
CS 577:
NATURAL LANGUAGE
PROCESSING

Abulhair Saparov

Lecture 6: Attention and Transformers

• Last lecture, we discussed long short-term memory (LSTM) networks and
gated recurrent units (GRUs).

• They were designed to solve the problem of long-term dependencies in
classical RNNs.

• By design RNNs tend to depend more on more recent inputs.

• In addition, RNNs can only store a limited amount of information in the
hidden state vector.

• But is there a fundamentally different way to model long-term
dependencies?

• What if we relax the assumption that the next hidden state only depends
on the previous hidden state?

LONG-TERM DEPENDENCIES

2

• The attention mechanism was designed to more explicitly model
dependencies between words that are very far apart.

• Suppose we have an RNN performing a machine translation task.

ATTENTION

3

“cats” “chase” “mice”

[Bahdanau et al., 2015]

• Basic idea: Compute a linear sum of the vectors corresponding to the input.

• The weights in this linear sum are called attention weights.

ATTENTION

4

“cats” “chase” “mice”

“kediler”

[Britz, Goldie, Lyong, and Le 2017]

• Basic idea: Compute a linear sum of the vectors corresponding to the input.

• The weights in this linear sum are called attention weights.

ATTENTION

5

“cats” “chase” “mice”

“kediler”

[Britz, Goldie, Lyong, and Le 2017]

“fareleri”

• Basic idea: Compute a linear sum of the vectors corresponding to the input.

• The weights in this linear sum are called attention weights.

ATTENTION

6

“cats” “chase” “mice”

“kediler”

[Britz, Goldie, Lyong, and Le 2017]

“fareleri” “kovalar”

• Basic idea: Compute a linear sum of the vectors corresponding to the input.

• The weights in this linear sum are called attention weights.

• The entire input no longer needs to be encoded in the hidden state.

ATTENTION

7

“cats” “chase” “mice”

“kediler”

[Britz, Goldie, Lyong, and Le 2017]

“fareleri” “kovalar” <end>

σ where are attention weights.

∝

Note the “∝” (proportional to) symbol.

For each , we first compute the scores between and all , and then normalize.

ATTENTION

8

“cats” “chase” “mice”

“kediler” “fareleri” “kovalar” <end>

σ where are attention weights.

∝

There are lots of options for this scoring function.
Notice everything is still differentiable, so we can still use gradient descent for training.

ATTENTION

9

“cats” “chase” “mice”

“kediler” “fareleri” “kovalar” <end>

etc…

• We can also view the attention weights as a matrix.

• This is an example of cross-attention:

• Attention weights are computed between two sequences.

ATTENTION

10

cats chase mice

k
e
d

ile
r

fa
re

le
ri

k
o
v
a

la
r

• Self-attention: Attention weights are computed between tokens of the same
sentence.

SELF-ATTENTION

11

cats chase mice

c
a

ts
c
h
a

se
m

ic
e

• RNNs suffer from poor parallelizability.

• We must compute each successive hidden state sequentially.

• What if we removed the recurrent aspect, and we model inter-word
dependencies entirely via the attention mechanism?

• The transformer architecture is one way to do this (Vaswani et al., 2017).

TRANSFORMER

12

TRANSFORMER

13

“The quick brown”

attention

feedforward

⋮ ⋮

• We embed each word
into a -
dimensional vector.

• Why do we have
residual connections?

• We can make
predictions from any
output vector .

• One common choice is
to make predictions
from the last .

SIMPLIFYING NOTATION

14

“The”

“quick”

“brown”

This matrix is the input to

the transformer

(and to the attention and

FF layers)

SIMPLIFYING NOTATION

15

“The”

“quick”

“brown”

This matrix is the input to

the transformer

(and to the attention and

FF layers)

TRANSFORMER

16

“The quick brown”

attention

feedforward

TRANSFORMER

17

“The quick brown”

attention

feedforward

FEEDFORWARD LAYER

18

“The quick brown”

attention
Where is a weight matrix
with dimension ,

And is a weight matrix with
dimension .

So the nonlinear operation is
performed in a higher-
dimensional space,

before being projected back to
a –dimensional output.

FEEDFORWARD LAYER

19

“The quick brown”

attention
Important: this FF operation is
performed on each of the
input vectors independently:

No information is shared
between embeddings in the FF
layer.

ADDING MORE LAYERS

20

“The quick brown”

attention

feedforward

attention

feedforward
…

ATTENTION LAYER

21

ATTENTION LAYER

22

It helps to think about the

dimensions of each matrix:

 is , is , etc.

The attention matrix describes the dependencies between different tokens of the input.

E.g., describes how strongly the token at index depends on the token at index .

We can choose to mask the attention matrix: we force if .

That is, we only allow each token to depend on previous tokens, but not future tokens.

ATTENTION LAYER

23

This is the output of the attention layer.

But recall that due to the residual connections, the actual output is .

MULTI-HEAD ATTENTION

24

Concatenate the outputs from

each head into one large matrix.

MULTI-HEAD ATTENTION

25

The resulting matrix is too large,

since we need to add it back to .

It’s dimension is .

So we use a linear layer to resize it.

Due to the residual connection, we

add the output back to the input:

WHY MULTIPLE HEADS?

26

• Different attention heads can perform different computations.

• For example one attention head can compute syntactic relations:

• “I run a small business” vs “I went for a run”

• To compute the part-of-speech of “run”, it helps to attend the word
immediately before: “I” vs “a”.

• “a run” indicates that “run” is a noun.

• “I run” indicates that “run” is a verb.

• A second attention head can compute semantic information:

• What is the subject of the run?

• In both examples above, the subject is “I”.

WHY MULTIPLE HEADS?

27

• Multiple heads can save us from needing more layers to perform complex
computations.

• More heads and fewer layers -> More parallelizable!

• Example of attention matrix without mask:

CAUSAL MASK

28

the quick brown

th
e

q
u
ic

k
b

ro
w

n

• Example of attention matrix with a causal mask:

CAUSAL MASK

29

the quick brown

th
e

q
u
ic

k
b

ro
w

n

POSITIONAL EMBEDDING

30

• Suppose the input to the attention layer has no position information (it only has word

information).

• And suppose we have no causal mask.

• The attention layer is not able to compute the relative positions of tokens:

• E.g. it can’t determine which token immediately follows any other token.

• Suppose the word “dog” has high attention weight with “big”.

• Since the embeddings of both “big” words are identical, the attention weight between

dog and both big’s are the same.

“The big dog and big cat”

POSITIONAL EMBEDDING

31

“The”

“quick”

“brown”

• Thus, position information is explicitly added to the embeddings:

• There are many kinds of positional embeddings.

• Token embeddings and positional embeddings can be summed, multiplied, or

concatenated, etc.

• Lots of ways to incorporate position information into embeddings.

X

+

+

+

POSITIONAL EMBEDDING

32

• But if we use the causal mask for attention, the transformer may be able to

compute positions, even without positional embeddings.

• In the earlier example, if we use a causal mask, then “dog” cannot attend to

the later “big.”

“The big dog and big cat”

POSITIONAL EMBEDDING

33

• But if we use the causal mask for attention, the transformer may be able to

compute positions, even without positional embeddings.

• We can test this by training multiple language models using different

positional encodings.

• Then, we fix the weights of the transformer and train a linear probe to predict

the absolute position of each token:

• For each layer of the transformer, add a linear layer from each vector in

the layer’s output and a softmax to predict the absolute position .

LINEAR PROBING

34[Haviv et al., 2022]

“The quick brown”

attention

feedforward

attention

feedforward
…

• We have supervised training

examples of inputs and the

correct position of each word.

• Keep the transformer weights

fixed, and use gradient descent

to learn the probe’s weights.

• Note: we can do linear probing

on any model!

TRANSFORMERS CAN LEARN POSITION FROM
CAUSAL MASK

35

• Train a probe at each layer of the transformer.

• Measure how accurately the probe can predict each word’s position.

[Haviv et al., 2022]

LAYER NORMALIZATION

36

• Suppose we are training a transformer on a classification task, so we have a

softmax operation at the end of the network.

• Also suppose the input embeddings have large magnitude,

• It’s very likely that the magnitude of the embeddings stays large throughout

the transformer layers, up to the last softmax operation.

• Recall that the derivative of the softmax is close to zero if the input is a large

positive or negative value.

• Hint: The logistic function (i.e., sigmoid) is equivalent to softmax in two

dimensions.

• Thus, in this example, the gradient would be very close to zero, and training

would be extremely slow.

LAYER NORMALIZATION

37

• Thus, transformers with many layers can also sometimes suffer from

vanishing gradients.

• To avoid this, transformers use layer normalization.

LAYER NORMALIZATION

38

“The quick brown”

attention

feedforward

LAYER NORMALIZATION

39

“The quick brown”

attention

feedforward

𝜀

○γ β

Where 𝜀 is a small fixed constant, γ and

β are vectors of learnable weights.

Since we scale the input by its standard

deviation, layer normalization helps to

prevent the activations from attaining

very large positive or negative values.

QUESTIONS?

	Slide 1: CS 577: Natural Language Processing
	Slide 2: Long-term Dependencies
	Slide 3: Attention
	Slide 4: Attention
	Slide 5: Attention
	Slide 6: Attention
	Slide 7: Attention
	Slide 8: Attention
	Slide 9: Attention
	Slide 10: Attention
	Slide 11: Self-Attention
	Slide 12: Transformer
	Slide 13: Transformer
	Slide 14: Simplifying Notation
	Slide 15: Simplifying Notation
	Slide 16: Transformer
	Slide 17: Transformer
	Slide 18: Feedforward layer
	Slide 19: Feedforward layer
	Slide 20: Adding more layers
	Slide 21: Attention layer
	Slide 22: Attention layer
	Slide 23: Attention layer
	Slide 24: Multi-head Attention
	Slide 25: Multi-head Attention
	Slide 26: Why Multiple heads?
	Slide 27: Why Multiple heads?
	Slide 28: Causal mask
	Slide 29: Causal mask
	Slide 30: Positional Embedding
	Slide 31: Positional Embedding
	Slide 32: Positional Embedding
	Slide 33: Positional Embedding
	Slide 34: Linear probing
	Slide 35: Transformers can learn position from causal mask
	Slide 36: Layer normalization
	Slide 37: Layer normalization
	Slide 38: Layer normalization
	Slide 39: Layer normalization
	Slide 40: Questions?

