
CS 577:
NATURAL LANGUAGE
PROCESSING

Abulhair Saparov

Lecture 3: Language Modeling

PREVIOUSLY: PERCEPTRON

2

input neurons:

a real value is

assigned to each

single output neuron:

Let:

MULTI-LAYER PERCEPTRON

3

• We can swap with other machine learning models.

 are the connection

weights in the first layer.

 is a matrix:

Number of rows is the number

of neurons in the next layer.

Number of columns is the

number of neurons in the

previous layer.

 is the connection weight

from neuron in the previous

layer to neuron in the next.

MULTI-LAYER PERCEPTRON

4

 and are activation

functions.

They must be non-linear since

otherwise, adjacent layers

would collapse into a single

linear transformation.

(compositions of linear

functions are linear)

MULTI-LAYER PERCEPTRON

5[Shruti Jadon, Introduction to Different Activation Functions for Deep Learning]

MULTI-LAYER PERCEPTRON

6

• If we want the output to be a probability distribution, we can add a at the end.

• Multi-layer perceptrons (MLPs) are also called fully-connected feed-forward (FF) networks.

• We can increase the number of layers, and/or the number of neurons in the hidden layers, to
increase the complexity and expressiveness of the model.

TRAINING THE MLP

7

• How do we learn the weight matrices , given a training dataset?

• We can use gradient descent!

• There is an efficient algorithm for computing the gradients in neural networks, called
backpropagation (or backprop).

• Not that difficult to derive. I encourage you to try.

• Essentially repeated use of the chain rule.

• MLPs, like all neural networks, can learn nonlinear decision boundaries, and can be very
expressive (especially if there are many neurons/layers).

• But they need more data to train (and to avoid overfitting) than simpler models.

EXPRESSIVENESS OF MLPS

8

• Universal approximation theorem: MLPs with one hidden layer and non-polynomial
activation functions can approximate any function, with sufficiently many neurons
in the hidden layer.

• There are similar theorems that look at the arbitrary-depth case.

• But keep in mind expressiveness doesn’t imply learnability.

• Just because a machine learning model can express a function does not mean that it
can easily learn it from data.

LANGUAGE MODELING

WHAT IS LANGUAGE MODELING?

10

• In simple terms, it is the task of predicting the next word, given the previous n words.

• Language modeling is a multi-class classification task.

• Each word in the vocabulary is an output class.

f“The quick brown fox

jumped over the lazy”
“dog”

prompt

LANGUAGE MODELING

11

• In simple terms, it is the task of predicting the next word, given the previous n words.

• Language modeling is a multi-class classification task.

• Each word in the vocabulary is an output class.

• More precisely: if {xi} is a sequence of words, f(x1, …, xn) = p(xn | x1, …, xn-1)

• Language is ambiguous, and so language modeling is a probabilistic task.

f“The quick brown fox

jumped over the lazy”

“aardvark”

“able”

“dog”

“zebra”

“zeppelin”

⋮

⋮

0.01

0.00

0.82

0.04

0.02

prompt

LANGUAGE MODELING

12

• What is f?

• It is a machine learning model, trained on many examples of input-output pairs.

• It is easy to find training data:

• Take any n-word sequence of text (such as from the internet),

• The first n-1 words are the input, and the last word is the output.

• Language modeling is unsupervised/self-supervised.

• But we must be mindful of the training data. There may be inaccuracies or noise.

f“The quick brown fox

jumped over the lazy”

“aardvark”

“able”

“dog”

“zebra”

“zeppelin”

⋮

⋮

0.01

0.00

0.82

0.04

0.02

prompt

LANGUAGE MODELING

13

• What is f?

• It is a machine learning model, trained on many examples of input-output pairs.

• We can use language models to assign probabilities of phrases, or sentences.

p(“The quick fox”) = p(“The”) p(“quick” | “The”) p(“fox” | “The”, “quick”)

• By the chain rule of probability theory:

p(x1, …, xn) = p(xn | x1, …, xn-1) p(x1, …, xn-1)

 = p(x1) p(x2 | x1) p(x3 | x1, x2) … p(xn | x1, …, xn-1)

• We can use language models to compare the probabilities of different phrases/sentences of arbitrary

length:

• p(“The quick fox”) > p(“The quick turtle”)

• p(“The quick fox”) > p(“The quikc fox”)

LANGUAGE MODELING

14

• What is f?

• It is a machine learning model, trained on many examples of input-output pairs.

• We can use language models to assign probabilities of phrases, or sentences.

log p(“The quick fox”) = log p(“The”) + log p(“quick” | “The”) + log p(“fox” | “The”, “quick”)

• By the chain rule of probability theory:

 log p(x1, …, xn) = log p(xn | x1, …, xn-1) + log p(x1, …, xn-1)

 = log p(x1) + log p(x2 | x1) + log p(x3 | x1, x2) + … + log p(xn | x1, …, xn-1)

• We can use language models to compare the probabilities of different phrases/sentences of arbitrary

length:

• log p(“The quick fox”) > log p(“The quick turtle”)

• log p(“The quick fox”) > log p(“The quikc fox”)

OTHER NLP TASKS AS LANGUAGE MODELING

15

• Many other NLP tasks can be “reduced” into language modeling:

• Spam detection

• Prompt: “Email: Dear customer, … Question: Is this (a) spam, or (b) not spam? Answer:”

• Machine translation

• Prompt: “Translate the following into Spanish: ‘The quick brown fox...’ Translation:”

• Sentiment analysis

• Prompt: “Review: This product was not great… Is this review (a) positive, (b) negative, or (c)

neutral? Answer:”

• Question answering

• Prompt: “Question: Bob has 5 apples. Alice gave 10 apples to Bob. Bob now has 23 apples. How

many apples did Alice start with? Answer:”

 …

• Thus, if we can train a model to do well on language modeling, it may be able to perform well on

many other NLP tasks.

• What machine learning model can we use to learn f?

• You could use methods we covered in the previous lecture:

• Logistic regression

• Multi-layer perceptron

• But language modeling is an old problem.

• There is a long history of different methods.

• We will introduce some methods that were specifically designed for this task.

• Followed by more recent methods.

ML METHODS FOR LANGUAGE MODELING

16

• If we assume that each word is independent, we obtain a simple model.

 for all

• Imagine putting all words of a large corpus in a bag, shuffling their order,
and picking one at random.

• How can we estimate the probability of picking a specific word, say “ ”?

• Simple approach:
• Count the number of times “ ” appears in your training data,

• Then divide by the total number of words in the data.

• This is called a unigram model.

UNIGRAM MODEL

17

• What are some shortcomings of this model?

• The strong independence assumption causes the model to throw away all
word order information.

• What if we instead made a slightly weaker assumption:

 for all

• Each word depends on only the previous word.

• We can extend the counting procedure from the unigram model:
• For every pair of words in the vocabulary (), count the number of times appears

after .

• Then we can estimate:

BIGRAM MODEL

18

of times appeared after in the training set

of times appeared in the training set

• We can extend this to n-gram models, for arbitrary n.

• Each word depends on only the previous n - 1 words.

• We can extend the counting procedure:
• For every sequence of n words in the vocabulary (), count the number of times

 appears after ().

• Then we can estimate:

N-GRAM MODEL

19

of times appeared after in the training set

of times appeared in the training set

• One way to sample from language models is to generate the output word-
by-word.

• Suppose we have sampled so far.

• We compute for all words t in the vocabulary.

• Then we choose the word with probability .

• We then repeat the procedure for the next token.

• There are other sampling schemes:

• Greedy sampling:
• At each step, pick the word that has the highest probability.

SAMPLING FROM LANGUAGE MODELS

20

• A middle-ground between greedy sampling and standard sampling:

• Choose word with probability proportional to

• is the temperature parameter.

• If = 1, this is standard sampling.

• At = 0 (at the limit, more precisely), this is greedy sampling.

• Why?

• Consider the difference in the log probability of the most likely word and the log
probability of the 2nd most likely word.

• As gets smaller, then this difference is scaled larger.

• After renormalizing, the most likely word will reach probability 1, in the limit.

TEMPERATURE SAMPLING

21

• A middle-ground between greedy sampling and standard sampling:

• Choose word with probability proportional to

• is the temperature parameter.

• You can also set > 1.

• As goes to infinity, the term inside the exponent goes to 0.

• After renormalizing, this results in a uniform distribution.

• So setting > 1 adds more “randomness” to the language model’s predictions.

TEMPERATURE SAMPLING

22

• From language models trained on a Shakespeare corpus:

• Unigram/1-gram:
•

•

• Bigram/2-gram:
•

•

SAMPLES FROM N-GRAM MODELS

23[Speech and Language Processing. Daniel Jurafsky & James H. Martin 2024]

• From language models trained on a Shakespeare corpus:

• Trigram/3-gram:
•

•

• 4-gram:
•

•

SAMPLES FROM N-GRAM MODELS

24[Speech and Language Processing. Daniel Jurafsky & James H. Martin 2024]

• From language models trained on Wall Street Journal text:

• Unigram/1-gram:
•

• Bigram/2-gram:
•

• Trigram/3-gram:
•

SAMPLES FROM N-GRAM MODELS

25[Speech and Language Processing. Daniel Jurafsky & James H. Martin 2024]

• How to measure the performance of a language model (LM)?

• One way is to measure its performance on a downstream task:

• E.g., apply the LM to a question-answering dataset and measure the accuracy of the
answers.

• (and/or precision, recall, F1-score, etc)

• Or sentiment analysis, spam detection, document classification, etc.

• This is called extrinsic evaluation.

• Disadvantages:

• What if we don’t have a labeled dataset for the downstream task?

• Good performance on one downstream task doesn’t necessarily transfer to good
performance on other tasks.

EVALUATING LANGUAGE MODELS

26

• How to measure the performance of a language model (LM)?

• The alternative is intrinsic evaluation.

• Where we measure perplexity:
• Given some text , the perplexity of a language model is

෍ |

• If the LM assigns high probability to each token, the perplexity will be low.

• Thus, LMs with lower perplexity are better.

• Disadvantage: Doesn’t necessarily correspond to real-world performance.

EVALUATING LANGUAGE MODELS

27

• How to measure the performance of a language model (LM)?

• The alternative is intrinsic evaluation.

• Where we measure perplexity:
• Given some text , the perplexity of a language model is

෍ |

• The term inside the exponent is related to the cross-entropy!

EVALUATING LANGUAGE MODELS

28

• When using either intrinsic or extrinsic evaluation, we must be careful to
evaluate using unseen/novel test data.

• We must absolutely avoid training the model on test data.

• This is called data leakage or training data contamination.

• This will overestimate model performance.

• Bad science!

• As you imagine, this makes evaluating large language models difficult.

• Oftentimes, we don’t know the training data.

• Most things on the internet are included in the training data.

EVALUATING ML MODELS

29

• GPT-4 was evaluated on Codeforces programming puzzles.

• Codeforces periodically releases new puzzles.

• GPT-4 scored on puzzles released before September 5, 2021:

DATA LEAKAGE EXAMPLE

30[Horace He, x.com/cHHillee/status/1635790330854526981]

x.com/cHHillee/status/1635790330854526981

• GPT-4 was evaluated on Codeforces programming puzzles.

• Codeforces periodically releases new puzzles.

• GPT-4 scored on puzzles after September 12, 2021:

DATA LEAKAGE EXAMPLE

31[Horace He, x.com/cHHillee/status/1635790330854526981]

x.com/cHHillee/status/1635790330854526981

• GPT-4 was evaluated on Codeforces programming puzzles.

• Codeforces periodically releases new puzzles.

• Ask GPT-4 directly whether it has memorized a puzzle:

DATA LEAKAGE EXAMPLE

32[Narayanan and Kapoor, GPT-4 and professional benchmarks: the wrong answer to the wrong question]

• How to avoid data leakage in LLM evaluation?

• Evaluate with new data.

• Could be expensive to annotate new data.

• Evaluate on synthetic data.

• Synthetic data may not accurately reflect real-world settings.

• Keep a private test set.

• Access to this test set is restricted.

• Others may submit their model for evaluation.

• Infeasible to submit a very large model (billions/trillions of parameters).

EVALUATING (LARGE) LANGUAGE MODELS

33

• Suppose you are practicing good machine learning and divide a dataset
into a training set and test set.

• You train a model on the training set and evaluate on the test set.

• But you notice that after tweaking some hyperparameters and retraining
the model on the training set, performance on the test set increases.

• If you do this repeatedly, you are effectively training on the test set.

• One common practice:

• Divide the dataset into three portions: train, dev (also called validation), test

• Train the model on the training set, and perform tuning on the dev set.

• Only evaluate on the test set once, or at most a few times.

DEV / VALIDATION SETS

34

• Consider these samples from the 4-gram model trained on Shakespeare:

• “King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A
great banquet serv’d in;”

• “It cannot be but so.”

• These are lines from actual Shakespeare plays.

• How would we evaluate this model?

• Any ideas?

• Suggestion: Hold out some plays or lines as test set.

• What would the perplexity be? σ |

BACK TO EVALUATING 4-GRAM MODELS

35

• Suppose the vocabulary size is .

• For the 4-gram model, the total number of possible 4-grams is .

• If the training set has words, there are at most examples of 4-grams.

• So the fraction of 4-grams that are unobserved is at least .

• For the Shakespeare dataset, that is !

• This is a data sparsity problem.

• The 4-gram model is prone to overfitting.

• It assigns 0 probability to any 4-gram that is not in its training data.

DATA SPARSITY AND OVERFITTING

36

• How do we resolve the data sparsity issue with n-gram models?

• One idea is called smoothing:

• The intuition is to “smooth” out the distribution of the next word, so that no
word has probability 0.

• E.g., we have a 3-gram model where we have seen the following phrases in
the training data:

• “denied the allegations” 3 times

• “denied the reports” 2 times

• “denied the claims” 1 time

• “denied the request” 1 time

• No other instances of “denied the ___”

PREVIOUSLY: DATA SPARSITY AND OVERFITTING

37

• How do we resolve the data sparsity issue with n-gram models?

• One idea is called smoothing:

• The intuition is to “smooth” out the distribution of the next word, so that no
word has probability 0.

• E.g., we have a 3-gram model where we have seen the following phrases in
the training data:

• “denied the allegations” 3 times

• “denied the reports” 2 times

• “denied the claims” 1 time

• “denied the request” 1 time

• No other instances of “denied the ___”

PREVIOUSLY: DATA SPARSITY AND OVERFITTING

38

• How do we resolve the data sparsity issue with n-gram models?

• Laplace smoothing (also called add-one smoothing):

SMOOTHING

39

(# of times appeared after)

(# of times appeared)

• How do we resolve the data sparsity issue with n-gram models?

• Laplace smoothing (also called add-one smoothing):

• This is simple, but doesn’t work well in language modeling.

• Consider the 4-gram model trained on Shakespeare.

• For almost all 4-grams in the test set, the numerator in the above expression is 1.

• It is useful in other tasks, however.

SMOOTHING

40

(# of times appeared after)

(# of times appeared)

• How do we resolve the data sparsity issue with n-gram models?

• Another idea: Simultaneously use multiple n-gram models, with smaller n.

BACKOFF

41

of times appeared after

of times appeared
if occurs in data

of times appeared after

of times appeared
if occurs in data

of times appeared after

of times appeared
if occurs in data

of times appears

total number of words
otherwise.

• How do we resolve the data sparsity issue with n-gram models?

• Another idea: Use multiple n-gram models, with interpolation.

λ

λ

λ

λ

INTERPOLATION

42

of times appeared after

of times appeared

of times appeared after

of times appeared

of times appeared after

of times appeared

of times appears

total number of words

Require:

λ + … + λ = 1

• This type of model is called a mixture model.

• Equivalent to first rolling an n-sided die to choose which n-gram to sample
from, and then sampling from the corresponding n-gram model.

• By the law of total probability.

λ

λ

INTERPOLATION

43

(some NLP history)

• Backoff performs better when combined with smoothing.

• Kneser-Ney smoothing

• Interpolated Kneser-Ney

• Skip n-grams

• Another idea to address the data sparsity issue, is to use a different
machine learning model.

• Perhaps a neural network?

• Smoothing/interpolation superseded by neural language models.

DATA SPARSITY AND OVERFITTING

44

QUESTIONS?

	Slide 1: CS 577: Natural Language Processing
	Slide 2: Previously: Perceptron
	Slide 3: Multi-layer Perceptron
	Slide 4: Multi-layer Perceptron
	Slide 5: Multi-layer Perceptron
	Slide 6: Multi-layer perceptron
	Slide 7: Training the MLP
	Slide 8: Expressiveness of MLPs
	Slide 9: Language Modeling
	Slide 10: What is language modeling?
	Slide 11: language modeling
	Slide 12: language modeling
	Slide 13: language modeling
	Slide 14: language modeling
	Slide 15: Other NLP Tasks as language modeling
	Slide 16: ML Methods for Language Modeling
	Slide 17: Unigram Model
	Slide 18: Bigram Model
	Slide 19: N-gram Model
	Slide 20: Sampling from Language Models
	Slide 21: Temperature Sampling
	Slide 22: Temperature Sampling
	Slide 23: Samples from N-gram Models
	Slide 24: Samples from N-gram Models
	Slide 25: Samples from N-gram Models
	Slide 26: Evaluating Language Models
	Slide 27: Evaluating Language Models
	Slide 28: Evaluating Language Models
	Slide 29: Evaluating ML Models
	Slide 30: Data Leakage Example
	Slide 31: Data Leakage Example
	Slide 32: Data Leakage Example
	Slide 33: Evaluating (Large) Language Models
	Slide 34: Dev / validation Sets
	Slide 35: Back to evaluating 4-gram models
	Slide 36: Data Sparsity and overfitting
	Slide 37: Previously: Data Sparsity and overfitting
	Slide 38: Previously: Data Sparsity and overfitting
	Slide 39: Smoothing
	Slide 40: Smoothing
	Slide 41: Backoff
	Slide 42: Interpolation
	Slide 43: Interpolation
	Slide 44: Data Sparsity and overfitting
	Slide 45: Questions?

