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• Given a dataset and a randomly-initialized model, how does the loss function 
change over the course of training?

• Does the loss decrease exponentially?

• Or does it follow some other trajectory?

• How much does the loss trajectory depend on the initial weights?

• If we are lucky, we may find initial weights close to the optimum.

• If we are unlucky, the initial weights may be very suboptimal.

• How much does the loss trajectory depend on the order of training examples?

• What is the variance in the loss trajectory? (over the randomness in the 
weight initialization and training example ordering)
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• The changing behavior of the model over the course of training is called 
training dynamics.

• Studying a model’s training dynamics can help us to answer the questions 
on the last slide.

• Other important questions:

• How do training dynamics depend on the model size?

• E.g., number of layers, model dimension, embedding dimension, etc.

• How do training dynamics depend on hyperparameters?

• E.g., learning rate, batch size, etc.



TRAINING DYNAMICS

4

• A predictive model of training dynamics would enable us to make 
predictions such as:

• How much training data do we need to achieve a target loss?

• How large of a model do we need to achieve a target loss?

• This was the goal of Kaplan et al., 2020.

• They trained decoder-only transformers on the autoregressive language 
modeling task.
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• Kaplan et al., 2020, trained transformers with varying .
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• Instead, plot the test loss vs. floating point operations (FLOPs).
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Note: PF-days means 

petaflop/s-days.

1 PF-day is equal to the total 

compute produced by a 1 

petaflop/s device over 1 day.
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• Instead, plot the test loss vs. floating point operations (FLOPs).
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For language modeling, the loss 

curve looks very regular.

Each trajectory has a clear “L”-

shape,

With an inflection point where 

the loss stops decreasing 

quickly.

Notice that loss continues to 

decrease after this inflection 

point, just not as fast.



TRAINING DYNAMICS

8

• Instead, plot the test loss vs. floating point operations (FLOPs).
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Loss trajectories on other tasks 

are not always so nice-looking.

You can try this on many other 

tasks and loss trajectories can 

be much more irregular.
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• Use a log scale for both x and y axes.

Note the term “compute” in the 

x-axis doesn’t refer to the total 

training time for a given model.

It refers to the optimal compute:

How much compute do you need 

to reach the “inflection point” 

where loss stops decreasing 

quickly.
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• Use a log scale for both x and y axes.

To change the optimal compute, 

we changed the size of the 

model.

Optimal compute is a function of 

model size.
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• Plot the test loss at the “inflection point” vs model size.
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• These results depend on having sufficient training data.

• What if we use less data? What is the test loss at the optimal compute point 
(i.e., “inflection” point) after training on smaller datasets?

Smaller models do not benefit from 

more data beyond a specific amount 

(the “optimal data size”).

They begin to underfit when provided 

with data beyond this limit.
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• Plot the test loss at the optimal compute point vs optimal data size.
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a function of the model size 

(i.e., number of parameters).
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• These patterns were termed “scaling laws”.

• How predictive are these formulas?

• If we increase the model size infinitely, what do these formulas predict?
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• A priori, do we know anything about the behavior of language models in the 
limit of infinite parameters?

• Can we place a lower bound on the loss?
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• A priori, do we know anything about the behavior of language models in the 
limit of infinite parameters?

• Can we place a lower bound on the loss?

Recall the cross-entropy loss:

σ σ

Where  is the  input example,

 is the model’s predicted probability 

that the output is ,

 is the  output (ground truth).
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• A priori, do we know anything about the behavior of language models in the 
limit of infinite parameters?

• Can we place a lower bound on the loss?

Recall the cross-entropy loss:

σ σ

Since the ground-truth outputs are not 

probabilistic in language modeling, simplify:

− σ

When is the loss function equal to zero?

Can language models ever reach zero loss?
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• There is inherent uncertainty in natural language.

• At the level of individual words, there are words that have the same 
meaning and can often be used interchangeably (i.e., synonymy).
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• At the sentence level, there are 
multiple ways to express the same 
idea.

• I.e., there are many ways to 
express ideas that are 
semantically-equivalent.

• Language is very rich and messy.
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• Another way to think about cross-entropy loss: (trivia)

σ σ

σ 𝔼 ( )

σ 𝔼 ( ) ( ) − ( ) +

σ 𝔼 ( ) ( ) −
( )

σ 𝔼 ( ) ( ) σ 𝔼 ( )
( )

 σ  

 is the entropy of the distribution 

.

 is the KL-divergence 

between the distributions  and .

You can think of KL-divergence as a 

“distance” between probability 

distributions.
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• Another way to think about cross-entropy loss: (trivia)

σ σ

σ 𝔼 ( )

σ 𝔼 ( ) ( ) − ( ) +

σ 𝔼 ( ) ( ) −
( )

σ 𝔼 ( ) ( ) σ 𝔼 ( )
( )

 σ  

The cross-entropy loss is the sum of:

(1) the entropy of the ground truth 

distribution 

(2) and the KL divergence between the 

ground truth distribution  and 

the model’s predicted distribution 

.

Cross-entropy is minimized when the 

KL divergence term is 0.

The cross-entropy loss can not be 

smaller than the entropy of natural 

language.
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• Scaling laws are empirical.

• They are not supported by any theory that would suggest they necessarily 
generalize to arbitrarily large models/compute.
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• In this sense, the term “law” is 
somewhat of a misnomer.

• But this term has stuck around.
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• If we have a function on a log-log plot that looks like a line, what is the form 
of the function?
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• If we have a function on a log-log plot that looks like a line, what is the form 
of the function?

• Functions of this form are called power laws.

• A power law can also define a probability distribution:

• This distribution is called a Zipf distribution if  is discrete, and a Pareto 
distribution if  is continuous.

• They are everywhere in natural data, especially in language.
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on moon of solar flares of wars
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• We can use scaling laws to compare different architectures.

[Kaplan et al., 2020]
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• Why do transformers scale better?

• For a given output sequence of tokens, measure the loss for each token.

LSTM

Transformer

[Kaplan et al., 2020]
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• Both models have high loss for the earlier tokens, since they don’t have 
much context to make accurate predictions.

LSTM

Transformer

[Kaplan et al., 2020]
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• Both models perform similarly until ~100 tokens, where the transformer is 
clearly better able to incorporate long-term information across the context.

LSTM

Transformer

[Kaplan et al., 2020]
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• Scaling laws can help us compare one transformer architecture vs another.

• E.g., is it better to have large  or ?

[Kaplan et al., 2020]

It seems like having the 

two be similar is best 

(perhaps with  slightly 

larger than ).
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• Scaling laws can help us compare one transformer architecture vs another.

• E.g., is it better to have more layers or large ?

[Kaplan et al., 2020]

It seems like a ratio of    

/  of around 20-

100 is best.

This doesn’t seem to depend 

strongly on model size.
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• Scaling laws can help us compare one transformer architecture vs another.

• How many layers is best?

[Kaplan et al., 2020]

It seems that so long as the 

number of layers is at least 2,

the number of layers does not 

have as large of an effect on 

model performance as 

compared to .
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• We have to take care not to overgeneralize scaling laws.

• As mentioned earlier, they are empirical patterns.

• We don’t have a strong reason to believe they will generalize arbitrarily.

• One important caveat: All observations shown thusfar are on the 
autoregressive language modeling task.

• A natural follow-up question: What do scaling laws look like for other tasks?
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• Train an autoregressive transformer to predict pixels of 8x8 images.

• “Image modeling”

Notice the additional 

constant term in the fitted 

function (601.54).

The scaling law predicts 

that, even with infinite 

compute, the loss will never 

go below 601.54.

[Henighan*, Kaplan*, Katz* et al., 2020]
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• Train an autoregressive transformer to predict pixels of 8x8 images.

• “Image modeling”

We must take care when 

interpreting this asymptote.

The law does not predict 

that no model will ever do 

better than ~601.54 loss.

It predicts this particular 

model will not do better 

than a loss of ~601.54.

[Henighan*, Kaplan*, Katz* et al., 2020]
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• Train an autoregressive transformer to predict pixels of 8x8 images.

• “Image modeling”

Other models or 

architectures may have 

better asymptotic scaling.

Or perhaps using different 

training data, or training 

methods, can provide 

better asymptotic scaling.

[Henighan*, Kaplan*, Katz* et al., 2020]
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• Task: Generate an image from text.

[Henighan*, Kaplan*, Katz* et al., 2020]
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• Task: Generate text from an image.

[Henighan*, Kaplan*, Katz* et al., 2020]
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• Task: Predict the next frame in a video (64x64 pixels per frame).

Note that the fitted scaling 

law doesn’t explain the 

behavior of smaller models.

There seems to be multiple 

“regimes” of scaling:

Smaller models benefit more 

from additional compute.

Larger models do not benefit 

as much (there are 

diminishing returns).

[Henighan*, Kaplan*, Katz* et al., 2020]
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• Task: Out-of-distribution mathematical problem solving.

[Henighan*, Kaplan*, Katz* et al., 2020]
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• There are some tasks on which LMs have very weird scaling behavior.

• One such task is called “Memo Trap”:

• “Absence makes the heart grow fonder” is a common expression.

• But the prompt specifically asks the model not to generate it.

[McKenzie et al., 2023]
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• Scaling results on “Memo Trap” task:

• This is counterintuitive:

• Larger models perform worse.

• This is called inverse scaling.

[McKenzie et al., 2023]
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• Another example task:

• Instructions are provided at 
the beginning of the prompt.

• But the test input contains 
“fake instructions.”

• This is a way to attack LMs 
and change their behavior.

• Prompt injection

[McKenzie et al., 2023]
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• Scaling results on prompt injection task:

[McKenzie et al., 2023]
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• Wei and Kim et al. (2023) found that further 
scaling can cause inverse scaling to become 
“U-shaped.”

• This is a demonstration that scaling laws are 
empirical patterns.

• They do not necessarily predict with 
certainty how models will behave at 
larger scales.

[Wei and Kim et al., 2023]
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• We know that the entropy of natural language is not zero,

• So there must be a point at which larger model sizes no longer meaningfully 
reduce the cross-entropy loss.

• Language model data often contains other tasks, such as math and 
reasoning problems.

• To further minimize loss, LMs need to perform well on these tasks, too.

• What is this point?

• Have current models reached this point?

• Developers of the largest models have stopped reporting loss values.

• So only the developers know the answer to this.
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• But we can piece together some information:

But notice the y-axis is 

not log scale.

[OpenAI, GPT-4 Technical Report, 2023]
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• But we can piece together some information:

[Welch Labs, youtu.be/5eqRuVp65eY, 2024]



QUESTIONS?
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