
CS 577:
NATURAL LANGUAGE
PROCESSING

Abulhair Saparov

Lecture 5: LSTMs and GRUs

• We discussed the recursive neural network (RNN) architecture.

RECAP FROM PREVIOUS LECTURE

2

“The” “quick” “brown” “fox”

“aardvark”

“able”

“jumps”

“zebra”

“zeppelin”

⋮

⋮

0.01

0.00

0.82

0.04

0.02

• Models the sequential (word-by-word) processing nature of human
language processing.

RECAP FROM PREVIOUS LECTURE

3

“The” “quick” “brown” “fox”

“aardvark”

“able”

“jumps”

“zebra”

“zeppelin”

⋮

⋮

0.01

0.00

0.82

0.04

0.02

• Models the sequential (word-by-word) processing nature of human
language processing.

RECAP FROM PREVIOUS LECTURE

4

“quick” “fox”“The” “brown”

• Suppose we have a long RNN (lots of tokens).

• Each is an RNN “unit”, written more simply.

• is the first word, and is the weight matrix in the linear layer after .

• What is the gradient with respect to ?

∇ ⋅ ∇

⋅ ⋅ ∇

⋅ ⋅ ⋅ ⋅ ⋅

VANISHING/EXPLODING GRADIENTS

5

• Note that this is a product containing many terms.

• If the terms are > 1, their product will grow exponentially in .

• If the terms are < 1, their product will shrink to 0 exponentially in .

• This is called the exploding or vanishing gradient problem.

• This is also an issue for very deep networks (containing many layers).

∇ ⋅ ∇

⋅ ⋅ ∇

⋅ ⋅ ⋅ ⋅ ⋅

VANISHING/EXPLODING GRADIENTS

6

• Suppose we have some NLP task where the input is a document or string of
words.

• If the expected output for this task requires information about words that
occur far from the end of the input,

 This is a long-term dependency (or a long-range dependency).

• Why are they important in natural language?

LONG-TERM DEPENDENCIES

7

• Consider the following sentences:

• “ ”

• “ ”

• Suppose we ask questions such as:

• Who chased the mouse?

• Who knows the farmers?

LONG-TERM DEPENDENCIES

8

• Consider the following sentences:

• “ ”

• What is the subject of this sentence?

• What is the main verb?

• “ ”

• “ ”

• (I convinced her that children are noisy)

• These are called garden path sentences.

LONG-TERM DEPENDENCIES

9

• Long-term dependencies appear in almost every NLP task.

• Coreference resolution:

• “ ”

• Translation:

• Consider translating from an SVO language into an VSO language.

• E.g., English into Arabic.

• “The cat, which was very hungry, chased the mouse”

• [“chased”] [“the cat, which was very hungry”] [“the mouse”]

LONG-TERM DEPENDENCIES

10

• It is possible for an RNN to compute long-term dependencies.

• For example, we can construct an RNN to memorize the input sequence:

• Input: word embedding and previous state

• Suppose hidden dimension is

• where is the sequence length, and the embedding dimension.

• The linear layer on the word simply takes the embedding of and
appends many zeros to the end of it.

• The first elements of the output are the embedding of , and the
last elements are zero.

• The linear layer on the hidden state rotates the dimensions of by
positions.

LONG-TERM DEPENDENCIES

11

• It is possible for an RNN to compute long-term dependencies.

• For example, we can construct an RNN to memorize the input sequence:

• Input: word embedding and previous state

• This construction is simply concatenating each word embedding into a
long hidden state vector (which is initially zero).

• Therefore, the hidden state is able to keep track of long-term
dependencies.

• It has memorized the entire input!

LONG-TERM DEPENDENCIES

12

• It is possible for an RNN to compute long-term dependencies.

• In fact, RNNs are Turing-complete (Siegelmann 1995).

• A model is Turing-complete if for any Turing machine (i.e., algorithm),

 There exists an instance of the model that implements .

 I.e., there is a setting of the model weights such that it implements .

EXPRESSIVENESS VS LEARNABILITY

13

• The problem is that this network is difficult to learn.

• Due to the vanishing/exploding gradients problem.

• But this is a common problem with highly expressive models.

• E.g., MLPs, RNNs, transformers

• These models are able to express a vast number of algorithms.

• But the question of whether they can learn all such algorithms from data
is entirely separate.

• Oftentimes, there are algorithms that these models can express, but
have difficulty learning.

EXPRESSIVENESS VS LEARNABILITY

14

• To address this problem, LSTMs were developed (Hochreiter and
Schmidhuber 1997).

LONG SHORT-TERM MEMORY NETWORKS

15

σ σ σ σ

• Key idea is that the updates to the stream are additive.

• So gradients of do not get very large or very small with increasing .

• How are and computed?

LONG SHORT-TERM MEMORY NETWORKS

16

σ σ σ σ

• Key idea is that the updates to the stream are additive.

• So gradients of do not get very large or very small with increasing .

• How are and computed?

LONG SHORT-TERM MEMORY NETWORKS

17

σ

LONG SHORT-TERM MEMORY NETWORKS

18

σ

σ

σ

σ

σ ○

○

○

σ

LONG SHORT-TERM MEMORY NETWORKS

19

σ

σ

σ

σ

σ ○

○

○

• Don’t worry: You don’t
need to memorize this
circuit diagram.

• It’s easy enough to lookup.

• But the key idea is
important:

• Updates to are additive.

• Gradients with respect to
 won’t vanish or explode.

LONG SHORT-TERM MEMORY NETWORKS

20

σ

σ

σ

σ

○ ○

○ σ

Traditionally, σ is a
sigmoid, σ and σ are tanh.

σ

σ

σ

σ

σ ○

○

○

LONG SHORT-TERM MEMORY NETWORKS

21

• Subcircuits in the LSTM
are referred to as “gates”.

• For example, the subcircuit
involving is called the
forget gate.

• The subcircuit involving
is the input gate.

• The subcircuit involving
is the output gate.

σ

σ

σ

σ

σ ○

○

○

LONG SHORT-TERM MEMORY NETWORKS

22[Christopher Olah, Understanding LSTM Networks]

LONG SHORT-TERM MEMORY NETWORKS

23[Christopher Olah, Understanding LSTM Networks]

INTERPRETATION OF TRAINED LSTMS

24[Andrej Karpathy, The Unreasonable Effectiveness of Recurrent Neural Networks; slide text from Greg Durrett]

• Train character-level LSTM on the language modeling task.

• I.e., predict the next character given a sequence of previous characters.

• Train on two datasets: War and Peace, and Linux kernel source code.

• We can inspect the activations in the cell state vector (i.e., activations of
individual neurons).

INTERPRETATION OF TRAINED LSTMS

25[Andrej Karpathy, The Unreasonable Effectiveness of Recurrent Neural Networks; slide text from Greg Durrett]

• One neuron seems to predict the length of the current line.

• This is important when, e.g., you need to know when to predict .

• Takeaway: LSTMs can model length.

INTERPRETATION OF TRAINED LSTMS

26[Andrej Karpathy, The Unreasonable Effectiveness of Recurrent Neural Networks; slide text from Greg Durrett]

• One neuron seems to keep track of when we’re inside a quotation.

• This is important when, e.g., you need to know when to predict ”, or when to
predict sentences in first or second person.

• Seems to work even with very long quotations.

INTERPRETATION OF TRAINED LSTMS

27[Andrej Karpathy, The Unreasonable Effectiveness of Recurrent Neural Networks; slide text from Greg Durrett]

• One neuron seems to keep track of when we’re inside an if condition.

• This is useful to remember to close the if statement, and to predict
comparisons rather than assignments.

INTERPRETATION OF TRAINED LSTMS

28[Andrej Karpathy, The Unreasonable Effectiveness of Recurrent Neural Networks; slide text from Greg Durrett]

• One neuron seems to keep track of when we’re inside a comment or a string.

• Useful to know to predict regular text rather than code.

INTERPRETATION OF TRAINED LSTMS

29[Andrej Karpathy, The Unreasonable Effectiveness of Recurrent Neural Networks; slide text from Greg Durrett]

• One neuron seems to keep track of the depth of the code.

• Useful to know how much to indent, or how many closing braces we need.

INTERPRETATION OF TRAINED LSTMS

30[Andrej Karpathy, The Unreasonable Effectiveness of Recurrent Neural Networks; slide text from Greg Durrett]

• One neuron seems to predict the ends of some statements and expressions
(but not all), and not the ends of comments.

• This neuron is more difficult to interpret.

INTERPRETATION OF TRAINED LSTMS

31[Andrej Karpathy, The Unreasonable Effectiveness of Recurrent Neural Networks; slide text from Greg Durrett]

• But most neurons are not interpretable.

• There is no reason for models to be easily interpretable after training,

• Unless we specifically design the neural network otherwise.

MECHANISTIC INTERPRETABILITY

32

• Mechanistic interpretability is the study of the internal computation of
neural networks.

• What algorithm has the network learned to solve the task?

• “Reverse-engineering” the algorithm/mechanism learned by the network.

• Understanding neuron activations is akin to interpreting “intermediate
variables” in the network’s computation.

• But more work is needed to determine how these “intermediate variables”
are related to each other.

• How are they computed from the input/other intermediate variables?

• How are they used to compute the output?

• A more recent variant of LSTMs is
called the gated recurrent unit
(GRU; Cho et al 2014).

• Simpler than the LSTM:

• Instead of having a separate
“cell” state, perform linear
updates to the hidden state.

• 2 gates (rather than 4).

GATED RECURRENT UNITS

33

σ

σ

ϕ

○

○
○

σ

σ

ϕ ○

○ ○

σ is a sigmoid, and ϕ is tanh.

 is between 0 and 1, so is just a
convex combination of the old state

, and the candidate state .

GATED RECURRENT UNITS

34

σ

σ

ϕ

○

○
○

LSTM VS GRU

35

• Which one is better?

• There is no one clear winner.

• It depends on the task, data, hyperparameters, etc.

• Let’s take a look at some examples.

• Yin et al. 2017 trained three models on two tasks:

• Models: LSTM, GRU, and CNN (convolutional neural network)

• Tasks: Sentiment analysis, multiple-choice question answering

LSTM VS GRU

36[Yin, Kann, Yu, and Schütze 2017]

• Accuracy vs learning rate in sentiment analysis task.

LSTM VS GRU

37[Yin, Kann, Yu, and Schütze 2017]

• Accuracy vs hidden state dimension in sentiment analysis task.

LSTM VS GRU

38[Yin, Kann, Yu, and Schütze 2017]

• Accuracy vs batch size in sentiment analysis task.

LSTM VS GRU

39[Yin, Kann, Yu, and Schütze 2017]

• Mean reciprocal rank vs learning rate in multiple-choice QA task.

LSTM VS GRU

40[Yin, Kann, Yu, and Schütze 2017]

• Mean reciprocal rank vs hidden state dimension in multiple-choice QA task.

LSTM VS GRU

41[Yin, Kann, Yu, and Schütze 2017]

• Mean reciprocal rank vs batch size in multiple-choice QA task.

RNN SUMMARY

42

• GRUs can achieve comparable performance to LSTMs despite being simpler.

• Some terminology clarification:

• GRUs are often considered a special case of LSTMs.

• Both GRUs and LSTMs are often considered special cases of RNNs.

• So “RNN” can be used as an umbrella term to include any method that
processes sequential information one element at a time.

• I.e., word-by-word, character-by-character

RNN DISADVANTAGES

43

• What are some disadvantages of RNNs (including LSTMs, GRUs)?

• They are not easily parallelizable.

• If I want to compute the n-th hidden state, I need to process n tokens
sequentially.

• This is made even worse with deep RNNs.

• The hidden state of the next layer is dependent on the hidden state of
the previous layer.

• This limits their ability to scale to very large datasets. (but can still be done)

• Next lecture, we will look at transformers, which do not have this limitation.

QUESTIONS?

	Slide 1: CS 577: Natural Language Processing
	Slide 2: Recap from Previous Lecture
	Slide 3: Recap from Previous Lecture
	Slide 4: Recap from Previous Lecture
	Slide 5: Vanishing/Exploding gradients
	Slide 6: Vanishing/Exploding gradients
	Slide 7: Long-term Dependencies
	Slide 8: Long-term Dependencies
	Slide 9: Long-term Dependencies
	Slide 10: Long-term Dependencies
	Slide 11: Long-term Dependencies
	Slide 12: Long-term Dependencies
	Slide 13: Expressiveness vs learnability
	Slide 14: Expressiveness vs learnability
	Slide 15: Long Short-term Memory networks
	Slide 16: Long Short-term Memory networks
	Slide 17: Long Short-term Memory networks
	Slide 18: Long Short-term Memory networks
	Slide 19: Long Short-term Memory networks
	Slide 20: Long Short-term Memory networks
	Slide 21: Long Short-term Memory networks
	Slide 22: Long Short-term Memory networks
	Slide 23: Long Short-term Memory networks
	Slide 24: Interpretation of trained LSTMs
	Slide 25: Interpretation of trained LSTMs
	Slide 26: Interpretation of trained LSTMs
	Slide 27: Interpretation of trained LSTMs
	Slide 28: Interpretation of trained LSTMs
	Slide 29: Interpretation of trained LSTMs
	Slide 30: Interpretation of trained LSTMs
	Slide 31: Interpretation of trained LSTMs
	Slide 32: Mechanistic interpretability
	Slide 33: Gated Recurrent Units
	Slide 34: Gated Recurrent Units
	Slide 35: LSTM vs GRU
	Slide 36: LSTM vs GRU
	Slide 37: LSTM vs GRU
	Slide 38: LSTM vs GRU
	Slide 39: LSTM vs GRU
	Slide 40: LSTM vs GRU
	Slide 41: LSTM vs GRU
	Slide 42: RNN Summary
	Slide 43: RNN Disadvantages
	Slide 44: Questions?

