
CS 577:
NATURAL LANGUAGE
PROCESSING

Abulhair Saparov

Lecture 7: Transformers II

PREVIOUS LECTURE: TRANSFORMERS

2

Transformer layer

attention

feedforward

LAYER NORMALIZATION

3

• Suppose we are training a transformer on a classification task, so we have a

softmax operation at the end of the network.

• Also suppose the input embeddings have large magnitude,

• It’s very likely that the magnitude of the embeddings stays large throughout

the transformer layers, up to the last softmax operation.

• Recall that the derivative of the softmax is close to zero if the input is a large

positive or negative value.

• Hint: The logistic function (i.e., sigmoid) is equivalent to softmax in two

dimensions.

• Thus, in this example, the gradient would be very close to zero, and training

would be extremely slow.

LAYER NORMALIZATION

4

• Thus, transformers with many layers can also sometimes suffer from

vanishing gradients.

• To avoid this, transformers use layer normalization.

LAYER NORMALIZATION

5

“The quick brown”

attention

feedforward

LAYER NORMALIZATION

6

“The quick brown”

attention

feedforward

𝜀

○γ β

Where 𝜀 is a small fixed constant, γ and

β are vectors of learnable weights.

Since we scale the input by its standard

deviation, layer normalization helps to

prevent the activations from attaining

very large positive or negative values.

POST-LAYER NORMALIZATION

7[Vaswani et al., 2017]

The original transformer paper

used post-layer normalization.

Layer normalization was

applied on the residual stream

(i.e., after residual connection).

attention

feedforward

PRE-LAYER NORMALIZATION

8

Xiong et al., 2020, proposed

moving the layer normalization

before the attention and FF blocks. attention

feedforward

PRE-LAYER NORMALIZATION

9

• Xiong et al., 2020, showed that the magnitudes of the gradients are more
uniform across layers when using pre-layer normalization.

• Hypothesis: Learning occurs at a more uniform rate across layers when using
pre-layer norm.

PRE-LAYER NORMALIZATION

10

• Measure empirical performance on masked language modeling, semantic
similarity (Microsoft Research Paragraph Corpus), and textual entailment
(Recognizing Textual Entailment dataset).

PRE-LAYER NORMALIZATION

11

• Measure empirical performance on machine translation.

PRE-LAYER NORMALIZATION

12

• Measure empirical performance on machine translation.

RMS NORMALIZATION

13

• Zhang and Sennrich, 2019, proposed a simpler alternative to layer
normalization, called root mean square layer normalization, or RMSNorm.

𝜀

○γ β

 where 𝜀 is a small fixed constant, γ and β are vectors of learnable weights.

○γ where =
1

𝑛
σ𝑗=1

𝑛 𝑥𝑖,𝑗
2

• Note that RMSNorm is faster to compute.

RMS NORMALIZATION

14

• Measure empirical performance on machine translation.

RMS NORMALIZATION

15

• Measure empirical performance on question answering.

PRE-LAYER NORMALIZATION AND RMSNORM

16

• GPT-2 used pre-layer normalization.

attention

feedforward

PRE-LAYER NORMALIZATION AND RMSNORM

17

• GPT-2 used pre-layer normalization.

• Recent models (e.g., LLaMA and

DeepSeek) typically use pre-layer

normalization with RMSNorm.
attention

feedforward

TRANSFORMER APPLICATIONS

18

• Recall that RNNs can be used in a wide variety of architectures.

TRANSFORMER APPLICATIONS

19

• Recall that RNNs can be used in a wide variety of architectures.

• Transformers can similarly be a component in lots of different models.

1 or more transformer layers

TRANSFORMER APPLICATIONS

20

• Recall that RNNs can be used in a wide variety of architectures.

• Transformers can similarly be a component in lots of different models.

TRANSFORMER APPLICATIONS

21

• Recall that RNNs can be used in a wide variety of architectures.

• Transformers can similarly be a component in lots of different models.

1 or more transformer layers

TRANSFORMER APPLICATIONS

22

• Recall that RNNs can be used in a wide variety of architectures.

• Transformers can similarly be a component in lots of different models.

1 or more transformer layers

𝑥<𝑇𝑥+1>𝑥<3>𝑥<2> In the language modeling task,

we often predict tokens, where

the output token corresponds

to the input token.

The loss is computed as the sum

of the losses of all output

tokens.

Often called autoregressive or

causal language modeling.

WHY THE CAUSAL MASK?

23

• Recall that RNNs can be used in a wide variety of architectures.

• Transformers can similarly be a component in lots of different models.

1 or more transformer layers

𝑥<𝑇𝑥+1>𝑥<3>𝑥<2> This motivates the causal mask.

We want 𝑥<𝑖> to only attend to

tokens that come before it.

Otherwise, it can simply cheat

by copying 𝑥<𝑖+1>.

WHY THE CAUSAL MASK?

24

• Recall that RNNs can be used in a wide variety of architectures.

• Transformers can similarly be a component in lots of different models.

1 or more transformer layers

𝑥<𝑇𝑥+1>𝑥<3>𝑥<2> With or without the causal mask,

the model still must predict the

token after the last token.

The model can’t “cheat” here by

attending to future tokens.

TRANSFORMER APPLICATIONS

25

• Recall that RNNs can be used in a wide variety of architectures.

• Transformers can similarly be a component in lots of different models.

TRANSFORMER APPLICATIONS

26

• Recall that RNNs can be used in a wide variety of architectures.

• Transformers can similarly be a component in lots of different models.

Encoder

Decoder

TRANSFORMER ENCODER-DECODER

27

Transformer

encoder layer

Transformer

encoder layer

… …

𝑓<1> 𝑓<𝑇𝑥>Feature vectors …

Transformer encoder-

decoder layer

Transformer encoder-

decoder layer

… …

𝑦<2> 𝑦<𝑇𝑦+1>…

𝑦<1> 𝑦<𝑇𝑦>

The left side is the encoder.

The encoder attention layers do

not have the causal mask.

The right side is the decoder.

The decoder attention layers

have the causal mask.

ENCODER-DECODER

28

“<start>” “<start> The”

“素早い茶色のキツネが怠
惰な犬を飛び越えます。”

ENCODER-DECODER

29

“<start> The” “<start> The quick”

“素早い茶色のキツネが怠
惰な犬を飛び越えます。”

ENCODER-DECODER

30

“<start> The quick” “<start> The quick brown”

“素早い茶色のキツネが怠
惰な犬を飛び越えます。”

ENCODER-DECODER

31

“<start> The quick brown” “<start> The quick brown fox”

“素早い茶色のキツネが怠
惰な犬を飛び越えます。”

ENCODER-DECODER

32

“<start> The quick brown

fox”

“<start> The quick brown fox

jumps”

“素早い茶色のキツネが怠
惰な犬を飛び越えます。”

ENCODER-DECODER

33

“<start> The quick brown

fox jumps”

“<start> The quick brown fox

jumps over”

“素早い茶色のキツネが怠
惰な犬を飛び越えます。”

ENCODER-DECODER

34

“<start> The quick brown

fox jumps over”

“<start> The quick brown fox

jumps over the”

“素早い茶色のキツネが怠
惰な犬を飛び越えます。”

ENCODER-DECODER

35

“<start> The quick brown

fox jumps over the”

“<start> The quick brown fox

jumps over the lazy”

“素早い茶色のキツネが怠
惰な犬を飛び越えます。”

ENCODER-DECODER

36

“<start> The quick brown

fox jumps over the lazy”

“<start> The quick brown fox

jumps over the lazy dog”

“素早い茶色のキツネが怠
惰な犬を飛び越えます。”

ENCODER-DECODER

37

“<start> The quick brown

fox jumps over the lazy dog”

“<start> The quick brown fox

jumps over the lazy dog <end>”

“素早い茶色のキツネが怠
惰な犬を飛び越えます。”

TRANSFORMER ENCODER-DECODER

38

Transformer

encoder layer

Transformer

encoder layer

… …

𝑓<1> 𝑓<𝑇𝑥>…

Transformer encoder-

decoder layer

Transformer encoder-

decoder layer

… …

𝑦<2> 𝑦<𝑇𝑦+1>…

𝑦<1> 𝑦<𝑇𝑦>

How does the transformer

encoder-decoder layer

incorporate information from

the encoder (i.e., features)?

TRANSFORMER LAYER

39

attention

feedforward

TRANSFORMER ENCODER-DECODER LAYER

40

attention

feedforward

encoder-decoder attention

Features from encoder

The first attention layer has a

causal mask.

The encoder-decoder attention

layer does not.

What does the encoder-decoder

attention layer look like?

TRANSFORMER ENCODER-DECODER LAYER

41[Vaswani et al., 2017]

This is Figure 1 from the

original transformer paper.

ATTENTION LAYER

42

Recall this is the circuit

diagram for the multi-head

attention component.

ENCODER-DECODER ATTENTION LAYER

43

 are the inputs from the

previous decoder layer.

 are the inputs from the

encoder (i.e., features).

 is .

 is .

 is .

 is .

 is .

 is .

 is .

is .

ENCODER-ONLY AND DECODER-ONLY
ATTENTION LAYER

44

So the attention layer where

there is only 1 input is

referred to as encoder-only

or decoder-only.

Encoder-only attention

layers do not have a causal

mask.

Decoder-only attention

layers have a causal mask.

ENCODER-ONLY AND DECODER-ONLY
TRANSFORMER LAYER

45

attention

feedforward

Similarly, a transformer layer

without encoder-decoder

attention is called an

encoder-only or decoder-only

transformer layer,

depending on whether it has

a causal mask.

Encoder-only transformers

are also called bidirectional

transformers.

EXAMPLE ENCODER-DECODER
TRANSFORMER MODELS

46

• Some example encoder-decoder models: (trivia)

• BART (Lewis et al., 2019)

• Up to 400M parameters.

• T5 (Raffel et al., 2020)

• Up to 11B parameters.

• UnifiedQA (Khashabi et al., 2020)

EXAMPLE ENCODER-ONLY
TRANSFORMER MODELS

47

• Some example encoder-only models: (trivia)

• BERT (Devlin et al., 2018)

• Up to 355M parameters.

• RoBERTa (Liu et al., 2019)

• Up to 355M parameters.

• DeBERTa (He et al., 2021)

• Up to 1.5B parameters.

EXAMPLE DECODER-ONLY
TRANSFORMER MODELS

48

• Modern language models are decoder-only models. (trivia)

• GPT-2 (Radford et al., 2019)

• Up to 1.5B parameters.

• GPT-3 (Brown et al., 2020)

• Up to 175B parameters.

• GPT-4 (OpenAI, 2023)

• (unofficial) Up to 1.7T parameters (111B per expert).

• LLaMA 3 (Meta, 2024)

• Up to 405B parameters.

• DeepSeek-V3 (DeepSeek-AI, 2024)

• Up to 671B parameters (37B per expert).

TRAINING ENCODER-ONLY MODELS

49

• How are encoder-only models like BERT trained?

• We can’t use autoregressive language modeling since without the causal
mask, encoder-only transformers can “cheat” by copying the next token.

Encoder-only transformer

“The” “quick” “brown”

“quick” “brown” “fox”

TRAINING ENCODER-ONLY MODELS

50

• How are encoder-only models like BERT trained?

• Instead, we use the masked language modeling task.

• Randomly replace some percentage of the input words with .

• The model’s task is to fill in the masked words/tokens.

Encoder-only transformer

“The” “quick” “fox”

“The” “quick” “brown” “fox”

TRAINING ENCODER-ONLY MODELS

51

• How are encoder-only models like BERT trained?

• Measure the loss function only on the masked tokens.

Encoder-only transformer

“The” “quick” “fox”

“The” “quick” “brown” “fox”

QUESTIONS?

	Slide 1: CS 577: Natural Language Processing
	Slide 2: Previous lecture: Transformers
	Slide 3: Layer normalization
	Slide 4: Layer normalization
	Slide 5: Layer normalization
	Slide 6: Layer normalization
	Slide 7: Post-layer normalization
	Slide 8: Pre-layer normalization
	Slide 9: Pre-layer normalization
	Slide 10: Pre-layer normalization
	Slide 11: Pre-layer normalization
	Slide 12: Pre-layer normalization
	Slide 13: RMS Normalization
	Slide 14: RMS Normalization
	Slide 15: RMS Normalization
	Slide 16: Pre-Layer Normalization and RMSNorm
	Slide 17: Pre-Layer Normalization and RMSNorm
	Slide 18: Transformer Applications
	Slide 19: Transformer Applications
	Slide 20: Transformer Applications
	Slide 21: Transformer Applications
	Slide 22: Transformer Applications
	Slide 23: Why the Causal Mask?
	Slide 24: Why the Causal Mask?
	Slide 25: Transformer Applications
	Slide 26: Transformer Applications
	Slide 27: Transformer Encoder-Decoder
	Slide 28: Encoder-Decoder
	Slide 29: Encoder-Decoder
	Slide 30: Encoder-Decoder
	Slide 31: Encoder-Decoder
	Slide 32: Encoder-Decoder
	Slide 33: Encoder-Decoder
	Slide 34: Encoder-Decoder
	Slide 35: Encoder-Decoder
	Slide 36: Encoder-Decoder
	Slide 37: Encoder-Decoder
	Slide 38: Transformer Encoder-Decoder
	Slide 39: Transformer layer
	Slide 40: Transformer Encoder-decoder layer
	Slide 41: Transformer Encoder-decoder layer
	Slide 42: Attention layer
	Slide 43: encoder-decoder Attention layer
	Slide 44: Encoder-only and Decoder-only Attention layer
	Slide 45: Encoder-only and Decoder-only Transformer layer
	Slide 46: Example Encoder-Decoder Transformer Models
	Slide 47: Example Encoder-only Transformer Models
	Slide 48: Example Decoder-only Transformer Models
	Slide 49: Training Encoder-only Models
	Slide 50: Training Encoder-only Models
	Slide 51: Training Encoder-only Models
	Slide 52: Questions?

