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• How do we resolve the data sparsity issue with n-gram models?

PREVIOUSLY: DATA SPARSITY AND OVERFITTING
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• E.g., we have a 3-gram model where we have seen the following phrases in 
the training data:

• “denied the allegations” 3 times

• “denied the reports” 2 times

• “denied the claims” 1 time

• “denied the request” 1 time

• No other instances of “denied the ___”
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• How do we resolve the data sparsity issue with n-gram models?

• Laplace smoothing (also called add-one smoothing):

 

SMOOTHING
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• How do we resolve the data sparsity issue with n-gram models?

• Laplace smoothing (also called add-one smoothing):

 

• This is simple, but doesn’t work well in language modeling.

• Consider the 4-gram model trained on Shakespeare.

• For almost all 4-grams in the test set, the numerator in the above 
expression is 1.

• It is useful in other tasks, however.

SMOOTHING
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• How do we resolve the data sparsity issue with n-gram models?

• Another idea: Simultaneously use multiple n-gram models, with smaller n.

BACKOFF
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• How do we resolve the data sparsity issue with n-gram models?

• Another idea: Use multiple n-gram models, with interpolation.
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INTERPOLATION
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• This type of model is called a mixture model.

• Equivalent to first rolling an n-sided die to choose which n-gram to sample 
from, and then sampling from the corresponding n-gram model.

• By the law of total probability.

λ

λ

INTERPOLATION
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(some NLP history)

• Backoff performs better when combined with smoothing.

• Kneser-Ney smoothing

• Interpolated Kneser-Ney

• Skip n-grams

• Another idea to address the data sparsity issue, is to use a different 
machine learning model.

• Perhaps a neural network?

• Smoothing/interpolation superseded by neural language models.

DATA SPARSITY AND OVERFITTING
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• We previously discussed language modeling:

• The task of predicting the next word, given previous words.

• n-gram models are simple but not very accurate for small n.

• They suffer from data sparsity and overfitting for large n.

• Are there alternative machine learning models that would be better?

• Maybe MLP?

BETTER METHODS FOR TEXT CLASSIFICATION
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MLP (?) FOR LANGUAGE MODELING
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• Embed each input word 
into a real-valued vector 
with dimension .

• Concatenate the 
embedding vectors and 
input into MLP.

• Input layer has dimension 
⋅ .

• Output layer has 
dimension .

• Here, the MLP has 3 
hidden layers.
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MLP (?) FOR SPAM DETECTION
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• MLPs can be used for other 
text classification tasks.

• Each linear layer computes the 
function: 

• Each nonlinearity ( ) computes 
an activation function 
element-wise.

• Example activation functions:

• Sigmoid

• tanh

• ReLU
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MLP (?) FOR SPAM DETECTION
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• MLPs can be used for other 
text classification tasks.

• Potential disadvantages?

• Thoughts?

• How many parameters 
(weights) are there?

•

 is the number of hidden 
layers.

 is the maximum number 
of input words.
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• More expressive machine learning models are more prone to overfitting.

• They need more data to train.

• I.e., they are less data efficient.

• Number of parameters/weights is a measure of model expressiveness.

• Pure MLPs are not very data efficient.

• Especially if the embedding dimension  or input length  is very large.

• E.g., in GPT-3, .

MLPS (?) FOR TEXT CLASSIFICATION
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• But there is a very large space of different neural architectures.

• One natural proposal is to model the sequential nature of language.

• Humans understand language word-by-word.

• Humans hear/read each word and update an internal representation in 
their brain.

• Can we capture this kind of processing in a neural architecture?

ALTERNATIVE NEURAL ARCHITECTURES
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• Recurrent neural networks (RNNs; Elman 1990) attempt to capture this 
sequential (word-by-word) processing.

RECURRENT NEURAL NETWORKS
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“The” “quick” “brown” “fox”



• Embed each input word into vectors of dimension .

• The RNN keeps a hidden state vector with dimension .

RECURRENT NEURAL NETWORKS
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“The” “quick” “brown” “fox”



RECURRENT NEURAL NETWORKS

20

“The” “quick” “brown” “fox”

• The RNN combines each word with the previous hidden state, to produce the 
next hidden state.



• To do so, we need to convert the embeddings into -dimensional vectors.

• We do this with a linear layer.

RECURRENT NEURAL NETWORKS
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“The” “quick” “brown” “fox”



• Importantly, these linear layers are coupled.

• Each linear layer has the same weights as the other linear layers.

RECURRENT NEURAL NETWORKS
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• Now the word vectors and hidden state have the same dimension, we 
combine them to produce the next hidden state.

RECURRENT NEURAL NETWORKS
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• The linear layers acting on the hidden states are also coupled.

RECURRENT NEURAL NETWORKS
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• Once we have the last hidden state, we can use it to make a prediction.

• In the example, we have a language modeling/next-word prediction task.

RECURRENT NEURAL NETWORKS
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• It’s often easier to depict neural architectures symbolically.

• Note  is often set to a vector of zeros, but it can also be learned.

RECURRENT NEURAL NETWORKS
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“The” “quick” “brown” “fox”



• Why “recurrent”?

RECURRENT NEURAL NETWORKS
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“The” “quick” “brown” “fox”



• Why “recurrent”?

• Converting from this into the feedforward (i.e., directed acyclic) form is 
called “unfolding in time”.

RECURRENT NEURAL NETWORKS
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• We train RNNs the same way we train most neural networks:

• Gradient descent, using backprop to compute gradients.

• How do we compute gradients when some parameters are coupled?

• Consider the following simple MLP: (no coupled parameters)

TRAINING RNNS
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• Suppose we have a training example ො ො .

• And we have some loss function ො .

• We can compute the gradient of the loss:

• Similarly, compute gradients for  and .

TRAINING RNNS
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• But now let’s consider the case where the two linear layers are coupled.

• Notice the result is just the sum of the gradients from the uncoupled case.

• Gradient accumulation

TRAINING RNNS
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• Note that most modern ML libraries will compute gradients automatically.

• But it’s good to know what’s happening under the hood.

• Useful if something goes wrong -> debugging.

• Also useful to think about new techniques for better ML.

TRAINING RNNS
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• RNNs have a very wide variety of applications.

• Beyond simple text classification.

RNN APPLICATIONS
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• RNNs have a very wide variety of applications.

• Beyond simple text classification.

RNN APPLICATIONS

34[Afshine Amidi and Shervine Amidi, Recurrent Neural Networks cheatsheet]



• We can make more than one prediction.

• For example, we can make a prediction per input word.

RNN APPLICATIONS

35[Afshine Amidi and Shervine Amidi, Recurrent Neural Networks cheatsheet]



• Example tasks:

• Part-of-speech tagging, named-entity recognition

RNN APPLICATIONS

36[Afshine Amidi and Shervine Amidi, Recurrent Neural Networks cheatsheet]

Input:     The quick brown fox jumped.

Output:  DET  ADJ    ADJ   NN      V

When training, for each example, we 

sum the loss over all predictions.

Example prediction:

Input:         The quick brown fox jumped.

Prediction: DET  ADJ    NN    NN      V



• The number of output predictions doesn’t need to match the number of input 
predictions.

RNN APPLICATIONS

37[Afshine Amidi and Shervine Amidi, Recurrent Neural Networks cheatsheet]



• Example tasks:

• Machine translation

RNN APPLICATIONS

38[Afshine Amidi and Shervine Amidi, Recurrent Neural Networks cheatsheet]

Input: The quick brown fox jumped over the lazy dog.

Output: 素早い茶色のキツネは怠け者の犬を飛び越えました。

Encoder

Decoder



• It can be used in non-text applications.

• Example task: music generation

RNN APPLICATIONS

39[Afshine Amidi and Shervine Amidi, Recurrent Neural Networks cheatsheet]

Input: birthday

Output: 



• Bidirectional RNNs (BiRNNs) can be used in tasks where we want to gather 
information from words on both the left and right sides.

BIDIRECTIONAL RNN

40[Afshine Amidi and Shervine Amidi, Recurrent Neural Networks cheatsheet]



• This is useful in the masked language modeling task.

   (a good unidirectional RNN could also solve this task)

BIDIRECTIONAL RNN

41[Afshine Amidi and Shervine Amidi, Recurrent Neural Networks cheatsheet]

Input: The quick brown ___ jumped.

Output: fox

Input: I am ___.

Output: running

Input: I am ___ hungry.

Output: so

Input: I am ___ hungry; I just ate.

Output: not



• We can stack many layers of RNNs.

DEEP RNN

42[Afshine Amidi and Shervine Amidi, Recurrent Neural Networks cheatsheet]



• Suppose we have a long RNN (lots of tokens).

 

• Each  is an RNN “unit”, written more simply.

•  is the first word, and  is the weight matrix in the linear layer after .

• What is the gradient with respect to ?

∇ ⋅ ∇

⋅ ⋅ ∇

⋅ ⋅ ⋅ ⋅ ⋅

RNN GRADIENTS
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• Note that this is a product containing many terms.

• If the terms are > 1, their product will grow exponentially in .

• If the terms are < 1, their product will shrink to 0 exponentially in .

• This is called the exploding or vanishing gradient problem.

• This is also an issue for very deep networks (containing many layers).

∇ ⋅ ∇

⋅ ⋅ ∇

⋅ ⋅ ⋅ ⋅ ⋅

RNN GRADIENTS
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• How do we solve this problem?

• Pick activation functions whose derivatives are 1 (ReLU).

• Gradient clipping:

     If the gradient vector  has magnitude larger than ,

     divide it by , so that its magnitude is at most .

∇ ⋅ ∇

⋅ ⋅ ∇

⋅ ⋅ ⋅ ⋅ ⋅

VANISHING/EXPLODING GRADIENTS
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• Another solution is to change the architecture.

• Long short-term memory (LSTM; Hochreiter and Schmidhuber 1997)

VANISHING/EXPLODING GRADIENTS
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• Key idea is that the updates to the  stream are additive.

• So gradients of  do not get very large or very small with increasing .

• We will go into further detail next lecture.

LONG SHORT-TERM MEMORY
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QUESTIONS?
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