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• Last lecture, we discussed long short-term memory (LSTM) networks and 
gated recurrent units (GRUs).

• They were designed to solve the problem of long-term dependencies in 
classical RNNs.

• By design RNNs tend to depend more on more recent inputs.

• In addition, RNNs can only store a limited amount of information in the 
hidden state vector.

• But is there a fundamentally different way to model long-term 
dependencies?

• What if we relax the assumption that the next hidden state only depends 
on the previous hidden state?

LONG-TERM DEPENDENCIES
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• The attention mechanism was designed to more explicitly model 
dependencies between words that are very far apart.

• Suppose we have an RNN performing a machine translation task.

ATTENTION

3

“cats” “chase” “mice”

[Bahdanau et al., 2015]



• Basic idea: Compute a linear sum of the vectors corresponding to the input.

• The weights in this linear sum are called attention weights.
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“kediler”

[Britz, Goldie, Lyong, and Le 2017]



• Basic idea: Compute a linear sum of the vectors corresponding to the input.

• The weights in this linear sum are called attention weights.
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“fareleri”



• Basic idea: Compute a linear sum of the vectors corresponding to the input.

• The weights in this linear sum are called attention weights.
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“cats” “chase” “mice”

“kediler”

[Britz, Goldie, Lyong, and Le 2017]

“fareleri” “kovalar”



• Basic idea: Compute a linear sum of the vectors corresponding to the input.

• The weights in this linear sum are called attention weights.

• The entire input no longer needs to be encoded in the hidden state.

ATTENTION

7

“cats” “chase” “mice”

“kediler”

[Britz, Goldie, Lyong, and Le 2017]

“fareleri” “kovalar” <end>



σ  where  are attention weights.

∝

Note the “∝” (proportional to) symbol.

For each , we first compute the scores between and all , and then normalize.

ATTENTION
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“cats” “chase” “mice”

“kediler” “fareleri” “kovalar” <end>



σ  where  are attention weights.

∝

There are lots of options for this scoring function.
Notice everything is still differentiable, so we can still use gradient descent for training.

ATTENTION
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“cats” “chase” “mice”

“kediler” “fareleri” “kovalar” <end>

etc…



• We can also view the attention weights as a matrix.

• This is an example of cross-attention:

• Attention weights are computed between two sequences.

ATTENTION
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• Self-attention: Attention weights are computed between tokens of the same 
sentence.

SELF-ATTENTION
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• RNNs suffer from poor parallelizability.

• We must compute each successive hidden state sequentially.

• What if we removed the recurrent aspect, and we model inter-word 
dependencies entirely via the attention mechanism?

• The transformer architecture is one way to do this (Vaswani et al., 2017).

TRANSFORMER
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TRANSFORMER
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“The quick brown”

attention

feedforward

⋮ ⋮

• We embed each word 
into a -
dimensional vector.

• Why do we have 
residual connections?

• We can make 
predictions from any 
output vector .

• One common choice is 
to make predictions 
from the last .



SIMPLIFYING NOTATION
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“The”

“quick”

“brown”

This matrix is the input to 

the transformer

(and to the attention and 

FF layers)
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TRANSFORMER
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feedforward



TRANSFORMER
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“The quick brown”

attention

feedforward



FEEDFORWARD LAYER
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“The quick brown”

attention
Where  is a weight matrix 
with dimension   ,

And  is a weight matrix with 
dimension .

So the nonlinear operation is 
performed in a higher-
dimensional space,

before being projected back to 
a –dimensional output.



FEEDFORWARD LAYER
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“The quick brown”

attention
Important: this FF operation is 
performed on each of the 
input vectors independently:

No information is shared 
between embeddings in the FF 
layer.



ADDING MORE LAYERS
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“The quick brown”

attention

feedforward

attention

feedforward
…



ATTENTION LAYER
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ATTENTION LAYER
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It helps to think about the 

dimensions of each matrix:

 is ,  is , etc.

The attention matrix  describes the dependencies between different tokens of the input.

E.g.,  describes how strongly the token at index  depends on the token at index .

We can choose to mask the attention matrix: we force  if .

That is, we only allow each token to depend on previous tokens, but not future tokens.



ATTENTION LAYER
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This is the output of the attention layer.

But recall that due to the residual connections, the actual output is .



MULTI-HEAD ATTENTION
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Concatenate the outputs from 

each head into one large matrix.



MULTI-HEAD ATTENTION
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The resulting matrix is too large, 

since we need to add it back to .

It’s dimension is .

So we use a linear layer to resize it.

Due to the residual connection, we 

add the output back to the input: 



WHY MULTIPLE HEADS?
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• Different attention heads can perform different computations.

• For example one attention head can compute syntactic relations:

• “I run a small business” vs “I went for a run”

• To compute the part-of-speech of “run”, it helps to attend the word 
immediately before: “I” vs “a”.

• “a run” indicates that “run” is a noun.

• “I run” indicates that “run” is a verb.

• A second attention head can compute semantic information:

• What is the subject of the run?

• In both examples above, the subject is “I”.



WHY MULTIPLE HEADS?
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• Multiple heads can save us from needing more layers to perform complex 
computations.

• More heads and fewer layers -> More parallelizable!



• Example of attention matrix without mask:

CAUSAL MASK
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• Example of attention matrix with a causal mask:

CAUSAL MASK
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POSITIONAL EMBEDDING
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• Suppose the input  to the attention layer has no position information (it only has word 

information).

• And suppose we have no causal mask.

• The attention layer is not able to compute the relative positions of tokens:

• E.g. it can’t determine which token immediately follows any other token.

• Suppose the word “dog” has high attention weight with “big”.

• Since the embeddings of both “big” words are identical, the attention weight between 

dog and both big’s are the same.

“The big dog and big cat”



POSITIONAL EMBEDDING
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“The”

“quick”

“brown”

• Thus, position information is explicitly added to the embeddings:

• There are many kinds of positional embeddings.

• Token embeddings and positional embeddings can be summed, multiplied, or 

concatenated, etc.

• Lots of ways to incorporate position information into embeddings.

X

+

+

+



POSITIONAL EMBEDDING
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• But if we use the causal mask for attention, the transformer may be able to 

compute positions, even without positional embeddings.

• In the earlier example, if we use a causal mask, then “dog” cannot attend to 

the later “big.”

“The big dog and big cat”



POSITIONAL EMBEDDING
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• But if we use the causal mask for attention, the transformer may be able to 

compute positions, even without positional embeddings.

• We can test this by training multiple language models using different 

positional encodings.

• Then, we fix the weights of the transformer and train a linear probe to predict 

the absolute position of each token:

• For each layer  of the transformer, add a linear layer from each vector in 

the layer’s output  and a softmax to predict the absolute position .



LINEAR PROBING
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“The quick brown”

attention

feedforward

attention

feedforward
…

• We have supervised training 

examples of inputs and the 

correct position of each word.

• Keep the transformer weights 

fixed, and use gradient descent 

to learn the probe’s weights.

• Note: we can do linear probing 

on any model!



TRANSFORMERS CAN LEARN POSITION FROM 
CAUSAL MASK
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• Train a probe at each layer of the transformer.

• Measure how accurately the probe can predict each word’s position.

[Haviv et al., 2022]



LAYER NORMALIZATION
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• Suppose we are training a transformer on a classification task, so we have a 

softmax operation at the end of the network.

• Also suppose the input embeddings have large magnitude,

• It’s very likely that the magnitude of the embeddings stays large throughout 

the transformer layers, up to the last softmax operation.

• Recall that the derivative of the softmax is close to zero if the input is a large 

positive or negative value.

• Hint: The logistic function (i.e., sigmoid) is equivalent to softmax in two 

dimensions.

• Thus, in this example, the gradient would be very close to zero, and training 

would be extremely slow.



LAYER NORMALIZATION
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• Thus, transformers with many layers can also sometimes suffer from 

vanishing gradients.

• To avoid this, transformers use layer normalization.



LAYER NORMALIZATION
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“The quick brown”
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feedforward



LAYER NORMALIZATION
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“The quick brown”

attention

feedforward

𝜀 

○γ β

Where 𝜀 is a small fixed constant, γ and 

β are vectors of learnable weights.

Since we scale the input by its standard 

deviation, layer normalization helps to 

prevent the activations from attaining 

very large positive or negative values.



QUESTIONS?
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