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PREVIOUSLY: DATA SPARSITY AND OVERFITTING

* How do we resolve the data sparsity issue with n-gram models?

* E.g., we have a 3-gram model where we have seen the following phrases in

the training data:

e “denied the allegations” 3 times p(w, | "denied", "the")

* “denied the reports” 2 times
 “denied the claims” 1 time
* “denied the request” 1 time
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* No other instances of “denied the ”
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SMOOTHING

* How do we resolve the data sparsity issue with n-gram models?
* Laplace smoothing (also called add-one smoothing):

(# of times w, appeared after w,, .., w
(# of times w,, .., w,_, appeared) + V

plw, | w,, w, w_,) =

p(w, | "denied", "the")

allegations

reports l

claim]
reques]

: attack

[ man

[ outcome




SMOOTHING

* How do we resolve the data sparsity issue with n-gram models?
* Laplace smoothing (also called add-one smoothing):

(# of times w, appeared after w,, .., w,_,) + 1

n—

(# of times w,, .., w,_, appeared) + V

plw, | w,, w, w_,) =

* This is simple, but doesn’t work well in language modeling.
* Consider the 4-gram model trained on Shakespeare.

* For almost all 4-grams in the test set, the numerator in the above
expression is 1.

* |t is useful in other tasks, however.



BACKOFF

* How do we resolve the data sparsity issue with n-gram models?
* Another idea: Simultaneously use multiple n-gram models, with smaller n.

# of times w_appeared after w,, .., w,_, . ,
plw, | w, o, w_,) = n IPP L =2 _—nl jfy, .., w, occursindata

# of times w,, .., w,_, appeared

# of times w._ appeared after w,, .., w _ . )
= n PP 22 2 nl ify,, .., w,occurs in data

# of times w,, .., w,_, appeared

_ # of times w, appeared after u,_, if w_,, w occursin data
= n—-12 n

# of times w,_, appeared

_ # of times w, appears e
total number of words otherwise.




INTERPOLATION

* How do we resolve the data sparsity issue with n-gram models?
* Another idea: Use multiple n-gram models, with interpolation.

# of times w, appeared after w,, .., w

w Wy ey W_) = A : nd
plu, | w, p-1) n # of times w,, .., w,_, appeared Require:
+ # of times w, appeared after w,, .., w,_, N+t =1
nt # of times w,, .., w,_, appeared
N # of times w, appeared after w,_,
. # of times w,_, appeared
Y # of times w, appears

total number of words



INTERPOLATION

* This type of model is called a mixture model.

* Equivalent to first rolling an n-sided die to choose which n-gram to sample
from, and then sampling from the corresponding n-gram model.

pCw, | w, w, w,_,) =plw, | w, .., w,_,, choose 1-gram) p(choose 1-gram)
+ ... +plw, | w, .., w,_,, choose n-gram) p(choose n-gram),

n

* By the law of total probability.

= p(w, | w,, .., w,_,, choose 1l-gram) A,

+ ... +plw, | w, .., w,_,, choose n-gram) A_.

n



DATA SPARSITY AND OVERFITTING

(some NLP history)

Backoff performs better when combined with smoothing.
* Kneser-Ney smoothing

* Interpolated Kneser-Ney

* Skip n-grams

Another idea to address the data sparsity issue, is to use a different
machine learning model.

* Perhaps a neural network?
Smoothing/interpolation superseded by neural language models.
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BETTER METHODS FOR TEXT CLASSIFICATION

* We previously discussed language modeling:
* The task of predicting the next word, given previous words.
* n-gram models are simple but not very accurate for small n.
* They suffer from data sparsity and overfitting for large n.

* Are there alternative machine learning models that would be better?
* Maybe MLP?
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MLP (?) FOR LANGUAGE MODELING

* Embed each input word
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MLP (?) FOR SPAM DETECTION

5 Y * MLPs can be used for other
s — SPAM! 0-91 text classification tasks.
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MLP (?) FOR SPAM DETECTION

* MLPs can be used for other
text classification tasks.

()

SPAM 0.91 .
NOT SPAM | | 0.09 * Each linear layer computes the

%,
ﬁ ]
function: Linear(x) = Wx + b

13 Deo r”

* Each nonlinearity (f) computes
an activation function

element-wise.
“Customer” —

* Example activation functions:
* Sigmoid
* tanh
* RelLU

HEZNN EEEEN XEE
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MLP (?) FOR SPAM DETECTION

* MLPs can be used for other
text classification tasks.

NOT gﬁ! oos  * Potential disadvantages?
* Thoughts?
* How many parameters
(weights) are there?
* (Nd)?L + NdD,,,,,,
L is the number of hidden
layers.

Nis the maximum number
of input words.

‘@.
g
“Dear” —

“Customer” —

HEZNN EEEEN XEE
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MLPS (?) FOR TEXT CLASSIFICATION

* More expressive machine learning models are more prone to overfitting.
* They need more data to train.
* |.e., they are less data efficient.

 Number of parameters/weights is a measure of model expressiveness.

* Pure MLPs are not very data efficient.
* Especially if the embedding dimension d or input length Nis very large.
* E.g., in GPT-3, d = 12288, N = 4096.
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ALTERNATIVE NEURAL ARCHITECTURES

* But there is a very large space of different neural architectures.

* One natural proposal is to model the sequential nature of language.
* Humans understand language word-by-word.
* Humans hear/read each word and update an internal representation in
their brain.

* Can we capture this kind of processing in a neural architecture?
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RECURRENT NEURAL NETWORKS

* Recurrent neural networks (RNNs; EIman 1990) attempt to capture this
sequential (word-by-word) processing.

“The” “quick” “brown” “fox”
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RECURRENT NEURAL NETWORKS

* Embed each input word into vectors of dimension d_,.

* The RNN keeps a hidden state vector with dimension d,, .

“The” “quick” “brown” “fox”

I

@/776
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RECURRENT NEURAL NETWORKS

* The RNN combines each word with the previous hidden state, to produce the
next hidden state.

“The” “quick” “brown” “fox”

I

@/bb
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RECURRENT NEURAL NETWORKS

* To do so, we need to convert the embeddings into d,, .-dimensional vectors.

* We do this with a linear layer.

g “The” “quick” “brown” “fox”
.
) ! !
HEEEEEN Ll ety bttt
v v 2 ¥
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RECURRENT NEURAL NETWORKS

* Importantly, these linear layers are coupled.

* Each linear layer has the same weights as the other linear layers.

g “The” “quick” “brown” “fox”
.
) ! !
HEEEEEN Ll ety bttt
v v 2 ¥
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RECURRENT NEURAL NETWORKS

* Now the word vectors and hidden state have the same dimension, we
combine them to produce the next hidden state.

“The” “quick” “brown” “fox”
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RECURRENT NEURAL NETWORKS

* The linear layers acting on the hidden states are also coupled.

@mb

“The” “quick” “brown” “fox”
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* Once we have the last hidden state, we can use it to make a prediction.

RECURRENT NEURAL NETWORKS

* In the example, we have a language modeling/next-word prediction task.

@/)76

@O,O'/ _ng l

HEEEEEE
v

—

o-E-

“qQuick”

“brown”

l

“fOX ”

HEEEEEE
v

-

%m

HEEEEEE
v

J

“aardvark”
‘loble”

N ujumpsn

“zebra”
“zeppelin”

0.01
0.00

0.82

0.04
0.02

25



RECURRENT NEURAL NETWORKS

* It’s often easier to depict neural architectures symbolically.

* Note h, is often set to a vector of zeros, but it can also be learned.

“The” “quick” “brown” “fox”

- T T
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RECURRENT NEURAL NETWORKS

* Why “recurrent”?
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RECURRENT NEURAL NETWORKS

* Why “recurrent”?

e Converting from this into the feedforward (i.e., directed acyclic) form is
called “unfolding in time”.

Wy

——
huﬁiﬂ—mﬁ y
N
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TRAINING RNNS

We train RNNs the same way we train most neural networks:
Gradient descent, using backprop to compute gradients.
How do we compute gradients when some parameters are coupled?

Consider the following simple MLP: (no coupled parameters)

Yy = by + Wy f(b, + W,z)

29



TRAINING RNNS

Suppose we have a training example (z,7%).

And we have some loss function L(y, ).
We can compute the gradient of the loss:

Similarly, compute gradients for b, and b..

vV, L(y,y) =

Yy = by + Wy f(b, + W,z)

Vi L(y,9) = L'(y,y)- V¥

L’(y,y) -
L’(y,y) -
L’(y,y) -
L’(y,9y) -
L’(y,y) -

= L°(y,y - ng(bZ + Wy f(b, + W,Z))
= L)(y,@)' f(b_z + Wl&)

VW1Y

le(bz + Wy f(b, + W)

Wy lef(bl + W, )

Wy f’(b, + W,2)- le(bz + W,z)?
Wy: f2(b, + W) Tt

[en.wikipedia.org/wiki/Matrix_calculus] 30



TRAINING RNNS

* But now let’s consider the case where the two linear layers are coupled.

* Notice the result is just the sum of the gradients from the uncoupled case.

e Gradient accumulation

Vi l(y,9) = L°(y, ) Vyy
= L’(y,y)- le(b1 + Wy f(b; + W)
= L’(y,y) - (i f’(b, + W@)- 2 + f(b, + W,;2))
S LGP Wy W F + Ly, f, + WD)

y = b, + W -f(b, + W,z)

[en.wikipedia.org/wiki/Matrix_calculus] 31



TRAINING RNNS

* Note that most modern ML libraries will compute gradients automatically.

* But it’s good to know what’s happening under the hood.
* Useful if something goes wrong -> debugging.

* Also useful to think about new techniques for better ML.
Vi L(y,y) = L°(y, 9 V5

L’°(y,y)- le(b1 + Wy f(b; + W)

L’Cy,y - Wy f’ (b, + Wip)- ' + f(b, + W,;2))
L'y, 9 Wyf (b, + Wz)- T + L°(y,9) - f(b; + W)

y = b, + W -f(b, + W,z)

[en.wikipedia.org/wiki/Matrix_calculus] 32



RNN APPLICATIONS

* RNNs have a very wide variety of applications.

* Beyond simple text classification.

“The” “quick” “brown”
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RNN APPLICATIONS

* RNNs have a very wide variety of applications.

f
e
f ! f

[Afshine Amidi and Shervine Amidi, Recurrent Neural Networks cheatsheet]

* Beyond simple text classification.
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RNN APPLICATIONS

* We can make more than one prediction.

* For example, we can make a prediction per input word.

§<1> §,<Ty>
f f f
e
f ! f
p<1> p<2> 2<Ta>

[Afshine Amidi and Shervine Amidi, Recurrent Neural Networks cheatsheet]
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RNN APPLICATIONS

* Example tasks:
* Part-of-speech tagging, named-entity recognition

Input:  The quick brown fox jumped.
Al £ 2> ~ < Ty > Output: DET ADJ ADJ NN V
Y Y Y
: @
!

When training, for each example, we

sum the loss over all predictions.
q<0> — — .
Example prediction:

Input: The quick brown fox jumped.
p p= - — Prediction: DET ADJ NN NN V
:1:<1>‘ x<2>‘ g <t=> Total loss = L(DET,DET) + L(ADJ,ADJ)
o _/' _ _/' \ _) + L(ADJ,NN) + L(NN,NN) + L(V,V)

[Afshine Amidi and Shervine Amidi, Recurrent Neural Networks cheatsheet] 36



RNN APPLICATIONS

* The number of output predictions doesn’t need to match the number of input
predictions.

[Afshine Amidi and Shervine Amidi, Recurrent Neural Networks cheatsheet] 37



RNN APPLICATIONS

o Exqmple tasks: Input: The quick brown fox jumped over the lazy dog.

: ) Ooutput: EREVWVREDF Y R IBITEDORZROBZ F L 7=,
e Machine translation

Encoder §<Ty>
a I 1 t
a<0> _’D_h.-. _FD_’..._’B_F... _PD
! 1 - /
SR Y
Lx<1> :L_<Tm> Decoder
/ _/

[Afshine Amidi and Shervine Amidi, Recurrent Neural Networks cheatsheet] 38



RNN APPLICATIONS

* It can be used in non-text applications. Input: birthday
Output: |

[ A )

* Example task: music generation

A<l1> ~A2>

57N

<Ty>

h h

=
_’

l:1,"<0> —

!

=1
-0
o

)

-

[Afshine Amidi and Shervine Amidi, Recurrent Neural Networks cheatsheet] 39



BIDIRECTIONAL RNN

e Bidirectional RNNs (BiRNNs) can be used in tasks where we want to gather
information from words on both the left and right sides.

Pt 1 il

-— — — — a<0>
s (_
r r
I N e
a,<0>J—> — — — ]
ﬁ ses
AU N R

) 0
m< 1> '.'L'<2> m<T>
J J

[Afshine Amidi and Shervine Amidi, Recurrent Neural Networks cheatsheet]
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BIDIRECTIONAL RNN

* This is useful in the masked language modeling task.

(a good unidirectional RNN could also solve this task) |nout: The quick brown __ jumped.

Output: fox
e
- 1 - Input: lam ___.
_ o | o> Output: running
=
f f Input: I am hungry.
) ) . Output: so
ai‘bJ—* — —..— ]
\TJ ?J T@ Input: | am hungry; | just ate.
) S Output: not
m<1> :JL‘<2> m<T>
J _

[Afshine Amidi and Shervine Amidi, Recurrent Neural Networks cheatsheet] 41



DEEP RNN

[ﬁ<l>J f§<2>J ;
* We can stack many layers of RNNs. c e

Ve
glk]<0> —’| }—' J—'...—' — ..
-

f f f
1 t f
—
a[2]<0> — — —  — —
A ~ =
- f ! t
'd ™ 'a Y ( \
a[1]<0> — — —  — —
\ J = S A / \ J
1 f f
™ ™ Y
$<l> $<2> $<t>

[Afshine Amidi and Shervine Amidi, Recurrent Neural Networks cheatsheet]
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RNN GRADIENTS

Suppose we have a long RNN (lots of tokens).

y = gn(gn—l( . ‘92<91($1: W1>) . . ))
Each g, is an RNN “unit”, written more simply.

z, Is the first word, and I, is the weight matrix in the linear layer after z,.

What is the gradient with respect to I/,?

VW_ZY

9, )V g0

gn b () . gn—l ) () . legn_z(...)

9n" () r Gy C)

o9’ C)g0C) xft
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RNN GRADIENTS

Note that this is a product containing many terms.
If the terms are > 1, their product will grow exponentially in n.
If the terms are < 1, their product will shrink to 0 exponentially in n.

This is called the exploding or vanishing gradient problem.

This is also an issue for very deep networks (containing many layers).

Viy = 9.° (D Vg, ,C)
C 0 () Gs () Ty gua()

=.=970) 9, ,°C) ... -gC) g,°C) z}f
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VANISHING/EXPLODING GRADIENTS

* How do we solve this problem?
* Pick activation functions whose derivatives are 1 (ReLU).
* Gradient clipping:
If the gradient vector v has magnitude larger than v,_,
divide it by ||vl[/v_,, so that its magnitude is at most v, .
Viy = 9,°C) - Vg, ()

= GG oy () Vg

9.°C) g, ,°Cl ... g C) g,°C) z}f
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VANISHING/EXPLODING GRADIENTS

* Another solution is to change the architecture.

* Long short-term memory (LSTM; Hochreiter and Schmidhuber 1997)

w w
T T,

-jmgai!
2 T
ﬁhﬁE—LEﬁ%ﬁﬁ—’ﬂv%ﬁ—Lﬂﬂu y
a S\(etc‘(“’, ‘oe‘»\N eel .

L 2N ) 2N L 2 \ ep(e \ \‘Oe
Cy > C, > C, > Cg > c, Tn o\h'\N\\
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LONG SHORT-TERM MEMORY

* Key idea is that the updates to the c, stream are additive.
* So gradients of ¢, do not get very large or very small with increasing n.

* We will go into further detail next lecture.

W, w,
| Lincor JMMN Lincar
4 T

v

%’3
| Lincar

2 T
hl_)E_l’n_)\_) hZ\%wE

1= .
) N . A 2 A e?P \\
Co > C, > C, > Cs > C, ihn dh'ri,\N\




QUESTIONS?



	Slide 1: CS 577: Natural Language Processing
	Slide 2: Previously: Data Sparsity and overfitting
	Slide 3: Previously: Data Sparsity and overfitting
	Slide 4: Previously: Data Sparsity and overfitting
	Slide 5: Smoothing
	Slide 6: Smoothing
	Slide 7: Backoff
	Slide 8: Interpolation
	Slide 9: Interpolation
	Slide 10: Data Sparsity and overfitting
	Slide 11: Better Methods for text classification
	Slide 12: MLP (?) for Language Modeling
	Slide 13: MLP (?) for Spam Detection
	Slide 14: MLP (?) for Spam Detection
	Slide 15: MLP (?) for Spam Detection
	Slide 16: MLPS (?) for text classification
	Slide 17: Alternative Neural Architectures
	Slide 18: Recurrent Neural Networks
	Slide 19: Recurrent Neural Networks
	Slide 20: Recurrent Neural Networks
	Slide 21: Recurrent Neural Networks
	Slide 22: Recurrent Neural Networks
	Slide 23: Recurrent Neural Networks
	Slide 24: Recurrent Neural Networks
	Slide 25: Recurrent Neural Networks
	Slide 26: Recurrent Neural Networks
	Slide 27: Recurrent Neural Networks
	Slide 28: Recurrent Neural Networks
	Slide 29: Training RNNs
	Slide 30: Training RNNs
	Slide 31: Training RNNs
	Slide 32: Training RNNs
	Slide 33: RNN Applications
	Slide 34: RNN Applications
	Slide 35: RNN Applications
	Slide 36: RNN Applications
	Slide 37: RNN Applications
	Slide 38: RNN Applications
	Slide 39: RNN Applications
	Slide 40: Bidirectional RNN
	Slide 41: Bidirectional RNN
	Slide 42: DEEP RNN
	Slide 43: RNN Gradients
	Slide 44: RNN Gradients
	Slide 45: Vanishing/Exploding gradients
	Slide 46: Vanishing/Exploding gradients
	Slide 47: Long Short-term Memory
	Slide 48: Questions?

