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• We discussed the recursive neural network (RNN) architecture.
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• Models the sequential (word-by-word) processing nature of human 
language processing.
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• Models the sequential (word-by-word) processing nature of human 
language processing.
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• Suppose we have a long RNN (lots of tokens).

 

• Each  is an RNN “unit”, written more simply.

•  is the first word, and  is the weight matrix in the linear layer after .

• What is the gradient with respect to ?
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• Note that this is a product containing many terms.

• If the terms are > 1, their product will grow exponentially in .

• If the terms are < 1, their product will shrink to 0 exponentially in .

• This is called the exploding or vanishing gradient problem.

• This is also an issue for very deep networks (containing many layers).
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• Suppose we have some NLP task where the input is a document or string of 
words.

• If the expected output for this task requires information about words that 
occur far from the end of the input,

   This is a long-term dependency (or a long-range dependency).

• Why are they important in natural language?

LONG-TERM DEPENDENCIES
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• Consider the following sentences:

• “ ”

• “ ”

• Suppose we ask questions such as:

• Who chased the mouse?

• Who knows the farmers?

LONG-TERM DEPENDENCIES
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• Consider the following sentences:

• “ ”

• What is the subject of this sentence?

• What is the main verb?

• “ ”

• “ ”

• (I convinced her that children are noisy)

• These are called garden path sentences.

LONG-TERM DEPENDENCIES
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• Long-term dependencies appear in almost every NLP task.

• Coreference resolution:

• “ ”

• Translation:

• Consider translating from an SVO language into an VSO language.

• E.g., English into Arabic.

• “The cat, which was very hungry, chased the mouse”

• [“chased”] [“the cat, which was very hungry”] [“the mouse”]

LONG-TERM DEPENDENCIES
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• It is possible for an RNN to compute long-term dependencies.

• For example, we can construct an RNN to memorize the input sequence:

• Input: word embedding  and previous state 

• Suppose hidden dimension is 

• where  is the sequence length, and  the embedding dimension.

• The linear layer on the word simply takes the embedding of  and 
appends many zeros to the end of it.

• The first  elements of the output are the embedding of , and the 
last  elements are zero.

• The linear layer on the hidden state rotates the dimensions of  by  
positions.
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• It is possible for an RNN to compute long-term dependencies.

• For example, we can construct an RNN to memorize the input sequence:

• Input: word embedding  and previous state 

• This construction is simply concatenating each word embedding into a 
long hidden state vector (which is initially zero).

• Therefore, the hidden state is able to keep track of long-term 
dependencies.

• It has memorized the entire input!

LONG-TERM DEPENDENCIES
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• It is possible for an RNN to compute long-term dependencies.

• In fact, RNNs are Turing-complete (Siegelmann 1995).

• A model is Turing-complete if for any Turing machine  (i.e., algorithm),

   There exists an instance of the model that implements .

   I.e., there is a setting of the model weights such that it implements .

EXPRESSIVENESS VS LEARNABILITY
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• The problem is that this network is difficult to learn.

• Due to the vanishing/exploding gradients problem.

• But this is a common problem with highly expressive models.

• E.g., MLPs, RNNs, transformers

• These models are able to express a vast number of algorithms.

• But the question of whether they can learn all such algorithms from data 
is entirely separate.

• Oftentimes, there are algorithms that these models can express, but 
have difficulty learning.

EXPRESSIVENESS VS LEARNABILITY

14



• To address this problem, LSTMs were developed (Hochreiter and 
Schmidhuber 1997).

LONG SHORT-TERM MEMORY NETWORKS
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• Key idea is that the updates to the  stream are additive.

• So gradients of  do not get very large or very small with increasing .

• How are  and  computed?
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• Key idea is that the updates to the  stream are additive.

• So gradients of  do not get very large or very small with increasing .

• How are  and  computed?
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LONG SHORT-TERM MEMORY NETWORKS
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• Don’t worry: You don’t 
need to memorize this 
circuit diagram.

• It’s easy enough to lookup.

• But the key idea is 
important:

• Updates to  are additive.

• Gradients with respect to 
 won’t vanish or explode.



LONG SHORT-TERM MEMORY NETWORKS
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LONG SHORT-TERM MEMORY NETWORKS
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• Subcircuits in the LSTM 
are referred to as “gates”.

• For example, the subcircuit 
involving  is called the 
forget gate.

• The subcircuit involving  
is the input gate.

• The subcircuit involving  
is the output gate.
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LONG SHORT-TERM MEMORY NETWORKS

22[Christopher Olah, Understanding LSTM Networks]



LONG SHORT-TERM MEMORY NETWORKS

23[Christopher Olah, Understanding LSTM Networks]



INTERPRETATION OF TRAINED LSTMS

24[Andrej Karpathy, The Unreasonable Effectiveness of Recurrent Neural Networks; slide text from Greg Durrett]

• Train character-level LSTM on the language modeling task.

• I.e., predict the next character given a sequence of previous characters.

• Train on two datasets: War and Peace, and Linux kernel source code.

• We can inspect the activations in the cell state vector  (i.e., activations of 
individual neurons).



INTERPRETATION OF TRAINED LSTMS

25[Andrej Karpathy, The Unreasonable Effectiveness of Recurrent Neural Networks; slide text from Greg Durrett]

• One neuron seems to predict the length of the current line.

• This is important when, e.g., you need to know when to predict .

• Takeaway: LSTMs can model length.



INTERPRETATION OF TRAINED LSTMS

26[Andrej Karpathy, The Unreasonable Effectiveness of Recurrent Neural Networks; slide text from Greg Durrett]

• One neuron seems to keep track of when we’re inside a quotation.

• This is important when, e.g., you need to know when to predict ”, or when to 
predict sentences in first or second person.

• Seems to work even with very long quotations.



INTERPRETATION OF TRAINED LSTMS

27[Andrej Karpathy, The Unreasonable Effectiveness of Recurrent Neural Networks; slide text from Greg Durrett]

• One neuron seems to keep track of when we’re inside an if condition.

• This is useful to remember to close the if statement, and to predict 
comparisons rather than assignments.



INTERPRETATION OF TRAINED LSTMS

28[Andrej Karpathy, The Unreasonable Effectiveness of Recurrent Neural Networks; slide text from Greg Durrett]

• One neuron seems to keep track of when we’re inside a comment or a string.

• Useful to know to predict regular text rather than code.



INTERPRETATION OF TRAINED LSTMS

29[Andrej Karpathy, The Unreasonable Effectiveness of Recurrent Neural Networks; slide text from Greg Durrett]

• One neuron seems to keep track of the depth of the code.

• Useful to know how much to indent, or how many closing braces we need.



INTERPRETATION OF TRAINED LSTMS

30[Andrej Karpathy, The Unreasonable Effectiveness of Recurrent Neural Networks; slide text from Greg Durrett]

• One neuron seems to predict the ends of some statements and expressions 
(but not all), and not the ends of comments.

• This neuron is more difficult to interpret.



INTERPRETATION OF TRAINED LSTMS

31[Andrej Karpathy, The Unreasonable Effectiveness of Recurrent Neural Networks; slide text from Greg Durrett]

• But most neurons are not interpretable.

• There is no reason for models to be easily interpretable after training,

• Unless we specifically design the neural network otherwise.



MECHANISTIC INTERPRETABILITY
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• Mechanistic interpretability is the study of the internal computation of 
neural networks.

• What algorithm has the network learned to solve the task?

• “Reverse-engineering” the algorithm/mechanism learned by the network.

• Understanding neuron activations is akin to interpreting “intermediate 
variables” in the network’s computation.

• But more work is needed to determine how these “intermediate variables” 
are related to each other.

• How are they computed from the input/other intermediate variables?

• How are they used to compute the output?



• A more recent variant of LSTMs is 
called the gated recurrent unit 
(GRU; Cho et al 2014).

• Simpler than the LSTM:

• Instead of having a separate 
“cell” state, perform linear 
updates to the hidden state.

• 2 gates (rather than 4).

GATED RECURRENT UNITS
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σ is a sigmoid, and ϕ is tanh.

 is between 0 and 1, so  is just a 
convex combination of the old state 

, and the candidate state .
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LSTM VS GRU
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• Which one is better?

• There is no one clear winner.

• It depends on the task, data, hyperparameters, etc.

• Let’s take a look at some examples.

• Yin et al. 2017 trained three models on two tasks:

• Models: LSTM, GRU, and CNN (convolutional neural network)

• Tasks: Sentiment analysis, multiple-choice question answering



LSTM VS GRU

36[Yin, Kann, Yu, and Schütze 2017]

• Accuracy vs learning rate in sentiment analysis task.



LSTM VS GRU

37[Yin, Kann, Yu, and Schütze 2017]

• Accuracy vs hidden state dimension in sentiment analysis task.



LSTM VS GRU

38[Yin, Kann, Yu, and Schütze 2017]

• Accuracy vs batch size in sentiment analysis task.



LSTM VS GRU

39[Yin, Kann, Yu, and Schütze 2017]

• Mean reciprocal rank vs learning rate in multiple-choice QA task.



LSTM VS GRU

40[Yin, Kann, Yu, and Schütze 2017]

• Mean reciprocal rank vs hidden state dimension in multiple-choice QA task.



LSTM VS GRU

41[Yin, Kann, Yu, and Schütze 2017]

• Mean reciprocal rank vs batch size in multiple-choice QA task.



RNN SUMMARY
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• GRUs can achieve comparable performance to LSTMs despite being simpler.

• Some terminology clarification:

• GRUs are often considered a special case of LSTMs.

• Both GRUs and LSTMs are often considered special cases of RNNs.

• So “RNN” can be used as an umbrella term to include any method that 
processes sequential information one element at a time.

• I.e., word-by-word, character-by-character



RNN DISADVANTAGES

43

• What are some disadvantages of RNNs (including LSTMs, GRUs)?

• They are not easily parallelizable.

• If I want to compute the n-th hidden state, I need to process n tokens 
sequentially.

• This is made even worse with deep RNNs.

• The hidden state of the next layer is dependent on the hidden state of 
the previous layer.

• This limits their ability to scale to very large datasets. (but can still be done)

• Next lecture, we will look at transformers, which do not have this limitation.



QUESTIONS?
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