CS 577:
NATURAL LANGUAGE
PROCESSING

Abulhair Saparov

Lecture 5;: LSTMs and GRUs

RECAP FROM PREVIOUS LECTURE

* We discussed the recursive neural network (RNN) architecture.

“The” “quick” “brown” “fox”

< T

IIIIIIII L rrrr) et rrry PPy
y v v

@mb

“aardvark” : 0.01

B B || “able” | | 0.00
n{ BB el R e o
: : : : “zebra” : 0.04
“zeppelin” | | 0.02

RECAP FROM PREVIOUS LECTURE

* Models the sequential (word-by-word) processing nature of human
language processing.

@/)76

@O,O'/ _ng l

%m

“qQuick”

“brown”

l

“fOX ”

HEEEEEE
v

HEEEEEE
v

J

%m

J

“aardvark”
‘loble”

> ujumpsn

“zebra”
“zeppelin”

0.01
0.00

0.82

0.04
0.02

RECAP FROM PREVIOUS LECTURE

* Models the sequential (word-by-word) processing nature of human
language processing.

“The” “quick” “brown” “fox”

VANISHING/EXPLODING GRADIENTS

Suppose we have a long RNN (lots of tokens).
Y = 9,(9,,C .. 9:(g, (s, WD) .. 0))
Each g, is an RNN “unit”, written more simply.
z, is the first word, and I, is the weight matrix in the linear layer after z..
What is the gradient with respect to I/,?
Viy = 9,°C) - Vg, ()
= 9,70 gy’) Vg, 500

=.=970) 9, ,°C) ... -gC) g,°C) z}f

VANISHING/EXPLODING GRADIENTS

Note that this is a product containing many terms.
If the terms are > 1, their product will grow exponentially in n.
If the terms are < 1, their product will shrink to 0 exponentially in n.
This is called the exploding or vanishing gradient problem.
This is also an issue for very deep networks (containing many layers).
Viy = 9,°C) - Vg, ()
= 9,70 gy’) Vg, 500

=.=970) 9, ,°C) ... -gC) g,°C) z}f

LONG-TERM DEPENDENCIES

* Suppose we have some NLP task where the input is a document or string of
words.

* If the expected output for this task requires information about words that
occur far from the end of the input,

This is a long-term dependency (or a long-range dependency).

* Why are they important in natural language?

LONG-TERM DEPENDENCIES

* Consider the following sentences:
* “The cat, which was very hungry, chased the mouse.”
* “The children sitting under the tree know the farmers.”

* Suppose we ask questions such as:
* Who chased the mouse?
* Who knows the farmers?

LONG-TERM DEPENDENCIES

* Consider the following sentences:
* “Without her contributions would be impossible.”
* What is the subject of this sentence?
* What is the main verb?
e “The old man the boat.”
* “I convinced her children are noisy.”
* (I convinced her that children are noisy)

* These are called garden path sentences.

LONG-TERM DEPENDENCIES

* Long-term dependencies appear in almost every NLP task.

* Coreference resolution:
e “I couldn’t fit the trophy in the bag because it was too big.”

* Translation:
* Consider translating from an SVO language into an VSO language.
* E.g., English into Arabic.
* “The cat, which was very hungry, chased the mouse”
* [“chased”] [“the cat, which was very hungry”] [“the mouse”]

10

LONG-TERM DEPENDENCIES

* |t is possible for an RNN to compute long-term dependencies.

* For example, we can construct an RNN to memorize the input sequence:
* Input: word embedding w, and previous state h,_,
* Suppose hidden dimension is Nd
* where Nis the sequence length, and d the embedding dimension.
* The linear layer on the word simply takes the embedding of w, and
appends many zeros to the end of it.

* The first d elements of the output are the embedding of w,, and the
last (N-1)d elements are zero.

* The linear layer on the hidden state rotates the dimensions of h,_, by d
positions.

11

LONG-TERM DEPENDENCIES

* |t is possible for an RNN to compute long-term dependencies.

* For example, we can construct an RNN to memorize the input sequence:
* Input: word embedding w, and previous state h,_,

* This construction is simply concatenating each word embedding into a
long hidden state vector (which is initially zero).

* Therefore, the hidden state is able to keep track of long-term
dependencies.

* It has memorized the entire input!

12

EXPRESSIVENESS VS LEARNABILITY

* |t is possible for an RNN to compute long-term dependencies.

* In fact, RNNs are Turing-complete (Siegelmann 1995).

* A model is Turing-complete if for any Turing machine ¥ (i.e., algorithm),
There exists an instance of the model that implements M.

l.e., there is a setting of the model weights such that it implements M.

13

EXPRESSIVENESS VS LEARNABILITY

* The problem is that this network is difficult to learn.
e Due to the vanishing/exploding gradients problem.

* But this is a common problem with highly expressive models.
* E.g.,, MLPs, RNNs, transformers
* These models are able to express a vast number of algorithms.

* But the question of whether they can learn all such algorithms from data
Is entirely separate.

e Oftentimes, there are algorithms that these models can express, but
have difficulty learning.

14

LONG SHORT-TERM MEMORY NETWORKS

e To address this problem, LSTMs were developed (Hochreiter and
Schmidhuber 1997).

w
-ﬂ@ém
T

4

#hgﬁ—Lﬂr’ hpotem Y
. a e’(.c‘(\‘.. \oe’t\N eel .

W
| Lineor
T

%’3
| Linar

2 T
,ﬁhﬁginm%e»n

s\
o rel
Tois 2 ‘“f-\s int (Ocjcp\o'\“ a e
e . e
N 2N N \ e p(\ ©
CO - > C1 > CZ ‘ > C3 > C4 Th Ond hr[,\N\\
Ci

15

LONG SHORT-TERM MEMORY NETWORKS

* Key idea is that the updates to the c, stream are additive.

* So gradients of ¢, do not get very large or very small with increasing n.

* How are ¢, and h, computed?

Wy

__Linear _

__Linear _

2
r’h1—’E_l’n7

W,
¥
T

%’3
| Linar

w
-ﬂ@ém
T

4

7’h3/E_Ln_‘*

A 2N
> C1

L 2
,CZ

\ 2
> C3

—> h, y Y
\ e
exch e
L qust 0% actio® © 4 \otel
s 1837 ot gin
ne prec'® e exP

16

LONG SHORT-TERM MEMORY NETWORKS

* Key idea is that the updates to the c, stream are additive.
* So gradients of ¢, do not get very large or very small with increasing n.

* How are ¢, and h, computed?

h“‘é»l}‘ﬂ—*m
N

17

LONG SHORT-TERM MEMORY NETWORKS

_E <.
e
i

18

LONG SHORT-TERM MEMORY NETWORKS

Don’t worry: You don’t
need to memorize this
circuit diagram.

i1
a
!
E

It’s easy enough to lookup.

o e
:

But the key idea is
important: -1

v

Updates to c, are additive.

Gradients with respect to
¢, won’t vanish or explode.

v

Linear] Linear|

19

LONG SHORT-TERM MEMORY NETWORKS

fo = 0,(Waw, + Ush,_,

1y = Ug(wz'wt + Uh,,
0y = Og(Wowt + Uhyy
¢, = o .(Wuw, + Uh,_,

c, = fyocyy + 1,08,

h’t = Ot O O-h,(ct)

Traditionally, o, is a

sigmoid, o, and o, are tanh.

+ bf)
+ b.)

(]

+ b)

o

+ b))

Cc

Ci-1

'm

Wy

o

m‘m

A 4
_::Q»m-)'bt

7
Linear

Lincar

20

LONG SHORT-TERM MEMORY NETWORKS

Subcircuits in the LSTM
are referred to as “gates”.

i1
a
!
E

For example, the subcircuit
involving f, is called the
forget gate.

o e
:

The subcircuit involving 4, -1~

Is the input gate.

v

The subcircuit involving o,
Is the output gate.

v

Linear] Linear|

21

LONG SHORT-TERM MEMORY NETWORKS

& @, ®
~ T\ 4 JT: 4 T\
A »—1 — A —>

2) &)

[Christopher Olah, Understanding LSTM Networks] 22

LONG SHORT-TERM MEMORY NETWORKS

& W, ®
1 1

A
" N N ()
—p (X O, > —
Ganh>
A 1 »8 A
I?II?IItarhIIJOI
— > —
N YA4N(UE4N Y,

®
®_
®

[Christopher Olah, Understanding LSTM Networks] 23

INTERPRETATION OF TRAINED LSTMS

* Train character-level LSTM on the language modeling task.
* |l.e., predict the next character given a sequence of previous characters.
* Train on two datasets: War and Peace, and Linux kernel source code.

* We can inspect the activations in the cell state vector c, (i.e., activations of
individual neurons).

[Andrej Karpathy, The Unreasonable Effectiveness of Recurrent Neural Networks; slide text from Greg Durrett]

24

INTERPRETATION OF TRAINED LSTMS

* One neuron seems to predict the length of the current line.
* This is important when, e.g., you need to know when to predict \n.

* Toakeaway: LSTMs can model length.

Cell sensitive to position in line:

The sole importance of the crossing
th it plainly and indubitably prov
ng off the enemy's retreat nd
of action--the one Kutuzov and
de'anded--namely, simply to follow enemy up. The French crowd fled
at a continually increasing speed and all its energy was directed to
reaching its goal. It fled like a wounded animal and it was impossible
ﬁo block its path. This was shown not so much by the arrangements it
nade for crossing as by what took place at the bridges. When the bridges
roke down, unarmed soldiers, people from Moscow and women with chlldren
whw‘mere with the French transport, all--carried on by vis inertiae- -
pressed forward into boats and into the ice-covered water and did not,

offf"the Berezina lies in the fact

ediathie fallacy of all the plans foF
the soundness of the only possible
th
the

general mass of the army

[Andrej Karpathy, The Unreasonable Effectiveness of Recurrent Neural Networks; slide text from Greg Durrett]

INTERPRETATION OF TRAINED LSTMS

* One neuron seems to keep track of when we’re inside a quotation.

* This is important when, e.g., you need to know when to predict ”, or when to
predict sentences in first or second person.

* Seems to work even with very long quotations.

CII that turns on inside quotes:

[Andrej Karpathy, The Unreasonable Effectiveness of Recurrent Neural Networks; slide text from Greg Durrett] 26

INTERPRETATION OF TRAINED LSTMS

* One neuron seems to keep track of when we’re inside an if condition.

* This is useful to remember to close the if statement, and to predict
comparisons rather than assignments.

Cell that robustly activates inside if statements:

[Andrej Karpathy, The Unreasonable Effectiveness of Recurrent Neural Networks; slide text from Greg Durrett]

27

INTERPRETATION OF TRAINED LSTMS

* One neuron seems to keep track of when we’re inside a comment or a string.

* Useful to know to predict regular text rather than code.

Cell th.at turns on inside comments and quotes:

p (sf->1sm_str, oFPEKERNEM

[Andrej Karpathy, The Unreasonable Effectiveness of Recurrent Neural Networks; slide text from Greg Durrett] 28

INTERPRETATION OF TRAINED LSTMS

* One neuron seems to keep track of the depth of the code.

* Useful to know how much to indent, or how many closing braces we need.

Cell that is sensitive to the depth of an expression:
#ifdef CONFIG_AUDITSYSCALL
static inline int audit_match_class_bits(int class,

u32 *mask)

; 1 < AUDIT_BITMAS

KIS ZES; i)
ask[i] & classes[class][i])

[Andrej Karpathy, The Unreasonable Effectiveness of Recurrent Neural Networks; slide text from Greg Durrett]

29

INTERPRETATION OF TRAINED LSTMS

* One neuron seems to predict the ends of some statements and expressions
(but not all), and not the ends of comments.

* This neuron is more difficult to interpret.

Cell that might be helpful in predicting a new line. Note that it only turns on for some “)":

ERR_PTR(-ENA

[Andrej Karpathy, The Unreasonable Effectiveness of Recurrent Neural Networks; slide text from Greg Durrett] 30

INTERPRETATION OF TRAINED LSTMS

* But most neurons are not interpretable.
* There is no reason for models to be easily interpretable after training,

* Unless we specifically design the neural network otherwise.

[Andrej Karpathy, The Unreasonable Effectiveness of Recurrent Neural Networks; slide text from Greg Durrett]

31

MECHANISTIC INTERPRETABILITY

* Mechanistic interpretability is the study of the internal computation of
neural networks.

* What algorithm has the network learned to solve the task?
* “Reverse-engineering” the algorithm/mechanism learned by the network.

* Understanding neuron activations is akin to interpreting “intermediate
variables” in the network’s computation.

e But more work is needed to determine how these “intermediate variables”
are related to each other.
 How are they computed from the input/other intermediate variables?

* How are they used to compute the output?

32

GATED RECURRENT UNITS

Wy
|

* A more recent variant of LSTMs is -
called the gated recurrent unit =
+4 O

(GRU; Cho et al 2014). ;E‘mm IE_ h,
ht 4 :éﬂ) — h

* Simpler than the LSTM: P u .,

* Instead of having a separate
“cell” state, perform linear
updates to the hidden state.

e 2 gates (rather than 4).

33

GATED RECURRENT UNITS

r, = o(Ww, + Uh,, +b)
z, = o(Ww, + Uh,; +b)
he = ¢, + U (r, 0 hy) + by)

hy = (1 = z)0h,; + 2,0 hy
o is a sigmoid, and ¢ is tanh.

z, 1s between 0 and 1, so h, is just a
convex combination of the old state
h._;, and the candidate state k..

Wy
|

m Linear

A 4

i
1

34

LSTM VS GRU

Which one is better?

There is no one clear winner.

It depends on the task, data, hyperparameters, etc.
Let’s take a look at some examples.

Yin et al. 2017 trained three models on two tasks:
* Models: LSTM, GRU, and CNN (convolutional neural network)
* Tasks: Sentiment analysis, multiple-choice question answering

35

LSTM VS GRU

* Accuracy vs learning rate in sentiment analysis task.

0.85

0.8

0.75

0.7 -

acc

0.65 -

| 1 | 1 1
0.001 0.005 0.01 0.05 0.1 0.2 0.3
learning rate

[Yin, Kann, Yu, and Schiitze 2017] 36

LSTM VS GRU

* Accuracy vs hidden state dimension in sentiment analysis task.

[Yin, Kann, Yu,

0.85

0.8]

0.75

0.7 -

acc

0.65

06

0.55

| 1 | 1 1 | 1 | 1 | 1 1 | 1 | 1 | 1
5 10 15 20 25 30 35 40 45 50 60 70 80 90 100 120 150 200 250 300
hidden size

and Schitze 2017] 37

LSTM VS GRU

* Accuracy vs batch size in sentiment analysis task.

0.87

0.86 -

0.85

0.84

1 | | 1 | | 1 |
5 10 20 30 40 50 60 70 80 100
baich size

[Yin, Kann, Yu, and Schitze 2017]

LSTM VS GRU

* Mean reciprocal rank vs learning rate in multiple-choice QA task.

[Yin, Kann, Yu,

0.65
06
o
C 0.55 -
=

05F

0.457

1 | 1 T
0.001 0.005 0.01 0.05 0.1 0.2
learning rate

and Schiitze 2017] 39

LSTM VS GRU

* Mean reciprocal rank vs hidden state dimension in multiple-choice QA task.

0.66

—8— CNN
0.64 —#—GRU |

0.62

0.52 -

0.5

0.48 -

0.46 1 1 | | 1 | | 1 | | 1 | |
10 20 30 40 50 60 70 80 90 100 120 150 200 250 300
hidden size

[Yin, Kann, Yu, and Schitze 2017]

LSTM VS GRU

* Mean reciprocal rank vs batch size in multiple-choice QA task.

[Yin, Kann, Yu,

0.64

0.62 -

0.6

0.58 -

0.56 -

MRR

054

052 ¢

05 —&—CNN |

—#%—GRU
---------- LSTM
048 | 1 | 1 | | 1 | 1
30 40 50 60 70 80 100 150 200 250 300
baich size

and Schitze 2017] 41

RNN SUMMARY

* GRUs can achieve comparable performance to LSTMs despite being simpler.

* Some terminology clarification:
* GRUs are often considered a special case of LSTMs.
* Both GRUs and LSTMs are often considered special cases of RNNs.

* So “RNN” can be used as an umbrella term to include any method that
processes sequential information one element at a time.

* |.e., word-by-word, character-by-character

42

RNN DISADVANTAGES

What are some disadvantages of RNNs (including LSTMs, GRUs)?

They are not easily parallelizable.

* If | want to compute the n-th hidden state, | need to process n tokens
sequentially.

* This is made even worse with deep RNNs.

* The hidden state of the next layer is dependent on the hidden state of
the previous layer.

This limits their ability to scale to very large datasets. (but can still be done)

Next lecture, we will look at transformers, which do not have this limitation.

43

QUESTIONS?

	Slide 1: CS 577: Natural Language Processing
	Slide 2: Recap from Previous Lecture
	Slide 3: Recap from Previous Lecture
	Slide 4: Recap from Previous Lecture
	Slide 5: Vanishing/Exploding gradients
	Slide 6: Vanishing/Exploding gradients
	Slide 7: Long-term Dependencies
	Slide 8: Long-term Dependencies
	Slide 9: Long-term Dependencies
	Slide 10: Long-term Dependencies
	Slide 11: Long-term Dependencies
	Slide 12: Long-term Dependencies
	Slide 13: Expressiveness vs learnability
	Slide 14: Expressiveness vs learnability
	Slide 15: Long Short-term Memory networks
	Slide 16: Long Short-term Memory networks
	Slide 17: Long Short-term Memory networks
	Slide 18: Long Short-term Memory networks
	Slide 19: Long Short-term Memory networks
	Slide 20: Long Short-term Memory networks
	Slide 21: Long Short-term Memory networks
	Slide 22: Long Short-term Memory networks
	Slide 23: Long Short-term Memory networks
	Slide 24: Interpretation of trained LSTMs
	Slide 25: Interpretation of trained LSTMs
	Slide 26: Interpretation of trained LSTMs
	Slide 27: Interpretation of trained LSTMs
	Slide 28: Interpretation of trained LSTMs
	Slide 29: Interpretation of trained LSTMs
	Slide 30: Interpretation of trained LSTMs
	Slide 31: Interpretation of trained LSTMs
	Slide 32: Mechanistic interpretability
	Slide 33: Gated Recurrent Units
	Slide 34: Gated Recurrent Units
	Slide 35: LSTM vs GRU
	Slide 36: LSTM vs GRU
	Slide 37: LSTM vs GRU
	Slide 38: LSTM vs GRU
	Slide 39: LSTM vs GRU
	Slide 40: LSTM vs GRU
	Slide 41: LSTM vs GRU
	Slide 42: RNN Summary
	Slide 43: RNN Disadvantages
	Slide 44: Questions?

