”

• “It cannot be but so.”

• These are lines from actual Shakespeare plays.

• How would we evaluate this model?

• Any ideas?

• Suggestion: Hold out some plays or lines as test set.

• What would the perplexity be?         σ  | 

BACK TO EVALUATING 4-GRAM MODELS

35



• Suppose the vocabulary size is .

• For the 4-gram model, the total number of possible 4-grams is .

• If the training set has  words, there are at most  examples of 4-grams.

• So the fraction of 4-grams that are unobserved is at least .

• For the Shakespeare dataset, that is !

• This is a data sparsity problem.

• The 4-gram model is prone to overfitting.

• It assigns 0 probability to any 4-gram that is not in its training data.

DATA SPARSITY AND OVERFITTING
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• How do we resolve the data sparsity issue with n-gram models?

• One idea is called smoothing:

• The intuition is to “smooth” out the distribution of the next word, so that no 
word has probability 0.

• E.g., we have a 3-gram model where we have seen the following phrases in 
the training data:

• “denied the allegations” 3 times

• “denied the reports” 2 times

• “denied the claims” 1 time

• “denied the request” 1 time

• No other instances of “denied the ___”

PREVIOUSLY: DATA SPARSITY AND OVERFITTING
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• How do we resolve the data sparsity issue with n-gram models?

• One idea is called smoothing:

• The intuition is to “smooth” out the distribution of the next word, so that no 
word has probability 0.

• E.g., we have a 3-gram model where we have seen the following phrases in 
the training data:

• “denied the allegations” 3 times

• “denied the reports” 2 times

• “denied the claims” 1 time

• “denied the request” 1 time

• No other instances of “denied the ___”

PREVIOUSLY: DATA SPARSITY AND OVERFITTING
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• How do we resolve the data sparsity issue with n-gram models?

• Laplace smoothing (also called add-one smoothing):

 

SMOOTHING

39

(# of times  appeared after ) 

(# of times  appeared) 



• How do we resolve the data sparsity issue with n-gram models?

• Laplace smoothing (also called add-one smoothing):

 

• This is simple, but doesn’t work well in language modeling.

• Consider the 4-gram model trained on Shakespeare.

• For almost all 4-grams in the test set, the numerator in the above expression is 1.

• It is useful in other tasks, however.

SMOOTHING

40

(# of times  appeared after ) 

(# of times  appeared) 



• How do we resolve the data sparsity issue with n-gram models?

• Another idea: Simultaneously use multiple n-gram models, with smaller n.

BACKOFF
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# of times  appeared after 

# of times  appeared
if  occurs in data  

# of times  appeared after 

# of times  appeared
if  occurs in data  

# of times  appeared after 

# of times  appeared
if  occurs in data  

# of times  appears

total number of words
otherwise.



• How do we resolve the data sparsity issue with n-gram models?

• Another idea: Use multiple n-gram models, with interpolation.

λ

λ

λ

λ

INTERPOLATION
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# of times  appeared after 

# of times  appeared

# of times  appeared after 

# of times  appeared

# of times  appeared after 

# of times  appeared

# of times  appears

total number of words

Require:

λ  + … + λ  = 1



• This type of model is called a mixture model.

• Equivalent to first rolling an n-sided die to choose which n-gram to sample 
from, and then sampling from the corresponding n-gram model.

• By the law of total probability.

λ

λ

INTERPOLATION

43



(some NLP history)

• Backoff performs better when combined with smoothing.

• Kneser-Ney smoothing

• Interpolated Kneser-Ney

• Skip n-grams

• Another idea to address the data sparsity issue, is to use a different 
machine learning model.

• Perhaps a neural network?

• Smoothing/interpolation superseded by neural language models.

DATA SPARSITY AND OVERFITTING

44



QUESTIONS?
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