
CS 577:
NATURAL LANGUAGE
PROCESSING

Abulhair Saparov

Lecture 4: Recurrent Neural Networks

• How do we resolve the data sparsity issue with n-gram models?

PREVIOUSLY: DATA SPARSITY AND OVERFITTING

2

• E.g., we have a 3-gram model where we have seen the following phrases in
the training data:

• “denied the allegations” 3 times

• “denied the reports” 2 times

• “denied the claims” 1 time

• “denied the request” 1 time

• No other instances of “denied the ___”

• How do we resolve the data sparsity issue with n-gram models?

• One idea is called smoothing:

• The intuition is to “smooth” out the distribution of the next word, so that no
word has probability 0.

• E.g., we have a 3-gram model where we have seen the following phrases in
the training data:

• “denied the allegations” 3 times

• “denied the reports” 2 times

• “denied the claims” 1 time

• “denied the request” 1 time

• No other instances of “denied the ___”

PREVIOUSLY: DATA SPARSITY AND OVERFITTING

3

• How do we resolve the data sparsity issue with n-gram models?

• One idea is called smoothing:

• The intuition is to “smooth” out the distribution of the next word, so that no
word has probability 0.

• E.g., we have a 3-gram model where we have seen the following phrases in
the training data:

• “denied the allegations” 3 times

• “denied the reports” 2 times

• “denied the claims” 1 time

• “denied the request” 1 time

• No other instances of “denied the ___”

PREVIOUSLY: DATA SPARSITY AND OVERFITTING

4

• How do we resolve the data sparsity issue with n-gram models?

• Laplace smoothing (also called add-one smoothing):

SMOOTHING

5

(# of times appeared after)

(# of times appeared)

• How do we resolve the data sparsity issue with n-gram models?

• Laplace smoothing (also called add-one smoothing):

• This is simple, but doesn’t work well in language modeling.

• Consider the 4-gram model trained on Shakespeare.

• For almost all 4-grams in the test set, the numerator in the above
expression is 1.

• It is useful in other tasks, however.

SMOOTHING

6

(# of times appeared after)

(# of times appeared)

• How do we resolve the data sparsity issue with n-gram models?

• Another idea: Simultaneously use multiple n-gram models, with smaller n.

BACKOFF

7

of times appeared after

of times appeared
if occurs in data

of times appeared after

of times appeared
if occurs in data

of times appeared after

of times appeared
if occurs in data

of times appears

total number of words
otherwise.

• How do we resolve the data sparsity issue with n-gram models?

• Another idea: Use multiple n-gram models, with interpolation.

λ

λ

λ

λ

INTERPOLATION

8

of times appeared after

of times appeared

of times appeared after

of times appeared

of times appeared after

of times appeared

of times appears

total number of words

Require:

λ + … + λ = 1

• This type of model is called a mixture model.

• Equivalent to first rolling an n-sided die to choose which n-gram to sample
from, and then sampling from the corresponding n-gram model.

• By the law of total probability.

λ

λ

INTERPOLATION

9

(some NLP history)

• Backoff performs better when combined with smoothing.

• Kneser-Ney smoothing

• Interpolated Kneser-Ney

• Skip n-grams

• Another idea to address the data sparsity issue, is to use a different
machine learning model.

• Perhaps a neural network?

• Smoothing/interpolation superseded by neural language models.

DATA SPARSITY AND OVERFITTING

10

• We previously discussed language modeling:

• The task of predicting the next word, given previous words.

• n-gram models are simple but not very accurate for small n.

• They suffer from data sparsity and overfitting for large n.

• Are there alternative machine learning models that would be better?

• Maybe MLP?

BETTER METHODS FOR TEXT CLASSIFICATION

11

MLP (?) FOR LANGUAGE MODELING

12

⋮

⋮
“Cats”

“chase”
⋮

⋮ ⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

• Embed each input word
into a real-valued vector
with dimension .

• Concatenate the
embedding vectors and
input into MLP.

• Input layer has dimension
⋅ .

• Output layer has
dimension .

• Here, the MLP has 3
hidden layers.

“aardvark”

“able”

“mice”

“zebra”

“zeppelin”

⋮

⋮

0.01

0.00

0.82

0.04

0.02

MLP (?) FOR SPAM DETECTION

13

⋮

⋮
“Dear”

“Customer”
⋮

⋮ ⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

• MLPs can be used for other
text classification tasks.0.91

0.09

MLP (?) FOR SPAM DETECTION

14

⋮

⋮
“Dear”

“Customer”
⋮

⋮

• MLPs can be used for other
text classification tasks.

• Each linear layer computes the
function:

• Each nonlinearity () computes
an activation function
element-wise.

• Example activation functions:

• Sigmoid

• tanh

• ReLU

0.91

0.09

MLP (?) FOR SPAM DETECTION

15

⋮

⋮
“Dear”

“Customer”
⋮

⋮

• MLPs can be used for other
text classification tasks.

• Potential disadvantages?

• Thoughts?

• How many parameters
(weights) are there?

•

 is the number of hidden
layers.

 is the maximum number
of input words.

0.91

0.09

• More expressive machine learning models are more prone to overfitting.

• They need more data to train.

• I.e., they are less data efficient.

• Number of parameters/weights is a measure of model expressiveness.

• Pure MLPs are not very data efficient.

• Especially if the embedding dimension or input length is very large.

• E.g., in GPT-3, .

MLPS (?) FOR TEXT CLASSIFICATION

16

• But there is a very large space of different neural architectures.

• One natural proposal is to model the sequential nature of language.

• Humans understand language word-by-word.

• Humans hear/read each word and update an internal representation in
their brain.

• Can we capture this kind of processing in a neural architecture?

ALTERNATIVE NEURAL ARCHITECTURES

17

• Recurrent neural networks (RNNs; Elman 1990) attempt to capture this
sequential (word-by-word) processing.

RECURRENT NEURAL NETWORKS

18

“The” “quick” “brown” “fox”

• Embed each input word into vectors of dimension .

• The RNN keeps a hidden state vector with dimension .

RECURRENT NEURAL NETWORKS

19

“The” “quick” “brown” “fox”

RECURRENT NEURAL NETWORKS

20

“The” “quick” “brown” “fox”

• The RNN combines each word with the previous hidden state, to produce the
next hidden state.

• To do so, we need to convert the embeddings into -dimensional vectors.

• We do this with a linear layer.

RECURRENT NEURAL NETWORKS

21

“The” “quick” “brown” “fox”

• Importantly, these linear layers are coupled.

• Each linear layer has the same weights as the other linear layers.

RECURRENT NEURAL NETWORKS

22

“The” “quick” “brown” “fox”

• Now the word vectors and hidden state have the same dimension, we
combine them to produce the next hidden state.

RECURRENT NEURAL NETWORKS

23

“The” “quick” “brown” “fox”

• The linear layers acting on the hidden states are also coupled.

RECURRENT NEURAL NETWORKS

24

“The” “quick” “brown” “fox”

• Once we have the last hidden state, we can use it to make a prediction.

• In the example, we have a language modeling/next-word prediction task.

RECURRENT NEURAL NETWORKS

25

“The” “quick” “brown” “fox”

“aardvark”

“able”

“jumps”

“zebra”

“zeppelin”

⋮

⋮

0.01

0.00

0.82

0.04

0.02

• It’s often easier to depict neural architectures symbolically.

• Note is often set to a vector of zeros, but it can also be learned.

RECURRENT NEURAL NETWORKS

26

“The” “quick” “brown” “fox”

• Why “recurrent”?

RECURRENT NEURAL NETWORKS

27

“The” “quick” “brown” “fox”

• Why “recurrent”?

• Converting from this into the feedforward (i.e., directed acyclic) form is
called “unfolding in time”.

RECURRENT NEURAL NETWORKS

28

• We train RNNs the same way we train most neural networks:

• Gradient descent, using backprop to compute gradients.

• How do we compute gradients when some parameters are coupled?

• Consider the following simple MLP: (no coupled parameters)

TRAINING RNNS

29

⋅

• Suppose we have a training example ො ො .

• And we have some loss function ො .

• We can compute the gradient of the loss:

• Similarly, compute gradients for and .

TRAINING RNNS

30

∇ ො ො ⋅ ∇
ො ⋅ ∇ ⋅ ො
ො ⋅ ො

∇ ො ො ⋅ ∇
ො ⋅ ∇ ⋅ ො
ො ⋅ ⋅ ∇ ො
ො ⋅ ⋅ ො ⋅ ∇ ො
ො ⋅ ⋅ ො ⋅ ො

[en.wikipedia.org/wiki/Matrix_calculus]

⋅

• But now let’s consider the case where the two linear layers are coupled.

• Notice the result is just the sum of the gradients from the uncoupled case.

• Gradient accumulation

TRAINING RNNS

31

∇ ො ො ⋅ ∇
ො ⋅ ∇ ⋅ ො
ො ⋅ ⋅ ො ⋅ ො ො
ො ⋅ ⋅ ො ⋅ ො ො ⋅ ො

⋅

[en.wikipedia.org/wiki/Matrix_calculus]

• Note that most modern ML libraries will compute gradients automatically.

• But it’s good to know what’s happening under the hood.

• Useful if something goes wrong -> debugging.

• Also useful to think about new techniques for better ML.

TRAINING RNNS

32

⋅

[en.wikipedia.org/wiki/Matrix_calculus]

∇ ො ො ⋅ ∇
ො ⋅ ∇ ⋅ ො
ො ⋅ ⋅ ො ⋅ ො ො
ො ⋅ ⋅ ො ⋅ ො ො ⋅ ො

• RNNs have a very wide variety of applications.

• Beyond simple text classification.

RNN APPLICATIONS

33

“The” “quick” “brown” “fox”

• RNNs have a very wide variety of applications.

• Beyond simple text classification.

RNN APPLICATIONS

34[Afshine Amidi and Shervine Amidi, Recurrent Neural Networks cheatsheet]

• We can make more than one prediction.

• For example, we can make a prediction per input word.

RNN APPLICATIONS

35[Afshine Amidi and Shervine Amidi, Recurrent Neural Networks cheatsheet]

• Example tasks:

• Part-of-speech tagging, named-entity recognition

RNN APPLICATIONS

36[Afshine Amidi and Shervine Amidi, Recurrent Neural Networks cheatsheet]

Input: The quick brown fox jumped.

Output: DET ADJ ADJ NN V

When training, for each example, we

sum the loss over all predictions.

Example prediction:

Input: The quick brown fox jumped.

Prediction: DET ADJ NN NN V

• The number of output predictions doesn’t need to match the number of input
predictions.

RNN APPLICATIONS

37[Afshine Amidi and Shervine Amidi, Recurrent Neural Networks cheatsheet]

• Example tasks:

• Machine translation

RNN APPLICATIONS

38[Afshine Amidi and Shervine Amidi, Recurrent Neural Networks cheatsheet]

Input: The quick brown fox jumped over the lazy dog.

Output: 素早い茶色のキツネは怠け者の犬を飛び越えました。

Encoder

Decoder

• It can be used in non-text applications.

• Example task: music generation

RNN APPLICATIONS

39[Afshine Amidi and Shervine Amidi, Recurrent Neural Networks cheatsheet]

Input: birthday

Output:

• Bidirectional RNNs (BiRNNs) can be used in tasks where we want to gather
information from words on both the left and right sides.

BIDIRECTIONAL RNN

40[Afshine Amidi and Shervine Amidi, Recurrent Neural Networks cheatsheet]

• This is useful in the masked language modeling task.

 (a good unidirectional RNN could also solve this task)

BIDIRECTIONAL RNN

41[Afshine Amidi and Shervine Amidi, Recurrent Neural Networks cheatsheet]

Input: The quick brown ___ jumped.

Output: fox

Input: I am ___.

Output: running

Input: I am ___ hungry.

Output: so

Input: I am ___ hungry; I just ate.

Output: not

• We can stack many layers of RNNs.

DEEP RNN

42[Afshine Amidi and Shervine Amidi, Recurrent Neural Networks cheatsheet]

• Suppose we have a long RNN (lots of tokens).

• Each is an RNN “unit”, written more simply.

• is the first word, and is the weight matrix in the linear layer after .

• What is the gradient with respect to ?

∇ ⋅ ∇

⋅ ⋅ ∇

⋅ ⋅ ⋅ ⋅ ⋅

RNN GRADIENTS

43

• Note that this is a product containing many terms.

• If the terms are > 1, their product will grow exponentially in .

• If the terms are < 1, their product will shrink to 0 exponentially in .

• This is called the exploding or vanishing gradient problem.

• This is also an issue for very deep networks (containing many layers).

∇ ⋅ ∇

⋅ ⋅ ∇

⋅ ⋅ ⋅ ⋅ ⋅

RNN GRADIENTS

44

• How do we solve this problem?

• Pick activation functions whose derivatives are 1 (ReLU).

• Gradient clipping:

 If the gradient vector has magnitude larger than ,

 divide it by , so that its magnitude is at most .

∇ ⋅ ∇

⋅ ⋅ ∇

⋅ ⋅ ⋅ ⋅ ⋅

VANISHING/EXPLODING GRADIENTS

45

• Another solution is to change the architecture.

• Long short-term memory (LSTM; Hochreiter and Schmidhuber 1997)

VANISHING/EXPLODING GRADIENTS

46

• Key idea is that the updates to the stream are additive.

• So gradients of do not get very large or very small with increasing .

• We will go into further detail next lecture.

LONG SHORT-TERM MEMORY

47

QUESTIONS?

	Slide 1: CS 577: Natural Language Processing
	Slide 2: Previously: Data Sparsity and overfitting
	Slide 3: Previously: Data Sparsity and overfitting
	Slide 4: Previously: Data Sparsity and overfitting
	Slide 5: Smoothing
	Slide 6: Smoothing
	Slide 7: Backoff
	Slide 8: Interpolation
	Slide 9: Interpolation
	Slide 10: Data Sparsity and overfitting
	Slide 11: Better Methods for text classification
	Slide 12: MLP (?) for Language Modeling
	Slide 13: MLP (?) for Spam Detection
	Slide 14: MLP (?) for Spam Detection
	Slide 15: MLP (?) for Spam Detection
	Slide 16: MLPS (?) for text classification
	Slide 17: Alternative Neural Architectures
	Slide 18: Recurrent Neural Networks
	Slide 19: Recurrent Neural Networks
	Slide 20: Recurrent Neural Networks
	Slide 21: Recurrent Neural Networks
	Slide 22: Recurrent Neural Networks
	Slide 23: Recurrent Neural Networks
	Slide 24: Recurrent Neural Networks
	Slide 25: Recurrent Neural Networks
	Slide 26: Recurrent Neural Networks
	Slide 27: Recurrent Neural Networks
	Slide 28: Recurrent Neural Networks
	Slide 29: Training RNNs
	Slide 30: Training RNNs
	Slide 31: Training RNNs
	Slide 32: Training RNNs
	Slide 33: RNN Applications
	Slide 34: RNN Applications
	Slide 35: RNN Applications
	Slide 36: RNN Applications
	Slide 37: RNN Applications
	Slide 38: RNN Applications
	Slide 39: RNN Applications
	Slide 40: Bidirectional RNN
	Slide 41: Bidirectional RNN
	Slide 42: DEEP RNN
	Slide 43: RNN Gradients
	Slide 44: RNN Gradients
	Slide 45: Vanishing/Exploding gradients
	Slide 46: Vanishing/Exploding gradients
	Slide 47: Long Short-term Memory
	Slide 48: Questions?

