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Transformer layer

attention

feedforward



LAYER NORMALIZATION
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• Suppose we are training a transformer on a classification task, so we have a 

softmax operation at the end of the network.

• Also suppose the input embeddings have large magnitude,

• It’s very likely that the magnitude of the embeddings stays large throughout 

the transformer layers, up to the last softmax operation.

• Recall that the derivative of the softmax is close to zero if the input is a large 

positive or negative value.

• Hint: The logistic function (i.e., sigmoid) is equivalent to softmax in two 

dimensions.

• Thus, in this example, the gradient would be very close to zero, and training 

would be extremely slow.



LAYER NORMALIZATION
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• Thus, transformers with many layers can also sometimes suffer from 

vanishing gradients.

• To avoid this, transformers use layer normalization.



LAYER NORMALIZATION
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“The quick brown”

attention

feedforward



LAYER NORMALIZATION
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“The quick brown”

attention

feedforward

𝜀 

○γ β

Where 𝜀 is a small fixed constant, γ and 

β are vectors of learnable weights.

Since we scale the input by its standard 

deviation, layer normalization helps to 

prevent the activations from attaining 

very large positive or negative values.



POST-LAYER NORMALIZATION

7[Vaswani et al., 2017]

The original transformer paper 

used post-layer normalization.

Layer normalization was 

applied on the residual stream 

(i.e., after residual connection).

attention

feedforward



PRE-LAYER NORMALIZATION
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Xiong et al., 2020, proposed 

moving the layer normalization 

before the attention and FF blocks. attention

feedforward



PRE-LAYER NORMALIZATION
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• Xiong et al., 2020, showed that the magnitudes of the gradients are more 
uniform across layers when using pre-layer normalization.

• Hypothesis: Learning occurs at a more uniform rate across layers when using 
pre-layer norm.



PRE-LAYER NORMALIZATION
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• Measure empirical performance on masked language modeling, semantic 
similarity (Microsoft Research Paragraph Corpus), and textual entailment 
(Recognizing Textual Entailment dataset).



PRE-LAYER NORMALIZATION
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• Measure empirical performance on machine translation.



PRE-LAYER NORMALIZATION
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• Measure empirical performance on machine translation.



RMS NORMALIZATION
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• Zhang and Sennrich, 2019, proposed a simpler alternative to layer 
normalization, called root mean square layer normalization, or RMSNorm.

𝜀 

○γ β

   where 𝜀 is a small fixed constant, γ and β are vectors of learnable weights.

○γ  where =
1

𝑛
σ𝑗=1

𝑛 𝑥𝑖,𝑗
2

• Note that RMSNorm is faster to compute.



RMS NORMALIZATION
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• Measure empirical performance on machine translation.



RMS NORMALIZATION
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• Measure empirical performance on question answering.



PRE-LAYER NORMALIZATION AND RMSNORM
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• GPT-2 used pre-layer normalization.

attention

feedforward



PRE-LAYER NORMALIZATION AND RMSNORM
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• GPT-2 used pre-layer normalization.

• Recent models (e.g., LLaMA and 

DeepSeek) typically use pre-layer 

normalization with RMSNorm.
attention

feedforward



TRANSFORMER APPLICATIONS
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• Recall that RNNs can be used in a wide variety of architectures.



TRANSFORMER APPLICATIONS

19

• Recall that RNNs can be used in a wide variety of architectures.

• Transformers can similarly be a component in lots of different models.

1 or more transformer layers
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TRANSFORMER APPLICATIONS
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• Recall that RNNs can be used in a wide variety of architectures.

• Transformers can similarly be a component in lots of different models.

1 or more transformer layers

𝑥<𝑇𝑥+1>𝑥<3>𝑥<2> In the language modeling task, 

we often predict  tokens, where 

the  output token corresponds 

to the  input token.

The loss is computed as the sum 

of the losses of all output 

tokens.

Often called autoregressive or 

causal language modeling.



WHY THE CAUSAL MASK?
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• Recall that RNNs can be used in a wide variety of architectures.

• Transformers can similarly be a component in lots of different models.

1 or more transformer layers

𝑥<𝑇𝑥+1>𝑥<3>𝑥<2> This motivates the causal mask.

We want 𝑥<𝑖> to only attend to 

tokens that come before it.

Otherwise, it can simply cheat 

by copying 𝑥<𝑖+1>.



WHY THE CAUSAL MASK?
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• Recall that RNNs can be used in a wide variety of architectures.

• Transformers can similarly be a component in lots of different models.

1 or more transformer layers

𝑥<𝑇𝑥+1>𝑥<3>𝑥<2> With or without the causal mask, 

the model still must predict the 

token after the last token.

The model can’t “cheat” here by 

attending to future tokens.



TRANSFORMER APPLICATIONS
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• Recall that RNNs can be used in a wide variety of architectures.

• Transformers can similarly be a component in lots of different models.
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• Recall that RNNs can be used in a wide variety of architectures.

• Transformers can similarly be a component in lots of different models.

Encoder

Decoder



TRANSFORMER ENCODER-DECODER
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Transformer

encoder layer

Transformer

encoder layer

… …

𝑓<1> 𝑓<𝑇𝑥>Feature vectors …

Transformer encoder-

decoder layer

Transformer encoder-

decoder layer

… …

𝑦<2> 𝑦<𝑇𝑦+1>…

𝑦<1> 𝑦<𝑇𝑦>

The left side is the encoder.

The encoder attention layers do 

not have the causal mask.

The right side is the decoder.

The decoder attention layers 

have the causal mask.



ENCODER-DECODER
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“<start>” “<start> The”

“素早い茶色のキツネが怠
惰な犬を飛び越えます。”



ENCODER-DECODER
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“<start> The” “<start> The quick”

“素早い茶色のキツネが怠
惰な犬を飛び越えます。”



ENCODER-DECODER
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“<start> The quick” “<start> The quick brown”

“素早い茶色のキツネが怠
惰な犬を飛び越えます。”



ENCODER-DECODER
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“<start> The quick brown” “<start> The quick brown fox”

“素早い茶色のキツネが怠
惰な犬を飛び越えます。”



ENCODER-DECODER
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“<start> The quick brown 

fox”

“<start> The quick brown fox 

jumps”

“素早い茶色のキツネが怠
惰な犬を飛び越えます。”



ENCODER-DECODER
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“<start> The quick brown 

fox jumps”

“<start> The quick brown fox 

jumps over”

“素早い茶色のキツネが怠
惰な犬を飛び越えます。”



ENCODER-DECODER
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“<start> The quick brown 

fox jumps over”

“<start> The quick brown fox 

jumps over the”

“素早い茶色のキツネが怠
惰な犬を飛び越えます。”



ENCODER-DECODER
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“<start> The quick brown 

fox jumps over the”

“<start> The quick brown fox 

jumps over the lazy”

“素早い茶色のキツネが怠
惰な犬を飛び越えます。”



ENCODER-DECODER
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“<start> The quick brown 

fox jumps over the lazy”

“<start> The quick brown fox 

jumps over the lazy dog”

“素早い茶色のキツネが怠
惰な犬を飛び越えます。”



ENCODER-DECODER
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“<start> The quick brown 

fox jumps over the lazy dog”

“<start> The quick brown fox 

jumps over the lazy dog <end>”

“素早い茶色のキツネが怠
惰な犬を飛び越えます。”



TRANSFORMER ENCODER-DECODER
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Transformer

encoder layer

Transformer

encoder layer

… …

𝑓<1> 𝑓<𝑇𝑥>…

Transformer encoder-

decoder layer

Transformer encoder-

decoder layer

… …

𝑦<2> 𝑦<𝑇𝑦+1>…

𝑦<1> 𝑦<𝑇𝑦>

How does the transformer 

encoder-decoder layer 

incorporate information from 

the encoder (i.e., features)?



TRANSFORMER LAYER
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attention

feedforward



TRANSFORMER ENCODER-DECODER LAYER
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attention

feedforward

encoder-decoder attention

Features from encoder

The first attention layer has a 

causal mask.

The encoder-decoder attention 

layer does not.

What does the encoder-decoder 

attention layer look like?



TRANSFORMER ENCODER-DECODER LAYER

41[Vaswani et al., 2017]

This is Figure 1 from the 

original transformer paper.



ATTENTION LAYER
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Recall this is the circuit 

diagram for the multi-head 

attention component.



ENCODER-DECODER ATTENTION LAYER
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 are the inputs from the 

previous decoder layer.

 are the inputs from the 

encoder (i.e., features).

 is .

 is .

 is .

 is .

 is .

 is .

 is .

is .



ENCODER-ONLY AND DECODER-ONLY
ATTENTION LAYER
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So the attention layer where 

there is only 1 input is 

referred to as encoder-only 

or decoder-only.

Encoder-only attention 

layers do not have a causal 

mask.

Decoder-only attention 

layers have a causal mask.



ENCODER-ONLY AND DECODER-ONLY
TRANSFORMER LAYER
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attention

feedforward

Similarly, a transformer layer 

without encoder-decoder 

attention is called an 

encoder-only or decoder-only 

transformer layer,

depending on whether it has 

a causal mask.

Encoder-only transformers 

are also called bidirectional 

transformers.



EXAMPLE ENCODER-DECODER
TRANSFORMER MODELS
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• Some example encoder-decoder models: (trivia)

• BART (Lewis et al., 2019)

• Up to 400M parameters.

• T5 (Raffel et al., 2020)

• Up to 11B parameters.

• UnifiedQA (Khashabi et al., 2020)



EXAMPLE ENCODER-ONLY
TRANSFORMER MODELS
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• Some example encoder-only models: (trivia)

• BERT (Devlin et al., 2018)

• Up to 355M parameters.

• RoBERTa (Liu et al., 2019)

• Up to 355M parameters.

• DeBERTa (He et al., 2021)

• Up to 1.5B parameters.



EXAMPLE DECODER-ONLY
TRANSFORMER MODELS
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• Modern language models are decoder-only models. (trivia)

• GPT-2 (Radford et al., 2019)

• Up to 1.5B parameters.

• GPT-3 (Brown et al., 2020)

• Up to 175B parameters.

• GPT-4 (OpenAI, 2023)

• (unofficial) Up to 1.7T parameters (111B per expert).

• LLaMA 3 (Meta, 2024)

• Up to 405B parameters.

• DeepSeek-V3 (DeepSeek-AI, 2024)

• Up to 671B parameters (37B per expert).



TRAINING ENCODER-ONLY MODELS
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• How are encoder-only models like BERT trained?

• We can’t use autoregressive language modeling since without the causal 
mask, encoder-only transformers can “cheat” by copying the next token.

Encoder-only transformer

“The” “quick” “brown”

“quick” “brown” “fox”



TRAINING ENCODER-ONLY MODELS
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• How are encoder-only models like BERT trained?

• Instead, we use the masked language modeling task.

• Randomly replace some percentage of the input words with .

• The model’s task is to fill in the masked words/tokens.

Encoder-only transformer

“The” “quick” “fox”

“The” “quick” “brown” “fox”



TRAINING ENCODER-ONLY MODELS
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• How are encoder-only models like BERT trained?

• Measure the loss function only on the masked tokens.

Encoder-only transformer

“The” “quick” “fox”

“The” “quick” “brown” “fox”



QUESTIONS?
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