TowarDs GENERAL NATURAL LANGUAGE UNDERSTANDING WITH
ProBaBILIsSTIC WORLDBUILDING

ABULHAIR SAPAROV

December 2021
CMU-ML-21-[TODO]

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee
toM MITCHELL, Chair
WILLIAM COHEN
FRANK PFENNING
VIJAY SARASWAT

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

Abulhair Sararov © December 2021

Add dedication here.

ABSTRACT

We introduce the Probabilistic Worldbuilding Model (PWM), a new
fully-symbolic Bayesian model of semantic parsing and reasoning, as
afirst step in a research program toward more domain- and task-general
NLU and Al Humans create internal mental models of their observa-
tions which greatly aid in their ability to understand and reason about
a large variety of problems. In PWM, the meanings of sentences, ac-
quired knowledge about the world, and intermediate proof steps in
reasoning are all expressed in a unified human-readable formal lan-
guage, with the design goal of interpretability. PWM is Bayesian,
designed specifically to be able to generalize to new domains and
tasks. We derive and implement an inference algorithm that reads sen-
tences by parsing and abducing updates to its latent world model that
capture the semantics of those sentences. We show that PWL is able
to utilize acquired knowledge to resolve ambiguities during parsing,
such as prepositional-phrase attachment, pronominal resolution, and
lexical ambiguity, and is able to understand sentences with more com-
plex semantics, such as definitions of new concepts. Additionally, we
evaluate PWL on two out-of-domain question-answering datasets: (1)
ProofWriter and (2) a new dataset we call FictionalGeoQA, designed to
be more representative of real language but still simple enough to focus
on evaluating reasoning ability, while being robust against heuristics.
Our method outperforms baselines on both, thereby demonstrating its
value as a proof-of-concept.

ACKNOWLEDGEMENTS

Put your acknowledgements here.
Many thanks to everybody who already sent me a postcard!

Regarding the typography and other help, many thanks go to Marco
Kuhlmann, Philipp Lehman, Lothar Schlesier, Jim Young, Lorenzo
Pantieri and Enrico Gregorio®, Jorg Sommer, Joachim Kostler, Daniel
Gottschlag, Denis Aydin, Paride Legovini, Steffen Prochnow, Nicolas
Repp, Hinrich Harms, Roland Winkler, and the whole IXIEX-community
for support, ideas and some great software.

Regarding LyX: The LyX port was initially done by Nicholas Mariette in
March 2009 and continued by Ivo Pletikosi¢ in 2011. Thank you very
much for your work and the contributions to the original style.

1 Members of GulT (Gruppo Italiano Utilizzatori di TEX e I&TEX)

vii

CONTENTS

1 INTRODUCTION 1
1.1 Relatedwork

1.2 Outline oo 8

2 ARCHITECTURE OVERVIEW 11

2.1 Background: Markov chain Monte Carlo 11

2.2 Probabilistic Worldbuilding Model 13

2.3 Probabilistic Worldbuilding from Language 15

2.4 Keydesignchoices 22

3 REASONING MODULE 27

3.1 Background: Dirichlet processes 27

32 Model. 28

3.2.1 Generative process for the theory p(T) 28

3.2.2 Generative process for the proofsp(i jT) ... 41

3.3 Inference and implementation 44

3.3.1 Computing the semantic prior p(X jX) 50

3.4 Key design choices and future directions 51

4 LANGUAGE MODULE 57

4.1 Background: Hierarchical Dirichlet processes 58

4.1.1 Hierarchical Dirichlet processes 59

4.1.2 Inferring the sourcenodex 63

4.1.3 Infinite hierarchies 66

4.1.4 Modeling dependence on discrete structures . . 67

4.2 Model: semantic grammar 69

4.2.1 Generative process 70

4.2.2 Selecting productionrules 71

4.2.3 Modeling morphology 73

4.3 Inference and implementation 75

431 Training 75

432 Parsing 77

4.3.3 Generatingsentences 84

4.4 Semantic parsing experiments on GEOQuERy and Joss . 86

4.5 Domain-general grammar and semantic formalism . . . 9o

4.5.1 Intra-sentential coreference 99

4.5.2 Data structure for sets of logical forms 101

453 Training 122

46 Relatedwork 126

47 Futurework 126

4.7.1 Shortcomings of the grammatical framework . . 126

4.7.2 Shortcomings of the grammar. 128

ix

CONTENTS

4.73 Modelingcontext

5 END-TO-END EXPERIMENTS
5.1 Resolving syntactic ambiguities
5.2 Reasoning over sizesofsets
5.3 Question-answering in ProofWriter
5.4 Question-answering in FictionalGeoQA
5.5 SUmMmMary

6 CONCLUSIONS AND FUTURE WORK
6.1 High-level conclusions
6.2 Reasoning module: conclusions and future work
6.3 Language module: conclusions and future work
6.4 Future of natural language understanding

BIBLIOGRAPHY

133
133
151
153
156
165

167
167
168
171
173

175

LIST OF FIGURES

Figure 1

Figure 2

Figure 3

Figure 4

Schematic of the generative process and infer-
ence in our model, with an example of a theory,
generating a proof of a logical form which itself
generates the sentence “Bob isamammal.” Dur-
ing inference, only the sentences are observed,
whereas the theory and proofs are latent. Given
sentence Yj, the language module outputs the
logical form. The reasoning module then infers
the proof j of the logical form and updates the
posterior of the theory T.
An example from FicrioNnaLGEOQA, a new fic-
tional geography question-answering dataset that
we created to evaluate reasoning in natural lan-
guage understanding.
Graphical model representation of PWM. Shaded

nodes indicate observed random variables, whereas

unshaded nodes indicate unobserved (i.e. la-
tent) random variables. T, j, and are each
composed of many random variables, but they
are omitted here for illustration.
An example from the seed training set of PWL,
labeled with thelogical form and derivation tree
(i.e. syntax tree). This example helps to train the
parser in PWL. The semantic formalism for the
logical form is detailed in section 4.5. Details on
the grammar model of the language module are
provided in section 4.2. Note that the derivation
tree label is not necessary, as we will provide
a training algorithm in section 4.3.1 that only
uses sentences with logical form labels, and se-
mantic parsing experiments in section 4.4 where
derivation tree labels are not included in train-
ing. In the above example derivation tree, 3rD
is a morphological flag that indicates the third
person, rres indicates present tense, and sur
indicates superlative. Semantic transformation
functions are omitted for brevity.

Xi

Xii

List of Figures

Figure 5

Figure 6

The search tree of the branch-and-bound algo-
rithm during the parsing of the sentence “Penn-
sylvania borders NJ.” In this diagram, each block
is a search state, which represents a set of log-
ical forms and derivation trees. The blue as-
terisk = denotes the set of all possible logical
forms, whereas the black asterisk * denotes the
set of all possible derivation (sub)trees. The
gray-colored search states are unvisited by the
parser, since their upper bounds on the objec-
tive function are smaller than that of the com-
pleted parse at the bottom of the diagram (-
6.74), thus allowing the parser to ignore a very
large number of improbable logical forms and
derivations. For simplicity of illustration, the
example here uses a simplified grammar and
logical formalism, and the branching steps are
simplified. The recursive optimization of the
derivation subtrees for N and VP are not shown,
which have their own respective search trees.
This algorithm is described in greater detail in
section4.3.2.
Anexample where PWL reads the sentence “Sally
caught a butterfly with a net,” which is a clas-
sical example of a sentence with prepositional
phrase attachment ambiguity: “withanet” could
either attach to “butterfly” or “caught.” In PWL,
“reading” a sentence is divided into two stages:
(1) find the k most likely logical forms, ignoring
the prior probability of each logical form con-
ditioned on the theory, and (2) for each logical
form in the list, computing its prior probability
conditioned on the theory and then re-ranking
the list accordingly. The output of the first stage
is shown in the top table, and the output of the
second stage is shown in the bottom table. In
this example, the theory contains the axiom that
no butterflies have a net, which itself is the re-
sult of having read the sentence “No butterfly
has a net.” The log probabilities in the bottom
table are unnormalized. The semantic formal-
ism for the logical forms is detailed in section

A5 o e e

18

Figure 7

List of Figures

An example of PWL abducing the posterior dis-
tribution of the theory given two logical forms:
X1 is the meaning of “A butterfly has a spot,”
and Xz is the meaning of “Sally caught a butter-
fly with aspot.” PWL does not represent the full
posterior distribution, but rather it keeps sam-
ples of the Markov chain that serve as an ap-
proximation of the posterior. Additional sam-
ples from the posterior can be produced by per-
forming additional Metropolis-Hastings itera-
tions, starting from the last sample. The proofs
for each logical form 1 and > are not shown
here for brevity, but 1 is shown in figure 8.
Note that after adding the logical form X in the
top-right of the figure (the meaning of “Sally
caught a butterfly with a spot”), the theory con-
tains many more axioms. For example, there
are two butterflies: cg is the butterfly with a
spot, and Cs is the butterfly that Sally caught.
But since the prior distribution of the theory
T favors smaller and more parsimonious the-
ories, and Metropolis-Hastings tends to visit
samples with higher and higher probabilities,
then after 400 iterations, these two butterflies
were merged into a single entity cg, thus sim-
plifying the overall theory. Figure 8 shows a
sample of 1, which is the abduced proof of
the first logical form. Section 3.3 describes this
algorithm in more detail.

19

xiii

Xiv

List of Figures

Figure 8

Figure 9

The “theory abduction” procedure in PWL takes
as input the logical form shown at the bottom
of this figure, which has the meaning of “A but-
terfly has a spot.” The output of this procedure
is the abduced proof of this logical form shown
here, whose axioms constitute the abduced the-
ory (labeled “Ax”). The example in figure 7
shows the output abduced theory, where X is
the logical form shown here in figure 8 and the
above proof is 1. Each horizontal bar denotes
a proof step. Steps labeled “Ax” are axioms.
These are the axioms that constitute the theory
T, and are shown in the samples of T in figure
7. The steps labeled “*” are conjunction in-
troduction steps, where if we are given that A
and B are true, we conclude that A ™ B is true.
The steps labeled “91” are existential introduc-
tion steps, where if we are given that [x A c]is
true where X is a variable and ¢ is a symbol and
[x A c]isthe formula where X is substituted
with ¢, then we can conclude that 9x. is true.
The conclusion of the proof is the logical form
for the sentence “A butterfly has a spot.” .
An example of a proof of (A - A). The proof
starts with the axiom A ZA. By conjunction
elimination ("E), we conclude from this axiom
that both A and - A are true. By negation elimi-
nation (- E), we conclude from the fact that both
A and :A are true that there is a contradiction
?. Finally, from the contradiction, via negation
introduction (:I), we conclude that the nega-
tion of the original axiom is true: (A - A).
The tree structure of natural deduction proofs
is visible in this example, where the two leaves
are the axioms at the top and the root is the
conclusion at the bottom.

20

Figure 10

Figure 11

Figure 12

List of Figures

Example of a grammar in our framework. This
example grammar operates on logical forms of

the form predicate(first arqument, second argument).

The semantic function select_argl returns the
first argument of the logical form. Likewise, the
function select_arg2 returns the second argument.
The function delete_argl removes the first argu-
ment, and identity returns the logical form with
no change. In our work, the interior production
rules (the first three listed above) are examples of
rules that we specify, whereas the terminal rules and
the posterior probabilities of all rules are learned via
grammar induction. A simplified semantic repre-
sentation is shown here for the sake of illustration.
PWM uses a richer semantic representation. Section
4.2.2 providesmoredetail.
Example of a derivation tree under the gram-
mar given in Figure 10. The logical form corre-
sponding to every node is shown in blue beside
the respective node. The logical form for V is
borders(,nj) and is omitted to reduce clutter.

Example of a derivation tree under a grammar
with a model of morphology. The logical form
corresponding to every node is shown in blue
beside the respective node. The logical form for
V is borders(,nj)[3rp,rrES] and is omitted to re-
duce clutter. Morphology is not modeled for proper
nouns such as “Pennsylvania” and “NJ.”

69

70

XV

XVi

List of Figures

Figure 13

Figure 14
Figure 15

Figure 16

The search tree of the branch-and-bound algo-
rithm during parsing. In this diagram, each
block is a search state, which represents a set
of derivation trees. The blue asterisk * denotes
the set of all possible logical forms, whereas
the black asterisk * denotes the set of all pos-
sible derivation (sub)trees. Note only the logi-
cal form at the root node is shown. The gray-
colored search states are unvisited by the parser,
since their upper bounds on the log posterior
are smaller than that of the completed parse at
the bottom of the diagram (-6.74), thus allowing
the parser to ignore a very large number of im-
probable logical forms and derivations. In this
example, we use the grammar from figure 10.
The branching steps here are simplified for the
sake of illustration. The recursive optimization
of the derivation subtrees for N and VP are not
shown, which have their own respective search
frees. oo
Examples of sentences and logical form labels
from GEOQUERY.
Examples of sentences and logical form labels
fromJoBs.
Results of semantic parsing experiments on the
GeoQuery and Jobs datasets (Saparov, Saraswat,
and Mitchell, 2017). Precision, recall, and F1
scores are shown. The methods in the top por-
tion of the table were evaluated using 10-fold
cross validation, whereas those in the bottom
portion were evaluated with an independent
test set. As a consequence, the methods evalu-
ated using 10-fold cross validation were trained
on 792 GEoQuUERY examples and tested on 88
examples for each fold (hence the additional
supervision label “A” in the above table). In
contrast, the methods evaluated using an in-
dependent test set were trained on 600 GEeo-
Query examples and tested on 280 examples.
The domain-independent set of interior pro-
duction rules (labeled “D” in the above table)
is described in section 4.2.2.

86

List of Figures ~ xvii

Figure 17 Examples of sentences generated from our trained
grammar on logical forms in the GEoQUERY test
set (Saparov, Saraswat, and Mitchell, 2017). Gen-
eration is performed by computing arg maxy, ¢
p(y ,t jXx ,t)asdescribed in section 4.3.3. .. 89

Figure 18 An example from the seed training set of PWL,
labeled with the logical form and derivation
tree (i.e. syntax tree). This example helps to
train the parser in PWL. Note that the deriva-
tion tree label is not strictly necessary, as the
training algorithm in section 4.3.1 can infer the
latent derivation trees from sentences with logi-
cal form labels. In the above example derivation
tree, 3rD is a morphological flag that indicates
the third person, rres indicates present tense,
and sur indicates superlative. Semantic trans-
formation functions are omitted for brevity. . . 123

Figure 19 Anexample where PWL reads the sentence “Sally
caught a butterfly with a net,” which is a clas-
sical example of a sentence with prepositional
phrase attachment ambiguity: “withanet” could
either attach to “butterfly” or “caught.” In PWL,
“reading” a sentence is divided into two stages:
(1) find the 4 most likely logical forms, ignoring
the prior probability of each logical form con-
ditioned on the theory, and (2) for each logical
form in the list, computing its prior probability
conditioned on the theory and then re-ranking
the list accordingly. The output of the first stage
is shown in the top table, and the output of
the second stage is shown in the bottom table.
In this example, PWL has previously read “No
butterfly has a net,” and added its logical form
to the theory. As a result, the reasoning module
is unable to find a theory that explains the log-
ical form where the butterfly has the net, and
so the prior probability of that logical form is
zero. The log probabilities in the bottom table
are unnormalized. 134

xviii

List of Figures

Figure 20

Figure 21

Figure 22

Figure 23

An example where PWL reads the sentence “A
butterfly has a spot and it is blue,” which is
an example of a sentence with an ambiguous
pronoun: “it” could either refer to “butterfly” or
“spot.” The output of the first stage of reading
is shown in the top table (after intra-sentential
coreference resolution), and the output of the
second stage is shown in the bottom table. In
this example, PWL has previously read “The
spot is red,” “No red thing is blue,” and “A
butterfly has a spot,” and added their logical
form to the theory. As a result, the reasoning
module is unable to find a theory where the
spot is blue, and so the prior probability of that
logical form is zero. The log probabilities in the
bottom table are unnormalized.
An example where PWL reads the sentence “Mi-
nas Tirith is the largest city,” which is an ex-
ample of a sentence with an ambiguous word:
“largest city” could either refer to the city with
the largest area or the largest population. The
output of the first stage of reading is shown in
the top table, and the output of the second stage
is shown in the bottom table. In this example,
PWL has previously read “The area of Minas
Tirith is 1.4 square kilometers,” “The area of
Pelargir is 3.7 square kilometers,” and “Pelargir
is a city,” and added their logical form to the
theory. As a result, the reasoning module only
finds lower probability theories in which Minas
Tirith is the city with the largest area (an ex-
ample of such a theory is one where there are
two cities named Minas Tirith, one of which has
area at least 3.7 sq km). The log probabilities in
the bottom table are unnormalized.
Histogram of the size of the set of fish (i.e. the
number of fish), from the MH samples of the
theory, after reading the sentences “There are
30 red or blue things,” and “Every fish is red or
blue.”
Histogram of the size of the set of fish (i.e. the
number of fish), from the MH samples of the
theory, after reading the sentences “There are
30 red or blue things,” “Every fish is red or
blue,” and “There are six red fish.”

Figure 24

Figure 25

Figure 26

Figure 27

Figure 28

Figure 29

List of Figures ~ xix

Histogram of the size of the set of fish (i.e. the
number of fish), from the MH samples of the
theory, after reading the sentences “There are
30 red or blue things,” “Every fish is red or
blue,” “There are six red fish,” and “There are
24bluefish.” 152
Histogram of the size of the set of fish (i.e. the
number of fish), from the MH samples of the
theory, after reading the sentences “There are
30 red or blue things,” “Every fish is red or
blue,” “There are six red fish,” “There are 24
blue fish,” and “No fish is red and blue.” 153
Histogram of the size of the set of fish (i.e. the
number of fish), from the MH samples of the
theory, after reading the sentences “There are
35 red or blue things,” “Every fish is red or
blue,” “There are six red fish,” “There are 24

blue fish,” and “No fish is red and blue.” 153
An example from the Birds1 section in the PRooFWRITER
dataset. Its labelistrue. 155

Another example from the Electricityl section

in the PrRoorFWRrITER dataset. Its label is un-
known. However, under classical logic, the query

is provably true from the information in the 1st,

3rd, and 4th sentences. This is not typical; clas-

sical and intuitionistic logic produce the same
result for most examples in the PROOFWRITER
dataset. L. 155
An example from FictioNnaLGEOQA, a new fic-
tional geography question-answering dataset that

we created to evaluate reasoning in natural lan-
guage understanding. 158

LIST OF TABLES

Table 1

Table 2

Table 3

Table 4

XX

A list of the Metropolis-Hastings proposals im-
plemented in PWL thus far. N, here, is anormal-
ization term: N = jJAj +jUj+|Cj+Pj+ jMj+
jSj where: A is the set of grounded atomic
axioms in T (e.g. square(c1)), U is the set of
universally-quantified axioms that can be elim-
inated by the second proposal, C is the set of ax-
ioms thatdeclare thesize of aset(e.g. size(A) =
4), P is the set of nodes of type __I, ¥ I, or 9I (and
also disproofs of conjunctions, if using classical
logic) in the proofs 1,:::, n, M is the set of
“mergeable” events (described above), and S is
the set of “splittable” events. In our experi-
ments, =2and =0001.
Design choices in the representation of the mean-
ing of the sentence “Alex wrote a book.” To
avoid clutter, atoms that convey tense/aspect
information are omitted from the logical forms.
Zero-shot accuracy of PWL and baselines on the
ProorWRITER dataset.
Zero-shot accuracy of PWL and baselines on the
FictioNaALGEOQA dataset.

LIST OF ALGORITHMS

Algorithm 1

Algorithm 2

Algorithm 3

Given a higher-order logic formula A, with free
variables X1,:::,Xn, this algorithm computes
the maximal set of n-tuples (v1,1,:::,Vin), :::,
(VN1 ii0,VNn) such that for each i, Alx; A
Vi1,:::,Xn A Vjn] (le. the formula A where
each variable Xj is substituted with the value
Vj j) is provably true from the axioms in the the-
ory. The elements of the tuples v; j are restricted
to be either constants, numbers, or strings. Note
that this function does not exhaustively con-
sider all proofs of A. This function uses the
helper function unify which performs unifica-
tion: given two input formulas A and B, unify (
A,B) computes and 0 where maps from
variables in A to terms, maps from variables
in B to terms, such that the application of
to A is identical to the application of ° to B:
(A) = '(B). In this algorithm (and its helper
functions), unify only returns for brevity. . .
Helper functions used by algorithm 1. prov-
able_by_theorem checks whether the formula
Aisprovable from axioms of theform ¥ or
8x1:::8Xk(¥). provable_by_exclusion
checks whether A would imply that the number
of provable elements of any set is greater than
its size, which would be a contradiction, thereby
proving tA. o
Given a higher-order logic formula A, with free
variables X1,:::,Xn, this algorithm computes
the maximal set of n-tuples (v1,1,:::,Vin), :::,
(VN1 i, VNen) such that for each i, Alx; A
Vi1,:::,Xn ® Vijn] (le. the formula A where
each variable Xj is substituted with the value
Vj j) is provably false from the axioms in the the-
ory. The elements of the tuples v; j are restricted
to be either constants, numbers, or strings. Note
that this function does not exhaustively con-
sider all proofsof “A.

31

33

xxi

Xxxii

LIST OF ALGORITHMS

Algorithm 4

Algorithm

Algorithm

Algorithm

Algorithm

Algorithm

Algorithm

Algorithm

Algorithm

Algorithm

Algorithm

Algorithm

5

6

10

11

12

13

14

15

Helper function used by algorithm 3 that re-
turns the values of the free variables that make
the given existentially-quantified formula prov-

ablyfalse. 36
Modified Bron-Kerbosch algorithm to find the
disjoin’i:;hque of vertices C1,:::,Ck that maxi-

mizes Ii(=1 w(cj), where w(cj) is the weight
of the vertex cj, each c;j is a descendant of the
given input vertex v, and for all i & j, the set
corresponding to the vertex c; is disjoint with
the set corresponding tocj. 39
Pseudocode for proof initialization. If any new
axiom violates the deterministic constraints in
section 3.2.1.1, the function returns null. 45
Helper function for init_proof (shown in al-
gorithm 6) that returns a proof that the given
formula A is false. If any new axiom violates the
deterministic constraints in section 3.2.1.1, the
function returnsnull. 46

Pseudocode for a generic brand-and-bound al-
gorithm for k-best discrete optimization. 64
Pseudocode for branch in the branch-and-bound
algorithm for the parser, which aims to maxi-

mize equation85. 80
Pseudocode for the expand helper function, which
algorithmginvokes. 81

A modified branch-and-bound algorithm to re-
turn the k™ best element(s) that maximize(s)
the function f. Before the first call to this func-
tion, Cisinitialized as an empty list, and Q is ini-
tialized with a single element: Q. push (X, h(X))
where X is the domain on which to maximize
f. The changes to C and Q persist across subse-
quent calls to get_kth_best.. 81
Pseudocode for branch and expand in the branch-
and-bound algorithm for generating the most
likely sentence(s), given a logical form, which

aims to maximize equationg2. 85
Pseudocode for standard data structure repre-
senting a higher-order logic formula. 102

Pseudocode to compute the set intersection of
two logical form sets, each represented by the
hol_termdata structure. 104
Helper function for computing the intersection
of two sets of logical forms, where X has type
hol_any_right. 106

Algorithm

Algorithm

Algorithm

Algorithm

Algorithm

Algorithm

Algorithm

Algorithm

Algorithm

Algorithm

Algorithm

16

17

18

19

20

21

22

23

24

25

26

LIST OF ALGORITHMS

Pseudocode to compute the set difference of two
logical form sets, each represented by the hol_
termdata structure.
Helper function to compute the set difference
of two logical form sets where Y has type hol_
any_right. oo oo
Helper function for computing the intersection
of two sets of logical forms, where X has type
hol_any_array.
The if statement thatisadded to set_intersect_
any_right (algorithm 15) on line 87 to handle
the case where Y has type hol_any_array. . .
The if statement that is added to set_subtract
(algorithm 16) on line 20 to handle the case
where either X or Y has type hol_any_array. .
The if statement thatisadded to set_subtract_
any_right (algorithm 17) on line 49 to handle
the case that X has type hol_any_array.
Helper functions for computing the intersection
of two sets of logical forms, where X has type

hol_any_constantorhol_any_constant_except.120

The if statement thatisadded to set_intersect_
any_right (algorithm 15) on line 87 to handle

the case where Y? has type hol_any_constant

or hol_any_constant_except.
The if statement that is added to set_subtract
(algorithm 16) on line 20 to handle the case
where either X or Y has type hol_any_constant
or hol_any_constant_except.
The if statement thatisadded to set_subtract_
any_right (algorithm 17) on line 49 to handle
the case that X has type hol_any_constant or

hol_any_constant_excluded.
Pseudocode to check whether a given deriva-
tion tree t is parseable if the initial set of logical
forms is X.

116

117

118

121

121

122

XX1il

XX1V

LIST OF ALGORITHMS

Algorithm 27 Recall that in the HDP model of section 4.1.4,
each leaf node in the hierarchy corresponds to
a set of logical forms (as defined by the func-
tions get_feature and set_feature). Let Sx
be the set of logical forms that corresponds to a
leaf node in the HDP hierarchy such that x 2 S.
Given a logical form X, logical form set X, and
production rule r, this algorithm finds the ap-
propriate HDP hierarchy and then computes

ACRONYMS

DRY Don’t Repeat Yourself
APl Application Programming Interface

UML Unified Modeling Language

XXV

INTRODUCTION

Despite recent progress in Al and NLP producing algorithms that
perform well on a number of NLP tasks, it is still unclear how to
move forward and develop algorithms that understand language as
well as humans do. In particular, large-scale language models such as
BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019), GPT-3 (Brown
et al.,, 2020), XLNet (Yang et al., 2019), and others were trained on a
very large amount of text and can then be applied to perform many
different NLP tasks after some fine-tuning. In the case of GPT-3, some
tasks require very few additional training examples to achieve state-
of-the-art performance. As a result of training on text from virtually
every domain, these models are domain-general. This is in contrast
with NLP algorithms that are largely trained on one or a small handful
of domains, and as such, are not able to perform well on new domains
outside of their training. Despite this focus on domain-generality, there
are still a large number of tasks on which these large-scale language
models perform poorly (Dunietz et al., 2020). Many such tasks require
the ability reason, often with multiple hops, and /or with hard logical
constraints such asnegation. Other tasks require models to understand
compositional semantics (Nie, Wang, and Bansal, 2019). These models
often learn to rely on syntactic heuristics to avoid having to do semantic
analysis or reasoning, and so they do not perform well on tasks that
are more carefully crafted to be robust against such heuristics, such
as HANS dataset for natural language inference (McCoy, Pavlick, and
Linzen, 2019). As a consequence, these models often fail in real-world
scenarios when presented with a challenge example from outside the
dataset on which it was trained. The limitations of today’s state-of-
the-art methods become evident when comparing with the human
ability to understand language (Bender and Koller, 2020; Gardner et
al., 2019; Linzen, 2020; Tamari et al., 2020). Humans create rich mental
models of the world from their observations which provide superior
explainability, reasoning, and generalizability to new domains and
tasks. These issues are not unique to NLP (Lake et al., 2016). How
do we, as a field, get from today’s state-of-the-art models to more
general intelligence? What are the next steps to develop algorithms
that can generalize to new tasks at the same level as humans? The
lack of interpretability in many of these models makes these questions
impossible to answer precisely. One promising direction is to change
the evaluation metric: Brown et al. (2020), Linzen (2020), and many
others have suggested zero-shot or few-shot accuracy to measure the
performance of algorithms (i.e. the algorithm is evaluated with a new

2 INTRODUCTION

dataset, wholly separate from its training; or in the case of few-shot
learning, save for a few examples). While this shift is welcome, it alone
will not solve the above issues.

Theory
T = f mammal(alice), cat(bob), 8x(cat(x) ¥ mammal(x)), ::: ¢

Proof and logical form of it" sentence

generate proofs Ax infer theory and
from the axioms 8x(cat(x) ¥ mammal(x)) proofs from ob-
in the theory = = served logical
cat(bob) cat(bob) ¥ mammal(bob) 'E forms
mammal(bob) B

generate sentence i*" sentence I parse sentence
from logical form I > Yi= “Bobis a mammal.” to logical form

Figure 1: Schematic of the generative process and inference in our model,
with an example of a theory, generating a proof of a logical form
which itself generates the sentence “Bob is a mammal.” During
inference, only the sentences are observed, whereas the theory and
proofs are latent. Given sentence yj, the language module outputs
the logical form. The reasoning module then infers the proof ; of
the logical form and updates the posterior of the theory T.

We introduce the Probabilistic Worldbuilding Model (PWM), a proba-
bilistic generative model of reasoning and semantic parsing. Like some
past approaches, PWM explicitly builds an internal mental model,
which we call the theory (Charniak and Goldman, 1993; Hogan et al.,
2020; Mitchell et al., 2018; Tamari et al., 2020). The theory consti-
tutes what the algorithm believes to be true. PWM is fully symbolic
and Bayesian, using a single unified human-readable formal language
to represent all meaning, and is therefore inherently interpretable (i.e.
every random variable in the model is well-defined with respect to
other random variables and/or grounded primitives). Prior knowl-
edge such as the rules of deductive inference, the structure of English
grammar, knowledge of basic physics and mathematics can be incorpo-
rated by modifying the prior distributions of the random variables in
PWM. Incorporating prior knowledge can greatly reduce the amount
of training data required to achieve sufficient generalizability, and our
experiments will demonstrate that PWM is a promising first step in
this direction. Extensibility is key to future research that could enable
more general NLU and Al, as it provides a clearer path forward for
future exploration.

We present an implementation of inference under the proposed
model, called Probabilistic Worldbuilding from Language (PWL). While
PWM is an abstract mathematical description of the underlying dis-
tribution of axioms, proofs, logical forms, and sentences, PWL is the
algorithm that reads sentences, computes logical form representations
of their meaning, and updates the axioms and proofs in the theory ac-
cordingly. See figure 1 for a high-level schematic diagram of PWM and

INTRODUCTION

PWL. PWM describes the process depicted by the red arrows, whereas
PWL is the algorithm depicted by the green arrows. We emphasize
that the reasoning in PWL is not a theorem prover and is not purely de-
ductive. Instead, PWL solves a different problem of abduction, which in
some ways is computationally easier than deductive inference: Given
a set of observations, work backwards to find a set of axioms that
deductively explain the observations. It is these abduced axioms that
constitute the internal “mental model.” Humans often rely on abduc-
tive reasoning, for example in commonsense reasoning (Bhagavatula
et al., 2020; Furbach, Gordon, and Schon, 2015).

In machine learning, generality refers to the extent of an algorithm’s
ability to adapt to new domains or tasks outside of their training data.
A core principle of our approach is generality by design. Simplifying
assumptions often trade away generality for tractability, such as by
restricting the representation of the meanings of sentences, or num-
ber of steps during reasoning. PWM is designed to be domain- and
task-general, and to this end, uses higher-order logic (i.e. lambda
calculus) (Church, 1940) as the formal language, which we believe is
sufficiently expressive to capture the meaning of declarative and in-
terrogative sentences in natural language. Furthermore, PWM uses
natural deduction for reasoning, which is complete in that if a logical
form is true, there is a proof of (Henkin, 1950). The priors should
not be overly restrictive or domain-specific. But since the work in
this paper represents a first step, we make simplifying assumptions
to more quickly produce a proof-of-concept. For example, we assume
that, given the theory, the logical forms and sentences are indepen-
dent and identically distributed (i.i.d.). As a consequence, PWL is
not able to parse cross-sentential anaphora (i.e. pronouns that refer
to entities declared in other sentences). We also assume that the uni-
verse of discourse is constant. So for example, the sentence “All the
kids are sleeping” would have the meaning of every child in the uni-
verse is sleeping, rather than the more likely meaning of every child in
the current location is sleeping, though the universe can be specified
explicitly such as in the example “All the kids in Pittsburgh are sleep-
ing.” Furthermore, we assume the language is noise-less (i.e. there
are no spelling or grammar mistakes). Importantly, we make these
assumptions in full awareness of the broader context of the more gen-
eral model, leaving open a clear path for future research to relax those
assumptions. Large and complex symbolic systems, such as the one
we propose, can be difficult to initially design and implement while
maintaining a high degree of generality, but this generality can help to
avoid time-consuming redesign and reimplementation. A sufficiently
well-designed and general algorithm does not need to be significantly
adapted or retrained when applied to new tasks or domains. We do
not claim to have achieved this ideal in this work, but it is a step in

INTRODUCTION

the right direction, and is nevertheless a valuable property of more
general algorithms.
We aim to test the following hypothesis in this thesis:

A knowledge-driven architecture can be designed and trained to
understand individual sentences in documents from domains out-
side of which it was trained, construct a model of the world and
use the knowledge therein to guide semantic parsing and resolve
ambiguous interpretations, and compile and reason over the col-
lection of acquired logical forms.

The thesis statement can be dissected into four high-level claims:

1. Generality. PWL is able to read, understand, and reason over a
large and diverse set of sentences and questions, with complex
semantics, from domains of content beyond those its parser is
trained on. PWL’s use of abductive instead of deductive rea-
soning helps to ease the computational burden of this increased
generality. The highly underspecified nature of the problem of
abduction is alleviated by the probabilistic nature of PWL, as
it provides a principled way to find the most probable theories.
This ability includes, but is not limited to:

e The ability to read, understand, and reason over sentences
and questions from domains outside of the parser’s train-
ing. For instance, figure 2 is an example from a geography
question-answering dataset that we use to evaluate PWL,
but the training set for the parser contains no sentences or
proper nouns about geography. We emphasize that PWL
only sees the context and question in the example at test-
time, and no example from an evaluation dataset is included
in the training set.

e The ability to read, understand, and reason over sentences
and questions with complex semantics, such as those that
define new concepts. In the example given in figure 2, the
sentence “Every river that is shorter than 400 kilometers
is not major” declares a defining property of the concept
“major,” with which PWL must reason in order to answer
the question. Another example of sentences with complex
semantics are those that go beyond the expressivity of the
Horn clause fragment of first-order logic, such as those in-
volving classical negation.

2. Exploit world model/acquired knowledge. PWL is able to collate
acquired knowledge into an internal model of the world, and
utilize this knowledge when performing tasks. This includes,
but is not limited to:

« The ability to exploit background knowledge to resolve syn-
tactic and semantic ambiguities during parsing, thereby im-

INTRODUCTION

proving parsing accuracy. For example, the sentences “Sally
caught a butterfly with a net” and “Sally caught a butterfly
with a spot” have prepositional-phrase attachment ambigu-
ity without any knowledge of butterflies, nets, spots, etc.
We demonstrate that if PWL has previously read the sen-
tences “No butterfly has a net” or “The butterfly has a spot,”
it is able to correctly resolve this ambiguity. The sentence
“A butterfly has a spot and it is blue” contains pronominal
resolution ambiguity: “it” can refer to either the butterfly or
the spot. But if PWL has read the sentences “No red thing is
blue” and “The spotisred,” itis able to correctly resolve this
ambiguity, as well. In another example, the word “largest”
in “What is the largest state?” can refer to either largest in
terms of area or population. We demonstrate that PWL can
use knowledge acquired from previously-read sentences to
resolve such lexical ambiguities, such as whether “largest
city” refers to the city with the largest area or population.

« The ability to perform reasoning over the acquired knowl-
edge, possibly with complex semantics, such as to answer
the question in the example given in figure 2.

3. Incorporate knowledge a priori. We can capitalize on the large body
of literature from fields such as linguistics, formal semantics,
and proof theory, to provide stronger inductive biases in PWM,
greatly improving its statistical efficiency. For instance, we are
able to capitalize on the comprehensive set of English roots and
inflections of Wiktionary and correctly parse previously unseen
inflected forms of words, such as the superlative and comparative
forms of adjectives, even if they are not present in the parser’s
training data. As a more concrete example, the parser’s training
data contains the example that “longest” refers to the property
of maximizing length, and contains no examples with “long” or
“longer.” Wiktionary provides the comparative and superlative
forms of “long,” which PWM exploits to correctly parse “longer”
as indicating that the length of one object is greater than that of
another.

4. Interpretability and extensibility. All components of our proposed
architecture are fully interpretable, in the sense that the meaning
of every sentence and every fact in the theory is expressed in
a well-founded human-readable formal language. Since PWM
is Bayesian, any component or prior can be swapped out, ex-
tended, or composed with a richer or more sophisticated prob-
abilistic model, and the resulting inference algorithm will guar-
antee the correct sharing of information across all components.
Interpretability also helps researchers to determine which ex-
tensions are most useful and how to implement them in order

INTRODUCTION

Context: “River Giffeleney is a river in Wulstershire. River Wulster-
shire is a river in the state of Wulstershire. River Elsuir is a river
in Wulstershire. The length of River Giffeleney is 413 kilometers.
The length of River Wulstershire is 830 kilometers. The length of
River Elsuir is 207 kilometers. Every river that is shorter than 400
kilometers is not major.”

Query: “What rivers in Wulstershire are not major?”

Figure 2: An example from FicTioNnaLGEOQA, a new fictional geography
question-answering dataset that we created to evaluate reasoning
in natural language understanding.

to achieve new functionality. For example, although initially
designed to reason using classical logic, we were able to easily
extend PWL to use intuitionistic logic in our experiments. As
another example, a noise model would enable parsing and un-
derstanding of noisy text, and can be used suggest more accurate
autocorrections, better informed by semantics and background
knowledge.

1.1 RELATED WORK

Fully symbolic methods were commonplace in earlier Al research (Drey-
fus, 1985; Newell and Simon, 1976). However, they were oftentimes
quite brittle. All too often a new observation or input would contra-
dict the internal theory or violate an assumption, and it was not clear
how to resolve the contradiction in a principled manner and proceed.
But they do have some key advantages: Symbolic approaches that
use well-studied human-readable formal languages such as first-order
logic, higher-order logic, type theory, etc. would enable humans to
readily inspect and understand the internal processing of these algo-
rithms, effecting a high degree of interpretability (Cooper et al., 2015;
Dowty, 1981; Gregory, 2015). Symbolic systems can be made gen-
eral by design, by using a sufficiently expressive formal language and
ontology. Thus, hybrid methods have been explored to alleviate the
brittleness of formal systems while engendering their strengths, such
as interpretability and generalizability; for example, the recent work
into neuro-symbolic methods (Saha et al., 2020; Tafjord, Dalvi, and Clark,
2021; Yi et al.,, 2020). Neural theorem provers are in this vein (Rock-
taschel and Riedel, 2017). However, the proofs considered in these
approaches are based on backward chaining (Russell and Norvig, 2010),
which restricts the semantics to the Horn clause fragment of first-order
logic. Arakelyan et al. (2021), Ren, Hu, and Leskovec (2020), and Sun
et al. (2020) extend coverage to the existential positive fragment of
first-order logic. In natural language, there are sentences that express
more complex semantics such as including negation, nested universal

1.1 RELATED WORK

quantification, and higher-order structures. Kapanipathi et al. (2021)
present a pipeline approach where a semantic parser is used in conjunc-
tion with a neuro-symbolic reasoning component (Riegel et al., 2020)
to answer questions over a structured knowledge base. The reason-
ing component performs deductive reasoning over the function-free
fragment of first-order logic, by reducing the problem of first-order
reasoning into one of propositional reasoning. While there are prov-
ably efficient algorithms to perform deductive reasoning on these less
expressive formal languages, our work explores the other side of the
tradeoff between tractability and expressivity/generality. Theorem
provers attempt to solve the problem of finding a proof of a given for-
mula, from a given set of axioms. This is purely a problem of deductive
reasoning. In contrast, the reasoning component of PWM is abductive,
and the abduced axioms can be used in various downstream tasks,
such as question-answering, and to better read new sentences in the
context of the world model, as we will demonstrate. We posit that ab-
duction is sufficient for more general natural language understanding.
PWM combines Bayesian statistical machine learning with symbolic
representations in order to handle uncertainty in a principled manner,
“smoothing out” or “softening” the rigidity of a purely symbolic ap-
proach. In PWM, the internal theory is a random variable, and so if
a new observation or input is inconsistent with one internal theory,
there may be other theories in the probability space that are not incon-
sistent with the observation. The probabilistic approach provides a
principled way to resolve these impasses.

PWM is certainly not the first to combine symbolic and probabilis-
tic methods. There is a rich history of inductive logic programming
(ILP) (Muggleton, 1991) and probabilistic ILP languages (Bellodi and
Riguzzi, 2015; Cussens, 2001; Muggleton, 1996; Sato, Kameya, and
Zhou, 2005). These languages could be used to learn a “theory” from a
collection of observations, but they are typically restricted to learning
rules in the form of first-order Horn clauses, for tractability. In natu-
ral language, it is easy to express semantics beyond the Horn clause
fragment of first-order logic.

Knowledge bases (KBs) and cognitive architectures (Hogan et al., 2020;
Kotseruba and Tsotsos, 2020; Laird, Newell, and Rosenbloom, 1987;
Mitchell etal., 2018) have attempted to explicitly model domain-general
knowledge in a form amenable to reasoning, which is a core com-
ponent of the internal mental model that humans create. Cognitive
architectures aim to more closely replicate human cognition. Some ap-
proaches use probabilistic methods to handle uncertainty (Jain et al.,
2019; Niepert and Domingos, 2015; Niepert, Meilicke, and Stucken-
schmidt, 2012). However, many of these approaches make strong sim-
plifying assumptions that restrict the expressive power of the formal
language that expresses facts in the KB. For example, many knowledge
bases can be characterized as graphs, where each entity corresponds

INTRODUCTION

to a vertex and every fact corresponds to a labeled edge. For example,
the belief plays_sport(serena_williams,tennis) is representable
as a directed edge connecting the vertex serena_williams to the ver-
tex tennis, with the edge label plays_sport. While this assumption
greatly aids tractability and scalability, allowing many problems in
reasoning to be solved by graph algorithms, it greatly hinders expres-
sivity and generality, and there are many kinds of knowledge that
simply cannot be expressed and represented in such KBs. PWM does
not make such restrictions on logical forms in the theory, allowing
for richer semantics, such as definitions, universally-quantified state-
ments, conditionals, etc.

1.2 OUTLINE

This thesis is organized as follows:

« In chapter 2, we present the high-level architecture of PWM and
PWL. We describe the two principle components of the model,
the language module and the reasoning module, and how they
work together.

« In chapter 3, we present the reasoning module in greater detail.
A precise mathematical description of the model is provided in
section 3.2, including a discussion on the representation of the
content of the theory and on the representation of the proofs.
In section 3.3, we describe the algorithm that performs inference
under this model, and the specifics of its implementation in PWL.

e In chapter 4, we present the language module in greater detail
including implementation details about the training and parsing
algorithms. In section 4.4, we apply this parsing approach to the
GeoQuEery and Joss datasets (Tang and Mooney, 2000; Zelle and
Mooney, 1996), using the Datalog representation of the provided
logical form labels, and demonstrate that the accuracy of the
parsed logical forms is comparable to that of the state-of-the-
art on these datasets. Since the Datalog representation in these
datasets are domain-specific, in section 4.5, we present a new
wide-coverage semantic representation based on higher-order
logic.

« In chapter 5, we provide qualitative and quantitative results on
experiments that evaluate the capabilities of PWL end-to-end.
In section 5.3, we apply PWL to the out-of-domain question-
answering task in PrRoorWRrirteR (Tafjord, Dalvi, and Clark, 2021)
and achieve perfect zero-shot accuracy when using intuitionistic
logic. However, since the sentences in PRooFWRITER are simple in
structure, being automatically generated from templates, we cre-
ate a new question-answering dataset called FictioNaLGEOQA,

1.2 OUTLINE

consisting of marginally more syntactically-complex (but still
overall simple) sentences. More importantly, the dataset is de-
signed to be robust against algorithms that rely on simple heuris-
tics to answer questions, and thus to more accurately measure
their reasoning ability relative to other datasets. In section 5.4,
we describe this dataset in further detail and show that PWL
outperforms current state-of-the-art baselines.

Finally, in chapter 6, we summarize the presented work and
highlight the lessons learned. We discuss ways in which simpli-
tying assumptions can be relaxed, perhaps with different design
choices or with further research. For example, how can PWM
be extended to feasibly handle cross-sentential anaphora? Dis-
course narrowing or broadening? Noise? We also review the
advantages and disadvantages of the design choices in PWM
and PWL, and consider alternatives that may work better in fu-
ture work and implementations.

ARCHITECTURE OVERVIEW

In this chapter, we provide a high-level mathematical de-
scription of the Probabilistic Worldbuilding Model (PWM) and
an overview of the implementation of inference under the
proposed model, called Probabilistic Worldbuilding from Lan-
guage (PWL). We describe the two principal components of
PWM/PWL: the language module and the reasoning module,
and how they work together. We also provide some background
to Markov chain Monte Carlo methods, which are heavily em-
ployed by PWL in order to approximately compute intractable
probabilities.

2.1 BACKGROUND: MARKOV CHAIN MONTE CARLO

PWM is a probabilistic model, and as with many other probabilistic
models, there are many probabilities that we wish to compute, but
are intractable to do so exactly. This is often the case in Bayesian
statistical machine learning, where we aim to compute the posterior
probability, conditioned on some observations. Markov chain Monte
Carlo (MCMC) methods are a family of computational methods to sam-
ple from intractable probability distributions and to approximate in-
tractable probabilities using these samples (Robert and Casella, 2004).

MARKOV CHAINS: A Markov chain is a sequence of random variables
21,22, ::: with the Markov property: every variable z; depends only on
the previous variable in the sequence zj_. In addition, the conditional
distribution of the next variable given the previous variable does not
change. That is, the Markov chain is homogeneous: for all i,j, p(zi j
zZi—1) = p(zj j zj-1).

Let Z be the state space of each z; (zi 2 Z for all i). For simplicity,
we will first consider the case where Z = fl,:::,Nng is finite. The
conditional distribution can be written as a matrix K2 R™ ":

p(zi =ajzi—1 = b) = Kgp. (1)

P
where 2:1 Kap = lforallb,and K5 2 [0, 1] for all a and b. This ma-
trix formulation is helpful for illustration since the distribution of each
Zj can be written as a vector with length n, so p(z;) 2 R", where each

element is between 0 and 1, and their sum is 1. The distribution of the

11

12

ARCHITECTURE OVERVIEW

next variable p(zj+1) can be obtained via simple matrix multiplication:

p(zi+1) = K p(zi). (2)

A Markov chain is called irreducible if for any starting value s 2 Z,
and any a 2 Z, there exists a t such that p(z¢ = ajz; =s) > 0. That
is, any value a in the state space Z is reachable from any starting value
s after a finite number of steps.

For a starting value s 2 Z, the return times are the values of t such
that p(z¢ = sj z1 = s) > 0. The period of the state s is the least common
divisor of the set of return times at s. A Markov chain is called aperiodic
if the period of every state is 1.

If a Markov chain is both irreducible and aperiodic, there exists a
stationary distribution such that, for any starting values 2 Z,

Jimp@zt=ajzz=s)= (a), (3)

for all a 2 Z. In the matrix formulation, K is an irreducible stochastic
matrix, so it must have an eigenvalue of 1. is simply the eigenvector
that corresponds to this eigenvalue: =K . A Markov chain is said
to have mixed when its samples are “close” to the stationary distribution
(i.e. when tis sufficiently large so that p(z¢) is similar to).

Extending these results to the more general case where Z need not
be finite or countable requires more finesse, but the intuition is the
same. We refer the reader to Durrett (2010), Meyn and Tweedie (1993),
and Robert and Casella (2004).

METROPOLIS-HASTINGS: The goal of MCMC is to sample from an
intractable target probability distribution F, with the key idea being
to construct a Markov chain such that its stationary distribution is
the same as F. Metropolis-Hastings (MH) is one such method (Hastings,
1970). PWL uses MH to abduce the latent theory and proofs. At each
step in the Markov chain z;, MH proposes a change to the state Z'. Then,
MH computes the acceptance probability:

F(z") p(zi j 2%
"F(zi) p(2°j zi)

where F(X) is the probability of X under the target distribution from
which we wish to sample, p(z' j z;) is the probability of proposing
the new state 2’ from the old state zj, and p(z; j 2') is the probability
of the reverse of this proposal. MH then either accepts or rejects the
proposed state according to the above acceptance probability. If MH
accepts the proposal, then zj+1 = z'. Otherwise, Zj+1 = z;. In order to
compute the above acceptance probability, it suffices to have an efficient
algorithm to compute the ratio of probabilities F(z)=F(zj). And so if
F() has an intractable normalization term, this term would not need

min

4)

2.2 PROBABILISTIC WORLDBUILDING MODEL

to be computed since it cancels in the ratio. It is not difficult to show
that the stationary distribution of this Markov chain is indeed F.

A simple example of MH is to sample from the standard normal
distribution N(0, 1). Start with the first sample at z; = 0. The proposal
distribution is a uniform jump from the current position: p(z’ = t j
zi) =1ift 2 [z; - %,Zi + %], and p(z° = tj z;) = 0 otherwise. The
acceptance probability at each step is:

. exp(-z%=2)1 _ 22 — 202
min 1'76Xp(—2i2=2)1 =min 1,exp -) (5)

Given sufficiently many iterations i, the samples z; will be distributed
according to N(0, 1). Different choices of proposal distributions may
affect the speed of this convergence, but so long as every measurable
subset of R is reachable in a finite number of steps, convergence is
guaranteed.

GIBBS SAMPLING: Gibbs sampling (Geman and Geman, 1984) is an-
other MCMC method that is useful in high-dimensional settings. For
example, PWL uses Gibbs sampling to learn the parameters of the
parser. Suppose we have a probabilistic model containing Kk variables:
P(X1,:::,Xk), whereX; 2 Zj for each i. The goal of Gibbs sampling is to
sample from p(X1,:::,Xk). In MCMC, for this setting, each state in the

Markov chain z; can be written as a tuple: z; , (Zi1,:::,Zik), where
each z; j is identified with Xj, and so Z , Z; ::: Zg. The Gibbs
sampling algorithm starts with initial values for z; = (z1,1,:::,2Z1k)-
Then, for each iteration 1 = 2,3,:::, iterate over each j = 1,:::,k, and

sample zj+1 j from the conditional distribution
P(XjjX1 = Zi+1,1, 111 Xj—1 = Zi+1,j—1, Xj+1 = Zijj+1, 55 Xk = Zik), (6)

which is the distribution where all variables other than x; are fixed
to their current values in the Markov chain. With sufficiently many
iterations, the samples (zj 1,:::,Zi k) will be distributed according to
P(X1,:::,Xn). Gibbs sampling is an attractive option when the above
conditional distribution is easy to sample. Interestingly, Gibbs sam-
pling can be shown to be an instance of Metropolis-Hastings where
the acceptance probability is always 1.

2.2 PROBABILISTIC WORLDBUILDING MODEL

PWM is a probabilistic generative model of sentences that aims to
capture a central aspect of human language understanding: a rich
mental model of the world that is constructed and maintained from
those observed sentences. In PWM, this internal mental model is
called the theory and is a collection of logical forms. PWM describes
the conditional distribution of natural language sentences, given the
theory.

13

14

ARCHITECTURE OVERVIEW

grammar

parameters
theory ith proof ith logical ith sentence
form n
Reasoning module Language module

Figure 3: Graphical model representation of PWM. Shaded nodes indicate
observed random variables, whereas unshaded nodes indicate un-
observed (i.e. latent) random variables. T, j, and are each
composed of many random variables, but they are omitted here for
illustration.

More precisely, PWM is the collection of random variables (T, ,X,Y,

) and conditional distributions, where T is the theory, , f 1,:::, n{
are the proofs of each logical form, x , fXq,:::,Xng are the logical
forms of each observation, y , fy1,:::,yn(are the observed sentences,
and are grammar parameters that control the conditional distribution
of the sentences given the logical form p(yi j Xi,). The prior and
conditional distributions in PWM are: p(T), p(), p(i j T), p(Yi |
Xi,). The logical form X; is the conclusion of the proof j, and so
Xj is deterministic given . These conditional and prior distributions
define a joint distribution over all the variables in the model. At a
high level, the process for generating a sentence sampled from this
probability distribution is:

1. Sample the theory T from a prior distribution p(T). T is a col-
lection of logical forms in higher-order logic that represent what
PWL believes to be true.

2. Sample the grammar parameters from a prior distribution p().

3. For each observation i, sample a proof ; from p(j j T). The
conclusion of the proof is the logical form X;, which represents
the meaning of the it sentence.

4. Sample the it sentence y; from p(y; j Xi,).

Inference is effectively the inverse of this process, and is implemented
by PWL. During inference, PWL is given a collection of observed sen-
tences y and the goal is to discern the value of the latent variables: the
logical forms for each sentence X, the proofs for each logical form
and the underlying theory T. Both the generative process and inference
algorithm naturally divide into two modules:

« Language module: During inference, this module’s purpose is
to infer the logical form of each observed sentence. That is, given

2.3 PROBABILISTIC WORLDBUILDING FROM LANGUAGE

the input sentence yj, this module outputs the k most-probable
values of the logical form X; (i.e. semantic parsing).

e Reasoning module: During inference, this module’s purpose is
to infer the underlying theory that logically entails the observed
logical forms (and their proofs thereof). That is, given an input

collection of logical forms X1,:::,Xn, this module outputs the
posterior distribution of the underlying theory T and the proofs
1,::1, n of those logical forms.

Note that the y; need not necessarily be sentences, and PWM can easily
be generalized to other kinds of data. For example, if a generative
model of images is available for p(y; j Xj), then an equivalent "vision
module" may be defined. This vision module may be used either in
place of, or together with the language module, and would provide
a principled way to combine information from multiple modalities.
In the above generative process, PWM assumes each sentence to be
independent. A model of context is required to properly handle inter-
sentential anaphora or conversational settings. This can be done by
allowing the distribution on y; to depend on previous logical forms
or sentences: P(Yi j X1,:::,X;) (i.e. relaxing the ii.d. assumption).
Figure 3 provides a graphical representation of PWM.

2.3 PROBABILISTIC WORLDBUILDING FROM LANGUAGE

In our proposed model, reading is the act of updating the posterior
distribution of the theory, given a new sentence. We derive and im-
plement an algorithm called Probabilistic Worldbuilding from Language
(PWL) which performs this posterior inference in order to read and
understand sentences. PWL also uses the inferred theory for down-
stream tasks, such as answering questions about the sentences. The
posterior of the model is given by

p(™, » xjy)ZpMpC) pCiiD)pyiixi) (7)

i=1

We are able to exploit the structure of the posterior distribution to
make the inference algorithm both simpler and faster. For instance,
the posterior distribution of the grammar parameters has very lit-
tle uncertainty, given that n is not too small. Thus we can split the
inference algorithm into three “procedures”:

1. Training the parser: Given a seed training set of labeled sentences x
and y, learn the grammar parameters by computing their poste-
rior p(j X, ¥). PWL uses Gibbs sampling to obtain samples from
this posterior (see section 4.3.1 for further details). These sam-
plesof arenecessary to parse new sentences. Figure 4 provides
an example from the seed training set. Our training algorithm

15

ARCHITECTURE OVERVIEW

Sentence: “Which inner planet has the highest mass?”

Logical form: z. X(X= x(i(inner (i) argl_of(x)=1) planet(x))
X(z) f((f= x. v. m(y(value(y) arg2(y)=v argl_of(m)=y)
mass (m) h(argl(h)=x has (h) present(h) arg2(h)=m)))
g(greatest(f)(g) argl(g)=X arg2(g)=z)))
(i.e. what is the value of z such that there exists a set of inner planets X, z is a member
of X, and there exists a function f that returns the mass of its input, such that z
maximizes f over the set X)

Derivation tree: S
1
%' QU EgTION
| g | B
VADJUNCT V||°R
NP VIBR VADJ‘UNCT

] \ \
WHICH NOMINALg VP NP

\
“which” NOMINAL, \ DEF_NP

—— |
“Which” ADJPR NOMINAL, “have”[3rD,PrES] TI‘-|E N‘P’
\ \ |
ADJP_ l\‘l “has” “the” NOMINALg
\ \
ADJ “planet” NOMINAL,
| ——
“inner” ADJPR NOMINAL,
\ |
ADJP_ TI
|
ADJ “mass”
“high”[sur]
\
“highest”

Figure 4: An example from the seed training set of PWL, labeled with the logi-
cal form and derivation tree (i.e. syntax tree). This example helps to
train the parser in PWL. The semantic formalism for the logical form
is detailed in section 4.5. Details on the grammar model of the lan-
guage module are provided in section 4.2. Note that the derivation
tree label is not necessary, as we will provide a training algorithm in
section 4.3.1 that only uses sentences with logical form labels, and
semantic parsing experiments in section 4.4 where derivation tree
labels are not included in training. In the above example deriva-
tion tree, 3rD is a morphological flag that indicates the third person,
rrEs indicates present tense, and sur indicates superlative. Semantic
transformation functions are omitted for brevity.

2.3 PROBABILISTIC WORLDBUILDING FROM LANGUAGE

[—

“Pennsylvania borders NJ”
upper bound: -5.26

17

set of logical forms in this search state

— set of derivation trees

upper bound on log posterior of
any derivation in this search state

branch according to
production rules with / *
S as left-hand side w(#5p™) 5(p)
S S
I—‘—| I—‘—|
N VP N VP
! ! ! !
| | | |
“Pennsylvania borders” “NJ” “Pennsylvania” “borders NJ”
branch according to upper bound: -12.98 upper bound: -5.26
derivation trees of first l l \
child (i.e. N, computed -
recursively) *(<entity of new type>,*) *(pa, *) *(<new state>,)
S S S
N Mi N Mi) i
“Pennsylvania borders” T “Pennsylvania” * “Pennsylvania” T
“NJ” “borders NJ” “borders NJ”
branch according to upper bound: -12.98 upper bound: -5.82 upper bound: -13.12
derivation trees of sec-
ond child (ie. VP, com- / l \
puted recursively) borders(pa,nj) borders (pa,red) <new relation>(pa)
S S S
N VP N VP N VP
| —— | —— B | |
“Pennsylvania” V l}l “Pennsylvania” Y AIIDJ “Pennsylvania” \
“borders” “NJ” “borders” “NJ” “borders NJ”
upper bound: -6.74 upper bound: -18.62 upper bound: -10.13

Figure 5: The search tree of the branch-and-bound algorithm during the pars-
ing of the sentence “Pennsylvania borders NJ.” In this diagram, each
block is a search state, which represents a set of logical forms and
derivation trees. The blue asterisk * denotes the set of all possi-
ble logical forms, whereas the black asterisk * denotes the set of
all possible derivation (sub)trees. The gray-colored search states
are unvisited by the parser, since their upper bounds on the objec-
tive function are smaller than that of the completed parse at the
bottom of the diagram (-6.74), thus allowing the parser to ignore a
very large number of improbable logical forms and derivations. For
simplicity of illustration, the example here uses a simplified gram-
mar and logical formalism, and the branching steps are simplified.
The recursive optimization of the derivation subtrees for N and VP
are not shown, which have their own respective search trees. This
algorithm is described in greater detail in section 4.3.2.

18 ARCHITECTURE OVERVIEW

y = “Sally caught a butterfly with a net.”

Language module computes top-k logical forms
according to likelihood (see section 4.3.2)

Rank Candidate parses x logp(y jx ,xY)
s(x(name(x) argl_of(s)=x arg2(x)="Sally") n(net(n)
a b(butterfly(b) h(has (h) arg2(h)=n argl_of(b)=h) -31.83
c(argl(c)=s catch(c) past(c) arg2(c)=b)))) :
(i.e. a butterfly had a net, and Sally caught that butterfly)
s(x(name(x) argl_of(s)=x arg2(x)="Sally") n(net(n)
b (butterfly(b)
2 c(argl(c)=s catch(c) past(c) arg2(c)=b -34.77

u(use_instrument(u) arg2(u)=n argl_of(c)=u)))))
(i.e. Sally used a net to catch a butterfly)

. . For each parse x , the reasoning module computes
;rlhe t}flleory T Ctontat)n(sb&;i ax;cim(ltok;at no E’Utfce(r') p(x jT) and reranks logical forms according to
ies have a net: utterfly n(net(n logp(x X y,T, = lo iX %X, y)+logp(X |
h(has(h) argl(h)=b arg2(h)=n))) T)gfé (e é’ectig’n)}}l)gp(y Jx.x.y)+logpx

Rank Candidate parses X re-ranked by reasoning module logp(x jT) logp(x jxVy,T,y)
s(x(name(x) argl_of(s)=x arg2(x)="Sally") n(net(n)
b(butterfly(b)
1 c(argl(c)=s catch(c) past(c) arg2(c)=b -2294.54 -2329.31

u(use_instrument(u) arg2(u)=n argl_of(c)=u)))))
(i.e. Sally used a net to catch a butterfly)

s(x(name(x) argl_of(s)=x arg2(x)="Sally") n(net(n)
b (butterfly(b) h(has (h) arg2(h)=n argl_of(b)=h) -1 -1
c(argl(c)=s catch(c) past(c) arg2(c)=b))))
(i.e. a butterfly had a net, and Sally caught that butterfly)

Figure 6: An example where PWL reads the sentence “Sally caught a butterfly
with a net,” which is a classical example of a sentence with prepo-
sitional phrase attachment ambiguity: “with a net” could either
attach to “butterfly” or “caught.” In PWL, “reading” a sentence is
divided into two stages: (1) find the k most likely logical forms, ig-
noring the prior probability of each logical form conditioned on the
theory, and (2) for each logical form in the list, computing its prior
probability conditioned on the theory and then re-ranking the list
accordingly. The output of the first stage is shown in the top table,
and the output of the second stage is shown in the bottom table.
In this example, the theory contains the axiom that no butterflies
have a net, which itself is the result of having read the sentence
“No butterfly has a net.” The log probabilities in the bottom table
are unnormalized. The semantic formalism for the logical forms is
detailed in section 4.5.

2.3 PROBABILISTIC WORLDBUILDING FROM LANGUAGE

Add logical form x;
x1 (butterfly(xy) Xz (spot(xz)
x3(argl(xz)=x; arg2(x3)=x> has(x3))))
(i.e. the meaning of “A butterfly has a spot”)

Initialize the 15t sample
of the theory T and proof
of first logical form 1
(not shown)

15t sample of T

butterfly(co) spot(cy)
has(cy) argl(cy)=cq
arg2(cz)=cy

logp(T, 1) =-188.65

400 Metropolis-
Hastings iterations

4015t sample of T

butterfly(co) spot(cy)
has(cy) argl(cy)=co
arg2(cz)=cy

logp(T, 1) =-188.65

Add logical form X

19

x1(xz(name(xy) argl(xy)=x; arg2(xp)="Sally") x3 (spot(x3)
x4 (butterfly (xy4) xs(has(xs) arg2(xs)=x3 argl(xs)=xs)
xg(argl(xe)=x1 catch(xg) arg2(xs)=xs))))
(i.e. the meaning of “Sally caught a butterfly with a spot.”)

Initialize the 15t sample
of the proof of second log-

ical form

15t sample of T

2 (not shown)

1) and their axioms

butterfly (cq) spot(cy)
argl(cy)=co arg2(cy)=c;
butterfly(cs) catch(cg)
arg2(cg)=cs has(c7)
arg2(c7)=cy name (cg)

arg2(cg)="Sally"

has(cy)
spot(cy)
argl(ce)=cs
argl(cy)=cs

argl(cg)=cs

logp(T, 1, 2) =-2763.17

’

400 Metropolis-
Hastings iterations

l

Copy the last sample of all previous

proofs (i.e.

4015t sample of T

butterfly(cp) spot(cy)
argl(cay)=co
arg2(ca)=co

argl(cs)=cs

arg2(cz)=c;

argl(cy)=c3

arg2(cs)="Sally"
logp(T, 1, 2) =-2681.25

has(cy)
catch(cs) | :::
name (cs)

Last sample in the
Markov chain so far

Figure 7: An example of PWL abducing the posterior distribution of the the-
ory given two logical forms: X; is the meaning of “A butterfly has a

spot,” and X3 is the meaning of “Sally caught a butterfly with a spot.

”

PWL does not represent the full posterior distribution, but rather
it keeps samples of the Markov chain that serve as an approxima-
tion of the posterior. Additional samples from the posterior can be
produced by performing additional Metropolis-Hastings iterations,
starting from the last sample. The proofs for each logical form 1
and » are not shown here for brevity, but 1 is shown in figure
8. Note that after adding the logical form X, in the top-right of
the figure (the meaning of “Sally caught a butterfly with a spot”),
the theory contains many more axioms. For example, there are two
butterflies: g is the butterfly with a spot, and Cs is the butterfly that
Sally caught. But since the prior distribution of the theory T favors
smaller and more parsimonious theories, and Metropolis-Hastings
tends to visit samples with higher and higher probabilities, then
after 4o0 iterations, these two butterflies were merged into a single
entity Cp, thus simplifying the overall theory. Figure 8 shows a
sample of 1, which is the abduced proof of the first logical form.
Section 3.3 describes this algorithm in more detail.

ARCHITECTURE OVERVIEW

X Ax Ax
argl(cy)=co arg2(cy)=c; has(cy) ~
argl(cy)=c arg2(cy)=c has(c
Ax gl(ca)=co g2(cy)=c1 (c2) oI
spot(cy) x1(argl(x1)=co arg2(x1)=c; has(x1)) ~
N spot(ci) xi(argl(xi)=ce arg2(xi)=c; has(x1)) o1
butterfly(cq) X1 (spot(xy) X3 (argl(xy)=co arg2(xp)=x; has(x))) ~

butterfly(co) X1 (spot(xy) Xz (argl(xz)=co arg2(xy)=x; has(xz)))

x1 (butterfly(xy) X2 (spot(xz) x3(argl(xs)=x; arg2(x3)=x; has(xz3))))

Figure 8: The “theory abduction” procedure in PWL takes as input the logical
form shown at the bottom of this figure, which has the meaning of
“A butterfly has a spot.” The output of this procedure is the abduced
proof of this logical form shown here, whose axioms constitute the
abduced theory (labeled “Ax”). The example in figure 7 shows the
output abduced theory, where x; is the logical form shown here in
figure 8 and the above proof is 1. Each horizontal bar denotes a
proof step. Steps labeled “Ax” are axioms. These are the axioms that
constitute the theory T, and are shown in the samples of T in figure
7. The steps labeled “/*I” are conjunction introduction steps, where
if we are given that A and B are true, we conclude that A B is true.
The steps labeled “91” are existential introduction steps, where if
we are given that [x @ c]is true where X is a variable and c is a
symboland [x @ c]is the formula where X is substituted with c,
then we can conclude that 9x. is true. The conclusion of the proof
is the logical form for the sentence “A butterfly has a spot.”

can additionally accept derivation tree labels (i.e. syntax trees)
for some or all of the sentences in the training set. These deriva-
tion tree labels are not necessary, as our algorithm described in
section 4.3.1 is able to train the parser without them, but they
can help during debugging. Another way to train the parser
would be to compute the maximum a posteriori (MAP) estimate
max p(jX,Y), but this is intractable in our model, and so we
choose to sample from the posterior instead. But in extended or
modified versions of PWM where the parsing model is different,
MAP could be an attractive method to train the parser.

2. Parsing: Given a new (unseen) sentence y , find the k most prob-
able values of the logical form x , according to the posterior
distribution

pX jXy,y ., T)ZpX jT)ply jx X y).

2.3 PROBABILISTIC WORLDBUILDING FROM LANGUAGE

However, since the computation of p(X j T) is highly non-trivial,
we divideitinto two stages: First, find the k-best parses according
to the likelihood

Z
ply jx . x,y)= py jx,)p(jx,y)d
1 x .
N ply jx, ®).
samples (o .
Xy

This is a discrete optimization problem, which PWL solves using
branch-and-bound (Land and Doig, 1960). This algorithm begins
by considering the set of all possible logical forms (and deriva-
tion trees). Next, it divides this set into a number of disjoint
subsets (the “branch” step), and for each subset, it computes an
upper bound on the objective function over any logical form in
that subset (the “bound” step). Each subset is pushed onto a
priority queue, where the priority is the upper bound. Then
the algorithm pops the highest priority subset and repeats this
process: further subdividing the set into subsets, computing the
upper bound for each, and pushing them onto the priority queue.
The algorithm repeats until it finds a subset containing a single
logical form, whose likelihood is at least the highest priority of
the priority queue. This logical form is guaranteed to be opti-
mal. The algorithm continues until the k-best logical forms have
been found. Section 4.3.2 will go into more detail on this pro-
cedure. An example of this algorithm finding the most likely
logical form for the sentence y = “Pennsylvania borders NJ” is
shown in figure 5. Note that the grammar and logical formalism
are simplified in this example.

Once the k most likely logical forms are computed, in the second
stage, PWL then re-ranks the resulting logical forms according
to the semantic prior p(x j T). Figure 6 shows the result of
PWL parsing the sentence y = “Sally caught a butterfly with
a net,” where the prepositional phrase attachment ambiguity is
resolved using background knowledge. The parsing procedure
is depicted as the first green arrow in figure 1 going from the
sentence to the logical form.

. Theory abduction: Given a collection of logical forms X1,:::,Xn,
abduce a proof j for each logical form X;, with the axioms of the
proofs constituting the abduced theory T. This abduction is done
by computing the posterior distribution of the theory and proofs
P(T, 1,:::, njX1,::1,Xn). Since computing this posterior ex-
actly is intractable, we approximate it using Metropolis-Hastings
(MH) to produce posterior samples of the theory T and all proofs

1,::7, n. This inference is done in a streaming fashion: Given
a new logical form Xp+1, initialize the MH using the previous

21

22

ARCHITECTURE OVERVIEW

samplesof T and 1,:::, n;Then, continue MH to produce pos-
terior samples of T and 1,:::, n, n+1. Figure 7 shows the
process of PWL abducing a theory for two logical forms: x; is
the logical form meaning of “A butterfly has a spot,” and X5 is the
logical form meaning of “Sally caught a butterfly with a spot.”
Furthermore, this algorithm can provide estimates of the proba-
bilities of logical forms p(X; j T) , which is useful for tasks such
as question-answering, as well as for computing the semantic
prior for parsing. Note that seed axioms may be added directly
to the theory here. Section 3.3 will go into more detail on this
procedure. This step is depicted as the second green arrow in
figure 1 going from the logical form and proof to the theory.

Note that the first two procedures (training the parser and parsing) are
governed by the language module whereas the third procedure (theory
abduction) is governed by the reasoning module.

Normally in Bayesian inference, we would need to compute the pos-
terior for all latent random variables in the model, including the logical
forms X. However, it isn’'t obvious how to compute the conditional
p(Xi jT,Yi,). Inaddition, natural languages have evolved to express
large quantities of information with minimal energy expenditure, in
order to provide an efficient means of communication. As a result, in
order to maximize information, the semantic content of sentences tend
to be unambiguous, given the appropriate context and background
knowledge. As a result, the posterior distribution p(X; j yi) of a logical
form interpretation X; given a sentence y; is usually concentrated at
one or a small handful of logical forms (modes). To exploit this fact and
to simplify the implementation of the language module, during infer-
ence, after parsing each sentence y; into its logical form X;, we assume
the logical forms are fixed. But in general, there may exist real-world
scenarios in which the meaning of some sentences are ambiguous, even
in consideration of the context and background information, and their
logical form interpretations should be allowed to vary.

Only the language module has latent parameters that need to be
learned (i.e.). The model of the theory and proofs does not have
any random variable parameters that need to be learned, and so the
reasoning module does not need to be trained. But axioms can be
added to the theory apriori, such as domain-independent facts about
the world. The language module of PWL is trained with a seed training
set consisting of a collection of labeled sentences, which are only used
to train the parser. The seed training set also consists of two seed
axioms which are added directly to the theory.

2.4 KEY DESIGN CHOICES

The key design choices discussed in this chapter are:

2.4 KEY DESIGN CHOICES

« We designed PWM as a probabilistic generative model of lan-
guage understanding and reasoning. The theory is a random
variable in PWM which attempts to explicitly encapsulate the
human ability to create rich mental models of the world from
their observations. We believe this sort of task-, modality-, and
domain-independent model of the world is instrumental for fur-
ther progress in Al

The probabilistic nature of PWM both helps to alleviate both
the brittleness of fully symbolic systems which plagued earlier
efforts in Al, as well as the highly underspecified nature of the
problem of abduction. The number of possible explanations for
a collection of observations is extremely large, and the ability to
assign a probability to each explanation helps to focus the search
on higher-probability theories.

PWM uses higher-order logic, a symbolic human-readable for-
mal language, to represent all knowledge in the theory as well as
the meanings of sentences. This greatly aids in the interpretabil-
ity of PWL, and enables it to utilize well-studied methods for
reasoning in higher-order logic. Full higher-order logic is highly
expressive and is able to represent the meaning of a very broad
set of natural language sentences and phrases, independent of
their domain.

Though the generative process of PWL is one of deductive rea-
soning, the inference (implemented by PWL) performs abductive
reasoning, which is computationally easier than deductive rea-
soning since PWL can add axioms as needed in order to find a
proof for an observed logical form. This helps to workaround
some of the issues of decideability in deductive reasoning.

PWM is a Bayesian model, so every random variable in the model
has a prior distribution. These priors enable us, as the designers,
to incorporate background/expert knowledge to improve the
statistical efficiency of the model. For example, we will show that
providing some of the grammar rules for English syntax greatly
improves the statistical efficiency of the language module.

PWLis divided into two modular components: (1) the reasoning
module, and (2) the language module. This helps streamline the
implementation and debugging of the system, and by keeping
the reasoning module independent of the perceptual modality,
keeps open the path for future work to add new perceptual mod-
ules.

Each sentence is assumed to be context-independent: condi-
tioned on the theory, the sentences are independent and iden-
tically distributed. This is a strong assumption, and in order to

23

24

ARCHITECTURE OVERVIEW

relax it, PWM must be extended to include a proper model of
context, so that each sentence is no longer conditionally indepen-
dent of the previous sentences given the theory. We will discuss
potential ways to do so later in section 4.7.

» The procedure for reading sentences is divided into two stages:

(1) first maximize the likelihood and find the k-best logical forms,
then (2) compute the semantic prior for each logical form and
rerank the list according to the posterior. We chose this approach
since the computation of the semantic prior is non-trivial and
computationally expensive.

 During inference, once PWL has computed the most probable

logical form for a given sentence, that logical form is fixed and is
not allowed to vary (i.e. the approximate posterior for the logical
form of each sentence is a point estimate). This simplifies the im-
plementation of the language module and works sufficiently well
in our experiments, there are scenarios in which the meanings of
sentences are ambiguous, even in considering of the context and
background information. Thus, future work to allow the logical
form to vary during inference would be valuable.

« In theory abduction, the reasoning module aims to approximate

the posterior distribution p(T, | X) of the theory T and proofs

given the observed logical forms X. We chose to infer the full
posterior rather than a point estimate since natural language is
not unambiguous, and real-world observations often have multi-
ple probable explanations. Human language understanding and
generation also preserves information about uncertainty, which
is evident from the existence and ubiquity of words such as
“probably,” “maybe,” “could,” etc.

7

« However, even though T is a random variable, each individual

sample of T is deterministic. But this would imply that words
such as “probably,” “maybe,” and “could” would never be gen-
erated. This is not an issue in this thesis since none of the exper-
iments have sentences that express uncertainty. But to correctly
understand the meaning of these words, PWM needs to be ex-
tended so that each individual sample of T is probabilistic.

e The reasoning module uses Metropolis-Hastings (MH) to per-

form theory abduction. As with any MCMC method, MH has
the desirable property that as more time (i.e. iterations) is spent
performing inference, the better the approximate theory, becom-
ing exact in the limit. MH is able to sample from distributions
that have an intractable normalization term, since the normaliza-
tion term cancels in the acceptance probability (equation 4). In
PWL, the posterior of the theory and proofs conditioned on the

2.4 KEY DESIGN CHOICES

observed logical forms p(T, j X) is one such distribution. This
property is not unique to MH among MCMC methods.

 The reasoning module performs inference in a streaming fashion.
This choice derives from the observation that when humans read
sentences, each new sentence is unlikely to change the entire
world model in the mind of the reader. Rather, each sentence
provides more of an incremental update to the reader’s beliefs.
In PWL, this serves to provide a better starting point for MH
during theory abduction, and as a result, reduce the number of
iterations needed to find a good approximate theory.

We will describe the reasoning module in much greater detail in
chapter 3, and the language module and its training in chapter 4.

REASONING MODULE

In this chapter, we present the reasoning module in greater
detail. This module governs the theory as well as the proofs
of the logical form observations. A mathematical description
of the model is provided in section 3.2, including a discussion
on the representation of the content of the theory and on the
representation of the proofs. In section 3.3, we describe the
algorithm that performs inference under this model, and the
specifics of its implementation in PWL.

3.1 BACKGROUND: DIRICHLET PROCESSES

Before introducing the model for the reasoning module in the next
section, we present background on Dirichlet processes, which forms a
component in the prior distribution of the theory in PWM.

The Dirichlet process (DP) (Ferguson, 1973) is a distribution over prob-
ability distributions (i.e. samples from a DP are themselves distribu-
tions). If a distribution G is drawn from a DP, we can write

G DP(,H), (8)

where the DP is characterized by two parameters: a concentration
parameter > 0 and a base distribution H. The DP has the useful
property that E[G] = H, and the concentration parameter describes
the “closeness” of G to the base distribution H. If is small, G is more
different from the base distribution H. If is large, G is more similar
to H.

DPs are often used in statistical machine learning models where
observations y1, Yo, ::: are distributed according to G, such as in:

G DP(,H), 9)
Y1.¥2,::0 G (10)

The joint probability of y1,:::,yn is given by:
"0 Y

p(Y1,:::,Yn) = C+m,_

H(yw) (ni), (11)

where y, are the unique values of y1,:::,yYn, Mmis the number of such
values, Nk , #fi 1 yj =y, is the number of times y, appears in
y1,::5,¥Yn,and " ()= (+n)is the normalization term.

27

REASONING MODULE

In these models, the Chinese restaurant process (CRP) (Aldous, 1985)
provides a convenient equivalent description:

1, 2,000 H, (12)

2, =1, 1

1) (13)
< : e N
k with probability =%,
Zie1 = P Yo (14)
- k"W with probability —,

Yi= zp» (15)
where N , #fj 6 i : z; = kg is the number of times k appears in
fzq,:::0,zig, K™Y, maxfzy,:::,zig+ 1 is the next integer that doesn’t
appearinfzy,:::,zjJ. Theanalogy to arestaurantis to imagine a restau-

rant with a countably infinite sequence of tables, labeled 1,2, 3,::: The
first person comes into the restaurant and sits at table 1. For each sub-
sequent person that enters the restaurant, they choose to sit at a table
with probability proportional to the number of people already sitting
at that table. Otherwise, they choose to sit at an empty table with prob-
ability proportional to . z; indicates which table the ith customer
chose to sit, Nk is the number of people sitting at table k, and k™" is
the index of the next unoccupied table. Each table is assigned a sample
from H, independently and identically distributed (i.i.d.), where j is
the sample assigned to table i. Each observation y; is the sample from
H that is assigned to the table that the i*" customer chose to sit (i.e.
table zj). The CRP provides a simple algorithm to generate samples
from a DP model. Notice thatif is very large, every customer is likely
to choose to sit at a new table, and so each yi; is likely to be drawn i.i.d.
from H (and therefore, G would be very similar to H). The opposite
would be true in the case where is small, where G would be heavily
concentrated on a small handful of observations, as each customer is
more likely to sit at a table that already has other customers. The CRP
is exchangeable which is useful property in which the joint distribution
of the table assignments z is independent of their order. That is, for
any permutation of the integers

P(21,22,::) = p(Z (1),Z (2):::2)- (16)
3.2 MODEL
3.2.1 Generative process for the theory p(T)

The theory T represents what PWL believes to be true and is analogous
to the internal mental model that humans create as they make obser-
vations of the world around them. More precisely, in PWM, the theory
T is a collection of axioms a1, ay, : : ;, where each axiom aj is a formula
of higher-order logic. We choose a fairly simple prior for p(T) for ease
of implementation and rapid prototyping, but it is straightforward to

3.2 MODEL

substitute p(T) with a more complex prior. Specifically a;,a»,::: are
distributed according to a Dirichlet process.

Ga DP(Ha,), (17)
aj,as, ;. Ga, (18)
where Hg is the base distribution and = 0.1 is the concentration

parameter.

The base distribution Ha is a distribution over logical forms in higher-
order logic. To generate a sample from Ha, we sample each node in
the expression tree of the logical form top-down, starting from the root.
For each node in the expression tree:

1. Sample the operator at this node (i.e. atom, conjunction 7, dis-
junction _, negation :, quantification 8x, etc) from a categorical
distribution.

2. If we sampled an operator with a fixed number of operands (e.g.
- has one operand, ¥ has two operands, etc), then recursively
sample each operand. If a quantifier is sampled, set its variable
to the next unused variable, and add it to the list of available vari-
ables. The list of available variables is the set of variables already
declared by an ancestor of the current node in the expression tree
of the logical form.

3. If we sampled an operator with a variable number of operands
(e.g. 7, _), then first sample the number of operands from a
geometric distribution. Next, sample each operand recursively.

4. If this node is selected to be an atom (e.g. book(c1)), then its
predicate is sampled from a non-parametric distribution of pred-
icate symbols Hp. The atom’s argument(s) are each sampled as
follows: if Ny is the number of available variables, then sample a
variable uniformly at random with probability nvl+1 ; otherwise,

with probability ﬁ, sample a constant from a distribution of

constant symbols He.

Hc is a uniform distribution over fcq,:::,C1000. Hp is the Chinese
restaurant process with concentration parameter = 1:
z; =1,
8
<k with probability ¥,

Zij+1 = - 1
~ k"W with probability —,

i = pZia
were P1, P2, - : :is the set of available predicate symbols, and 1, 2,:::
are the samples from Hp.

In our semantic formalism, logical forms will contain atoms of the
form argi(a) = borarg2(a) = b where ais a variable or constant and

29

30

REASONING MODULE

biseither a variable, constant, number, or string (e.g. argl(x) = jason).
We will discuss the semantic formalism in greater detail in section 4.5.
To accommodate these kinds of atoms, with some fixed probability, Ha
will generate such an atom. Next, a is sampled by selecting a variable
uniformly at random with probability ﬁ ; otherwise, with probabil-
ity ﬁ, sample a constant from Hc. The right-side of the equality b
can either be a variable, constant, string, or number, and so PWM first
selects its type from a categorical distribution. If the type is chosen to
be a number, string, or variable, its value is sampled uniformly. If the
type is chosen to be a constant, b is sampled from Hc.

Names of entities are treated specially in this prior: The number of
names available to each entity is sampled independently and identi-
cally from a very light-tailed distribution: for entity c; the number
of names Nn(Ci) , #fs : name(Ci) = sg is distributed according to
p(nn(ci) =k) 7/ k?_This ensures that the number of names for each
entity is small (usually 1).

Sets are also treated specially in this prior: One kind of axiom
that can be generated is one that declares the size of a set, such as
size(X.planet(x)) = 8, which denotes that the size of the set of plan-
etsis 8. Note that this is not a closed world assumption. The size of
each set is an unobserved random variable, just like any other axiom in
the theory. In the prior, the size of each set is distributed according to
a geometric distribution with parameter 10~#. Sets can have any arity
k > 0, in which case their elements are k-tuples.

The above generative process provides a way to compute the prior
probability of any theory. The parameters and code for computing the
above prior is available at github.com/asaparov/PWL.

3.2.1.1 Deterministic constraints on the theory

PWM imposes a handful of hard constraints on the theory T. Most
importantly, T is required to be globally consistent: There is no proof
of a contradiction ? from the axioms a; in T. While this is a concep-
tually simple requirement, it is computationally expensive (generally
undecideable even in first-order logic). But PWL does not search over
all possible proofs for a contradiction. Rather, PWL enforces this con-
straint by keeping track of the known sets in the theory. A set is known
if its set size axiom is used in a proof, as in size(X.planet(x)) = 8§,
or if the set appears as a subset/superset in a universally-quantified
axiom, such as in 8X(cat(x) ¥ mammal(X)) where the set X.cat(X) is
a subset of x.mammal(x). PWL keeps track of the size of each set as
well as its provable elements. So for any known set, T will contain
an axiom that declares the size of the set, even if that axiom is not
explicitly used in any proof. For each set, the function provable (in
algorithm 1) computes which elements are provably members of that
set. If the number of provable members of a set is greater than its
size, or if an element is both provably a member and not a member

https://github.com/asaparov/PWL

3.2 MODEL

Algorithm 1: Given a higher-order logic formula A, with free vari-

ables Xi,:::,Xn, this algorithm computes the maximal set of n-
tuples (V11,:::,Ve,n) i1, (VN1 i1, VNLn) such that for each i, A[x; @
Vi1, ::1, Xn A Vj] (i.e. the formula A where each variable X; is substituted

with the value vj j) is provably true from the axioms in the theory. The
elements of the tuples v j are restricted to be either constants, numbers, or
strings. Note that this function does not exhaustively consider all proofs
of A. This function uses the helper function unify which performs unifica-
tion: given two input formulas A and B, unify (A, B) computes and 0
where maps from variables in A to terms, ’ maps from variables in B to
terms, such that the application of to A is identical to the application of

ltoB: (A)= "B). In this algorithm (and its helper functions), unify

only returns for brevity.

1 function provable (formula A)

2
3
4
5
6

7
8
9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

NNONN
, O Vv © N o

W oW oW W W
W N

~

W W W w
AVNCN a

©

let S be an empty set

for each axiom a; in the theory T do
u=unify(A aj)
let S? be the set of all tuples (vq,:::,Vk) such that vj = u(x;), for all i
setS=S[S!?

setS =S [provable_by_theorem(A)

set S =S [provable_by_exclusion(A)

if A is a conjunction B1 111 By
fori =1t N doSj =provable(Bj)
return S [(S \:::\SNn)

else if A is a disjunction B; __:::__ By
fori =1t N doSj =provable(Bj)
return S [(S1 [::: LSN)

else if A is a negation B

‘ return S [disprovable(B)

else if A is an implication B; ¥ B
Sq =disprovable(Bq)
S, = provable(By)
return S [(S1 [S2)

else if A is an existential quantification 9Xpn4+1.F(X1, 717, Xn+1)
SY = provable (f(X1,:: 1, Xn+1))
letS =f(v1,:::.vn) (V1,::5,Vaa1) 2 S%

returnS[S
else if A is a universal quantification
8Xn+1::: 8Xn+k(f(xlq L vXn+k) L g(XL L yxn+k))
for each known set yi::: Ym.-h(Y1,:::,Ym)inT do
retrieve S the provable elements of yjg::: Ym.h(y1,:::,Ym)

if jSYj & the size of y1::: Ym-h(y1,:::,ym) continue
letu=unify(f(X1,:::, Xn+k): h(Y1,:::,Ym))
if uis null continue
if u(x;) is not a variable for some i 2 fn+1,:::, N +KJ continue
letS be an empty set
for each (v1,:::,vm) 2 " do
let (v,:::, vl) where v = vy if u(Xj) = yy, and v{ = u(x;) if u(x;)
is a constant, number, or string, for all i
setS =S [(v),:::,vh)

Q = provable(g(X1,: !, Xn+k))
letQ =1(vy,:::,vn) i (V1, 1, Vh+k) 2S \ Qg
| setS=S[Q

31

REASONING MODULE

Algorithm 1: (continued)

39 | elseif Aisan equality By = By

40 if By and By are the same expression return the set of all tuples

41 if By or By has form size()

42 if B, has form size() swap B and By

43 for each axiom aj with formc = yj::: Ym.h(y1,:::,Ym) wherecisa
constant and y1::: Ym-h(y1,:::,¥Ym) is a known set do

44 let n be the size of the set y1::: ym.h(Y1,:::,¥Ym)

45 u=unify(,c)

46 ul = unify(Bs,n)

47 if u¥is null continue

48 if there is an X; such that u(x;) & u’(x;) continue

49 let S® be the set of all tuples (v1,:::,Vn) where vj = u(x;) or

vi = ul(x;) for all i

50 setS=S[S’

51 | else if A has the form number(X;)

52 let S” be the set of all tuples where the it element is a number

53 return S S’

54 | elseif Ais> return the set of all tuples

55 | elseif Ais ? return ?

56 | return S

of a set, the theory is found to be inconsistent. Even though this may
not find all possible contradictions in the theory, we find that it suf-
fices to find the contradictions that arise in our experiments. But it
is possible that for some other set of inputs, this consistency checking
will fail to find a contradiction. Whenever an axiom is added to the
theory T, PWL checks whether there are new provable members of
any set, and updates the stored list of provable members accordingly.
And whenever an axiom is removed, PWL checks whenever any ob-
jects are no longer provable members of a set. In our experiments,
we find that consistency checking is much more costly when the the-
ory is large. For example, on the question-answering examples of the
FicrioNnaLGEOQA dataset that have more than 100 observed sentences,
the reasoning module spends 68.8% of its time performing consistency
checking. Relaxing this constraint would be valuable in future
research, as it could save significant computation, perhaps instead by
only considering the sets relevant to the current task rather than all sets
in the theory, or deferring consistency checks altogether.

For axioms of the form T, PWL also keeps track of whether
the antecedent is provably true. It does so by using the provable
function (in algorithm 1). Whenever an axiom is added to the theory
T, PWL must check whether the antecedents of these axioms become
provably true, since this would imply the consequent isnow provably
true (which can have further downstream consequences, such as newly
provable elements of sets), and algorithm 1 and its helper functions
only consider these axioms when their antecedents are true. If the
antecedent is not known to be true, the truth of the consequent has

3.2 MODEL

Algorithm 2: Helper functions used by algorithm 1. provable_by_
theorem checks whether the formula A is provable from axioms of the
form 1 or 8X1:::8Xk(¥). provable_by_exclusion checks
whether A would imply that the number of provable elements of any set is
greater than its size, which would be a contradiction, thereby proving - A.

1

function provable_by_theorem (formula A)

2 | let S be an empty set

3 | foreach knownset yi::: yYym-h(y1,:::,ym)inT do

4 retrieve S” the provable elements of y1::: Ym.h(y1,:::,Ym)

5 lethi(y1,::5,¥Ym) i ™M h(Y1, 000, Ym) be the conjuncts of
h(y1.:::,Ym)

6 fori=1,:::,kdo

7 letu=unify(A hij(yY1,:::,¥Ym))

8 if Uis null continue

9 for each (vl,:::,vm)ZS0 do

10 let (v§,::1,v}) where v! = vi if U(xj) = Yk, and v] = u(x;) if u(x;) is

a constant, number, or string, for all
11 setS=SL 0 vh)

12
13
14
15
16
17

19

20

21
22
23
24
25
26
27
28

for each axiom in T with form 8 where is provably true do
let 1 7:::”™ g be the conjuncts of
fori=1,:::,kdo
letu =unify(A, i)
if Uis null continue
let (v},:::,v0) where vJ@ = u(x;) for all j
set S=S[f(v), i, vl

| return S

function provable_by_exclusion (formula A)
/* for tractability, we do not consider nested proofs by
exclusion, and we only consider particular forms for A x/
if this function has already been called higher in the stack return ?
if A is not of the form 9x.F(X) or f(X) where X is a variable return ?
let S be an empty set
for each known set y1::: Ym-h(y1,:::,¥ym)inT do
retrieve SU the provable elements of y1::: Ym.h(y1,:::,¥m)
ifjSYj & the sizeof y1::: ym.h(y1,:::,ym) continue
if Ahas form - letN =
else letN = - A
for each u where u = unify (N,), isasubformulaofh(y1,:::,¥Ym), such
that if isanaxiom in T, provable (h(y1,:::,Ym)) returns a newly
provable element: (V1,:::,Vm) 2 S%do
/* if A were true, the set VYyi::! Ym-h(Y1,:::,Ym) would
have too many elements, which is a contradiction */
let (v,:::,v]) where v{ = vy, if u(xj) = yk, and v{ = u(x;) if u(xj) is a
constant, number, or string, for all i
set S=S[f(v),:::, vl

| return S

33

34

REASONING MODULE

Algorithm 3: Given a higher-order logic formula A, with free vari-

ables Xj,:::,Xn, this algorithm computes the maximal set of n-
tuples (V11,:::,Vi,n) i1, (VN1 i1, VNLn) such that for each i, A[x; @
Vi,1,:::, Xn A Vjn] (i.e. the formula A where each variable X; is substituted

with the value v;j j) is provably false from the axioms in the theory. The
elements of the tuples v; j are restricted to be either constants, numbers, or
strings. Note that this function does not exhaustively consider all proofs
of ZA.

1 function disprovable (formula A)

2 | let S be an empty set

3 | for each axiom aj in the theory T do

4 u=unify(-A aj)

5 let S? be the set of all tuples (vq,:::,Vk) such that vj = u(x;), for all i
6 setS=S[S’

7| setS=S [provable_by_theorem(:A)

8 | setS=S [provable_by_exclusion(:A)

9 | if Alis a conjunction By 711N Byy

10 fori=1t0 N doSj =disprovable(Bj)
return S[(S1 [::: LSN)

12 | elseif Aisadisjunction By __:::__Byn
fori=1t0 N doSj =disprovable(Bj)
return S [(S1 \:::\SN)

15 | else if Ais a negation =B

16 ‘ return S [provable(B)

17 | else if Ais an implication By ¥ By

18 Sq1 =provable(Bq)

19 S, =disprovable(Bs)

20 return S [(S1\ S»)

11

13

14

21 | else if A is an existential quantification 9Xpn4+1 11 X4k F(X1, 110, Xpak)

22 return S [exists_disprovable(A)

23 | else if A is a universal quantification 8Xp41.F(X1,: 11, Xn4+1)

24 S% = provable (f(X1,:: 1, Xn+1))

25 letS =f(v1,:::,vn) : (V1,::1,Vha1) 2 SY

26 returnS[S

27 | else if Aisan equality B; = By

28 if Bq and B are the same return ?

29 if By or By has form c() where C is a constant

30 if By has form c() swap Bj and By

31 for each axiom a; with form ¢() = n where N is a constant, number, or
string do

2 =unify(,)

ul = unify(Bs,n)

if u is null or u® is empty continue

let S” be the set of all tuples (V1,:::,Vn) where vj = u(x;) for all i, and
vj & u’(x;) if u® is not null

36 setS=S[S’

W

IS

W oW oW W

a

3.2 MODEL

Algorithm 3: (continued)

37 if B or By is c where ¢ is a variable or constant, or there is an axiom By = ¢ or

B2 = c where C is a constant

/* without loss of generality, suppose Bj satisfies the
above condition; otherwise swap By and By */

38 if By is a constant ¢ or By = q is an axiom with constant ¢

39 if By is a constant ¢® or By = ¢V is an axiom with constant ¢ and ¢’ & ¢
40 ‘ return the set of all tuples

41 else if B, is a variable X;

42 let S be the set of all tuples (vq,:::,vn) such that vj & ¢
43 setS=S[S’

44 else if By is a variable X;

45 if By is a constant c¥ or By = ¢ is an axiom with constant c°
46 let S be the set of all tuples (v1,:::,Vn) such that vj & c?
47 setS=S[S’

48 else if By is a variable Xj

49 let S be the set of all tuples (v1,:::,Vn) such that v; & vj
50 setS=S[S°

51 | else if A has the form number(X;)

52 let S¥ be the set of all tuples where the ith element is not a number
53 return S [S?

54 | elseif Ais > return ?

55 | elseif Ais ? return the set of all tuples

56 | return S

no effect on the theory and so the provable function can ignore it.
Similarly, whenever an axiom is removed, PWL checks whether the
antecedents are no longer provably true.

We place a handful of other constraints on the theory T: The name
of an entity must be a string (and not a number or a constant). All
constants are distinct; that is, c; & c; for all i & j. This helps to alle-
viate identifiability issues, as otherwise, there would be a much larger
number of semantically redundant theories: for any theory, a logically-
equivalent theory could be obtained by applying any permutation on
the constants. No event can be an argument of itself (e.g. there is no
constant c; such that argi(cj) = c; or arg2(ci) = c;j). If a theory T
satisfies all constraints, we write “T valid.”

The deterministic constraints on the theory do complicate compu-
tation of the prior, since the generative process for generating T is
conditioned on T being valid:

p(T jT valid) = p(T))zp(T valid), (19)

where p(T valid) = p(TY (20)
T0.T0valid

is the probability that the above generative process produces a valid
theory, which is equal to the sum of the probabilities of all valid theo-
ries, which is intractable to compute. However, we show in section 3.3

35

REASONING MODULE

Algorithm 4: Helper function used by algorithm 3 that returns the values
of the free variables that make the given existentially-quantified formula
provably false.

1 function exists_disprovable (formula 9Xn4+1 1 Xk F(X1, 111, Xn+k))
2 | letCq i Cp be the conjuncts of f(X1, 11, Xp+k)
3 | let be an empty substitution map, and let | be an empty set
4| fori=1,:::,Ndo
5 if Cj has the form Xj = ¢ where C is a constant, variable, or string, or Cj has the
form Xj = q and there is an axiom q = C where C is a constant, variable, or
string
6 ‘ add x;j A ¢ to the substitution map
7 else l.add(i)
8 | let be conjunction with conjuncts Cj wherei 2 |
9 | let "be the result of applying the substitution map to the formula
10 | let M be an initially empty map
11 | for each conjunct of O with form F(Xp+j) where z.8(z) is a known set do
12 retrieve S! the provable elements of z.f(z)
13 if the size of z.f(z) is 0 return the set of all tuples
14 else if jS'j is not equal to the size of z.f(z) continue
15 %M.put(xnﬂ-,So)
16 | if the number of entries in M is K
17 let S be the set of all tuples
18 for f{(Vn+1,: 7, Vh+k) ! Vn+i 2 M.get (Xn+i) forall iy do
19 let be the result of the substituting all X4 for V4 in 0
20 setS =S \disprovable()
21 setS=S[S
22 | if there are conjuncts in " with the form
Xn+i = Xn+k+1::: Xn+k00(X1,::1, Xn+ko) and size(Xp+j) =C
23 if C is not an integer or a variable return the set of all tuples
24 SY = provable(g(X1,: 11 Xn+ko))
25 letS =f(v1,::1 Vrak) (V1,717, Vaako) 2 S%
26 foreach (Vq,:::,Vh+k) 2S do
27 let | be the number of times (v1,:::,Vh+k) appears in S0
28 if c is an integer and | > ¢
29 | setS=S[f(vy,:::,vn)g
30 else if ¢ is a variable X; and | > vj or vj is not an integer
31 LsetS:S[f(Vl,:::,vn)g
32 for each known set y1::: Ym.h(Y1,:::,Ym)inT do
33 U=unify(Xp+k+1::: Xn+ko9(X1,:::, Xn+ko),
yi1i:t Ymh(ys,ii1,ym))
34 if uis null continue
35 let I be the size of y1::: Yym-h(Y1,:::,¥Ym)
36 if ¢ is an integer and | & C
37 let S° be the set of all tuples (v1,:::,Vn) where vj = u(X;), for all i
38 setS=S[S’
39 else if c is a variable X,
40 let S” be the set of all tuples (v1,:::,Vn) where v; = u(x;), for all i,
and vy & |
a1 setS=S[S!
42 | for each known set yi::: Ym.h(y1,:::,¥m)inT do
43 if the sizeof y1::: Ym-h(Y1,:::,Ym)isnot 0 continue
44 if h(y1,:::,Ym) has form OYm41q 1 0: 9Ymo.h(y1.:::, Ymo)
as | [] let =h%yq, 1, ymo)
46 else let =h(y1,:::,Ym)
47 u=unify(0,)
48 let S” be the set of all tuples (v1,:::,Vn), where for each i such that u(x;)
is a constant or string, vj = u(X;)
49 setS=S[S!?
50 | return S

3.2 MODEL

that for inference, it suffices to be able to efficiently compute the ratio
of prior probabilities:

P(T1 j Ty valid) _ p(T1)p(T2 valid) _ p(T1)
P(T2j T2 valid) p(T2)p(T1 valid) p(T2)

Additionally note that since the above constraints do not depend on
the order of the axioms, constants, etc. (i.e. the constraints themselves
are exchangeable), the distribution of T conditioned on T being valid
is exchangeable.

Note that the provable function and its helper functions make heavy
use of the uni fy function, which when given two input formulas A and
B, finds substitutions and ¢ where isa map from the variables of
A to higher-order terms, lisa map from the variables of B to higher-
order terms, and applied to A is identical to ” applied to B. In the
pseudocode for provable and its helper functions shown in this thesis,
unify function returns if such a map exists; otherwise, it returns null.
Note that this is not the same as full higher-order unification, where
the substituted formulas are equivalent under , ,and reductions.
For efficiency, unify only considers substitution maps from variables
to variables, constants, numbers, or strings.

The provable function and its helper functions work with sets of
tuples (possibly infinite), computing their unions and intersections. To
do so efficiently, they make use of a sparse data structure to represent
these sets, shown below:

(21)

1 class tuple_element 13 class tuple_any_number
/* supertype that represents a extends tuple_element
tuple element */ 14 Larray<-interva1>intervals
2 class tuple_constant 15 class tuple_any extends tuple_element
extends tuple_element /* represents the set of all
3 L-int constant_id values except those 1in

‘excluded’ x*/

4 class tuple_string
16 | array<tuple_element> excluded

extends tuple_element
5 L string str 17 class tuple_set
s class tuple_number 18 array<tu;.)1e_'e1errlent> elemfnts
extends tuple_element 19 | array<pair<int,int>>equa
20 | array<pair<int,int>> unequal

7 Lnumbernum L. .
21 | array<pair<int,int>>ge

g class interval

9 | number min
10 | number max
11 | boolis_min_inclusive
12 | boolis_max_inclusive

In the tuple_set data structure, the elements array represents the
elements of the tuple: so for a set of tuples S, elements[1i] represents
fvi : (vV1,:::,vn) 2 Sg. the equal field represents the equality constraints
on the set of tuples: it contains pairs of indices (i, j) such that for any
tuple (v1,:::,vn) in the set S, vj = v;. Similarly, the unequal field
represents the inequality constraints: it contains pairs of indices (i, j)
such that for any tuple (v1,:::,Vn) in the set S, vj & vj. Finally, the

37

38

REASONING MODULE

ge field contains greater-than-or-equal-to constraints: it contains pairs of
indices (i, j) such that for any tuple (v1,:::,Vn) in the set S, vj > v;.

Equipped with this data structure, the sets of tuples in the prov-
able function and its helper functions can be represented as lists of
disjoint tuple_set objects, where the list represents the union of the
corresponding sets.

CHECKING THE CONSISTENCY OF SET sIZES: Many of the axioms
in the theory will be of the form size(x.f(x)) = n where n > 0 is
an integer. These axioms declare that the size of the set fx : f(x)g
is N (the set of all objects X such that f(x) is true). Consider the ax-
ioms: size(X.cat(X)) =3, size(X.small(X)) =2, size(X(cat(xX) ™
small(x))) =0, and size(X(cat(x)__small(x))) = 4. These axioms
state that the number of cats is 3, the number of small objects is 2,
the number of small cats is 0, and the number of objects that are ei-
ther cats or small is 4. But this is impossible since for any two sets A
and B, JA [B] = jAj +]Bj — JA\ Bj. And so in the above example, the
size of the set X(cat(x) __ small(x)) must be at least 5. It is possible
to add these axioms to the theory and rely on the above consistency
checking mechanisms (the provable function) in order to check for
the consistency of set sizes. However, this would be fairly inefficient.

Instead, PWL uses a specialized data structure to maintain the con-
sistency of set sizes. This data structure consists of a directed graph
G, where each vertex in G corresponds to a known set. Each directed
edge corresponds to the superset relation: if A is a superset of B, there
is a directed path from the vertex u to the vertex v in G, where u
corresponds to A and v and corresponds to B. We take care to avoid
adding superfluous edges: if there is an edge (u,V) in G and there is
an edge (v, w) in G, then there is no edge (U, w). This serves to keep G
as sparse as possible. This graph structure enables efficient retrieval of
the provable elements of any known set: if e is a provable element of
the set A, then e is a provable element of every superset of A (i.e. every
ancestor of the vertex corresponding to A in G). The graph structure
also helps to determine whether two sets A and B are disjoint: check
whether any ancestor of the vertex corresponding to A\ B has size 0.
Perhaps most importantly, the graph structure helps to determine, for
each set A, the minimum size of A that is consistent with the sizes of
the other known sets. The following constraint must hold:

X
jA] > max iBii.
g f(B1,::1Bn)Bi A, =il (22)
Bi\Bj=g for all i&jg i=1
That is, for any sets By, : : 1, B which are disjoint subsets of A (n could

be 1), the size of A must be at least the sum of the sizes of all B;j.
This constraint also induces an upper bound on the size of A, since A
itself may be a subset of other sets. To find the collection of subsets
B1,:::, Bn that maximizes their sum, we consider the “disjointedness”

3.2 MODEL

Algorithm 5: Modified Bron-KerbosE; algorithm to find the disjoint clique
of verticesCq, : ::, Ck that maximizes li(= 1 W(cj), where w(c;) is the weight
of the vertex cj, each C;j is a descendant of the given input vertex v, and
for all i & j, the set corresponding to the vertex c; is disjoint with the set

corresponding to Cj.

1

Now N

®w N o w,

12
13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28

o

W W
=

w w w w
2 Q@ N

a

w
o

function search_helper (G, vertex list M, vertex list X, vertex u, vertex V)
if u and v are disjoint in G
for each n 2 M is an ancestor of vdo M. remove (N)
M. add (v)
else
for each c child vertex of v do
if w(c) = 0or 9n 2 M [X such that n is an ancestor of ¢ continue
L search_helper (G,M, X, u,c)

function max_weight_disjoint_clique(graph G, vertex r)
let Q be an empty priority queue
let fug,:::,ung=fu:w(u) & 0, (r, u) is an edge in Gy be the immediate
subsets (children) of r with non-zero weight
fori=1:::,n do
let N =fuj:j< bui and uj are disjointg
let =w(uj)+ [onW(U)
Q.add(new search state (?, N, ?, uj) with priority)

let L be an initially empty list of completed cliques
while Q is not empty do
(C,N, X,v) = Q.pop () with priority
if 6 highest weight of a clique in L break
let M be an initially empty list
for each X 2 X do search_helper (M, M,vV, X)
copy X" from M
for each n 2 N do search_helper (M, X!, v,n)
letfuq,:::, ungbe Mn X’
fori=1,:::,ndo

let N =fuj:j<ig

letX =Mn (NP[fuig)

let "=wW)+ cocw(O)+ L w(ui)

Q. push(new search state (C [fvg, N , X ,uj) with priority 0y

if both M and X are empty L.add(C [fvg)

letfug,:::,ung = fu:w(u) &0, (v, u) is an edge in Gy be the immediate
subsets (children) of v with non-zero weight
fori=1,:::,ndo

let N =fuj:j <|5Ui and uj arﬁ,disjointg
let P=w(ui)+ WO+ N W)
Q.push(new search state (C,N , M, u;) with priority 0y

return maximum weight clique in L

39

40

REASONING MODULE

graph of G: Let D be a graph with the same vertices as G, and there
is an edge (u, V) in D if and only if the sets corresponding to u and v
in G are disjoint. Thus, D is undirected, unlike G. Each vertex in D is
weighted according to the size of the corresponding set. The problem
of finding the maximal disjoint subsets B1,:::,Bn is reduced to the
problem of finding the maximal clique in D, consisting only of the
descendant vertices of A, that maximizes the sum of the weights. To
perform this optimization, PWL uses a modified version of the Bron-
Kerbosch algorithm (Bron and Kerbosch, 1973), shown in algorithm
5.

The algorithm is an application of branch-and-bound: it starts by
considering the set of all cliques of vertices in D which are descendants
of the input vertex r in G. Next, on line 12, it subdivides this set to a
collection of disjoint subsets (the “branch” step), where each subset is
the set of cliques that contains either v or a descendant of v, where vis a
child vertex of r. Each subset is pushed into the priority queue Q. Then
algorithm repeats this process: each element in the priority queue Q
is a tuple (C, N, X,V) (i.e. a search state). This tuple represents a set
of candidate cliques S, where each clique contains all the vertices in C,
some of the vertices in N, and none of the vertices in X, and it contains
v or least one of the descendants of v. All verticesv 2 N [X are disjoint
with each vertex ¢ 2 C [fvy. At each iteration of the main loop (on line
17), the algorithm subdivides this set S (i.e. creates new search states)
by considering moving each vertex from N into the clique C [fvg.
If v has child vertices, the algorithm also creates new search states
by considering replacing v with one of its children. As such, these
new search states are disjoint. The priority of each search state S is an
upper bound on the weight of any clique in It:be set of candigate cliques
represented by that state: h(S) = w(v) + >cW(C)+ o8 W(N),
where w(X) is the weight of the vertex x. Note that h(S) is a valid upper
bound on the weight of any clique in the set S, since the largest possible
cliquein Sis one thatincludes all of the verticesin C [N [fvg. When the
algorithm processes a search state where there are no further candidate
vertices N that can be added to the clique, the clique is maximal and
is added to a list of completed cliques L. Once the highest priority
in the priority queue is less than or equal to the highest weight of a
completed clique in L, the best clique in L is guaranteed to be optimal.

Though the maximum weighted clique problem is NP-hard and
algorithm 5 has exponential worst-case complexity, it is more efficient
when the graph is sparse. In our experiments, the graphs were small
(at most 120 vertices) and sparse enough that this algorithm would
always terminate quickly. However, it remains to be seen how it will
fare when the theory is much larger, containing many more known
sets. And future research to relax this constraint would be valuable,
perhaps by restricting the optimization to local regions of the graph.

3.2 MODEL

3.2.1.2 Properties of the theory prior p(T)

We emphasize that the distribution for p(T) was chosen for simplicity
and ease of implementation, and it worked well enough in our exper-
iments. However, there is likely a large family of distributions that
would work similarly well. Nevertheless, this prior does exhibit useful
properties for a domain- and task-general model of reasoning:

e Occam’s razor: Smaller/simpler theories are given higher proba-
bility than larger and more complex theories, both in terms of
the number of axioms but also in the complexity of each axiom.

o Consistency: Inconsistent theories are discouraged or impossible.

« Entities tend to have a unique name. Our prior above encodes
one direction of this prior belief: each entity is unlikely to have
many names. However, the prior does not discourage one name
from referring to multiple entities.

« Entities tend to have a unique type. Note however that this
does not discourage types provable by subsumption. For exam-
ple, if the theory has the axioms novel(c1) and 8x(novel(x) ¥
book(x)), even though book(c1) is provable, it is not an axiom in
this example and the prior only applies to axioms.

3.2.2 Generative process for the proofs p(i jT)

PWM uses natural deduction, a well-studied proof calculus, for its proofs
(Gentzen, 1935, 1969). Pfenning (2004) provides an accessible introduc-
tion. Figure g illustrates a simple example of a natural deduction proof.
Each horizontal line is a proof step, with the (zero or more) formulas
above the line being the premises of that proof step, and the single
formula below the line being the conclusion of that proof step. Each
proof step has a label to the right of the line. For example, the “I” step
denotes conjunction introduction: given that A and B are true, this step
concludes that A B is true, where A and B can be any formula. A
natural deduction proof can use axioms in its proof steps (the axioms
are given by proof steps labeled “Ax”). In the example in figure 9, the
proof contains the axiom A~ B. Natural deduction is complete in that
if any higher-order formula is true (under Henkin semantics), there
is a natural deduction proof of (Henkin, 1950), which is a very useful
property for generality.

We can write any natural deduction proof ; as a sequence of proof
steps i » (i,1,:::, ik) by traversing the proof tree in prefix order.
We define a simple generative process for j:

1. First sample the length of the proof k from a Poisson distribution
with parameter 20.

41

REASONING MODULE

Ax Ax
AN A AN A
~E ~E
A A
p tE
+:I
(AN ZA)

Figure 9: Anexample of a proof of 2 (A" - A). The proof starts with the axiom
A" ZA. By conjunction elimination (~E), we conclude from this
axiom that both A and - A are true. By negation elimination (:E),
we conclude from the fact that both A and : A are true that there
is a contradiction ?. Finally, from the contradiction, via negation
introduction (zI), we conclude that the negation of the original
axiom is true: z (A :A). The tree structure of natural deduction
proofsis visible in this example, where the two leaves are the axioms
at the top and the root is the conclusion at the bottom.

2. For each j=1,:::,k: Select a deduction rule from the proof
calculus with a categorical distribution. If the Ax rule is se-
lected, then simply take the next available axiom from the theory
T = aj, ay,::: If the deduction rule requires premises, then each
premise is selected uniformly at random from jq1,:::, jj-1.
Some deduction rules will require additional parameters:

a) Iftheselected ruleis conjunction elimination ™E, its premise
is a conjunction 1 ™:::” [and its conclusion is , ™

i, where fiq,:::img fl,i:i,ngand iy <::: <im.

We sample m from a Poisson distribution with parameter
1.5, and each increment ij+1 — j is sampled from a Poisson
distribution with parameter 2 (the initial index i1 is also

sampled from a Poisson distribution with parameter 2).

b) If the selected ruleis disjunction introduction __I, its premise
isa formula and its conclusionis __ . Weselect uni-
formly at random from j1,:::, jj—1, as with all other
deduction rules, but we also need to generate . For sim-
plicity, we choose uniformly at random from the set of
all possible logical forms with depth less than N where N
is large. While this is very unrealistic, it is simple to imple-
ment. This approach sufficed in our experiments since they
did not often produce proofs that contained this deduction
rule. A better approach could be to sample from Ha.

c) If the selected rule is universal introduction 8], its premise
is a formula and its conclusion is 8x. [a ® X] where
[a A X] is the substitution of the parameter a with the
variable X in the formula . As with all other deduction
rules, the premise is selected uniformly at random from
i1,-:5, ij—1. The parameter aissampled uniformly from

the set of parameters that appear in

d)

3.2 MODEL

If the selected rule is universal elimination 8E, its premise
is a formula 8x. and its conclusion is [X A c] for some
term c. As with all other deduction rules, the premise 8x.
is selected uniformly at random from ji,:::, jj—1. The
term c is drawn from a Chinese restaurant process with
concentration parameter = 1:

z1 =1,
T8

<k with probability ¥,
Zi+1 = ’

" knew with probability —,

i :tZil

where t;,t5,::: is a list of available terms, and 1, »2,:::
are the samples from the CRP (¢ being among them).

If the selected rule is existential introduction 9], its premise
is a formula [X 7 c] and its conclusion is 9X. , where X
is a variable and c is a term. As with all other deduction
rules, the premise formula is selected uniformly at random
from j1,:::, jj—1. Note thatitisnot necessary to replace
every occurrence of cin [X7 c] with X. For example, from
see(kate, kate), we can conclude 9x.see(Xx, kate). To se-
lect which occurrences of ¢ to replace with the variable X,
we need to generate a list of indices i1,:::, im, where each
index identifies a node in the prefix ordering of nodes of the
expression tree of [X7A c]. For example, in see(kate, kate),
the subexpression with index 1 is see(kate, kate). The
subexpression with index 2 is see. The subexpression with
index 3 is the first occurrence of kate, and so on. So in or-
der to conclude 9x.see(X, kate) from see(kate, kate), the
list of indices would be f3g. To generate the list of indices
I1,:::,im where 11 < ::: < im, we first sample m from a
Poisson distribution with parameter 1.5. Next, we sample
each increment ij+1 — ij is sampled from a Poisson distribu-
tion with parameter 4 (the initial index i1 is also sampled
from a Poisson distribution with parameter 4).

If the selected rule is equality elimination = E, its premises
areaformula [p7A X]and anequality X =Y. Its conclusion
is [p7A Y], which is identical to the premise except some of
its occurrence of X have been replaced with Y. But just as
with 9T above, it is not necessary to replace every occurrence
of Xwith Y. For example, from see(kate, kate) and kate =
sister(matt), we can conclude see(kate, sister(matt)).
So again we need a list of indices i1,:::,im where 11 <
.11 < im to indicate which occurrences of X to replace with
Y. We generate this list from the same distribution as the

43

44

REASONING MODULE

indices for the 91 rule, as described above: First sample m
from a Poisson distribution with parameter 1.5. Next, we
sample each increment ij+1 — 1j is sampled from a Poisson
distribution with parameter 4 (the initial index i1 is also
sampled from a Poisson distribution with parameter 4).

The above generative process may produce invalid proofs: For exam-
ple, it may produce a forest rather than a single proof tree, or some of
the deduction steps may have premises with types that do not match
the expected type for that deduction step (e.g. the premise of con-
junction elimination E is required to be a conjunction, but the above
process may produce proofs where the premise is not always a con-
junction). Thus, j is sampled conditioned on ; being a wvalid proof.
Just as with p(T) in equation 19, this conditioning causes p(i j T) tobe
intractable to compute. However, only the ratio of the prior probability
is needed for inference, which can be computed efficiently:

p(+JT. ivalid) _ p(ijT)p({validjT) _p(ijT)
p(T, valid) p(jT)p(ivalidjT) p([jT)

PWL was initially implemented assuming classical logic, since we
believed that human reasoning aligns most commonly with classical
logic. However, it is easy to adapt PWL to use other logics, such as in-
tuitionistic logic. Intuitionistic logic is identical to classical logic except
that the law of the excluded middle A __ - A is not a theorem (see figure
28 for an example in the PRoorFWRriTER dataset where the two logics
disagree). The interpretable nature of the reasoning module makes
it easy to adapt PWL to other kinds of logic or proof calculi. One of
our experiments uses the PRooFWRrITER dataset, which was constructed
with intuitionistic logic. In order to measure the performance of PWL
on the ProorWRriTER dataset, PWL supports reasoning with both clas-
sical and intuitionistic logic. A flag allows the user to switch between
the two.

We emphasize that all of the parameters in the above prior are fixed,
and so PWL does not learn them from the data. This worked well
enough in our experiments, but a richer prior may be required for
larger theories, where some of the parameters are random variables
and are themselves learned.

(23)

3.3 INFERENCE AND IMPLEMENTATION

Having described the generative process for the theory T and proofs

> f 1,571, n0 we now describe inference. Given logical forms
X , fX1,::1,Xng, the goal is to compute the posterior distribution of
T and such that the conclusion of the each proof j is Xj. That
is, PWL performs abduction: recovering the latent theory and proofs
that explain/entail the given observed logical forms. Real natural
language is not unambiguous, and real-world observations often have

3.3 INFERENCE AND IMPLEMENTATION

Algorithm 6: Pseudocode for proof initialization. If any new axiom violates
the deterministic constraints in section 3.2.1.1, the function returns null.

1 function init_proof (formula A)

w N

o N o w»

10
11
12
13
14
15
16
17

18

19
20

21

22

24
25

26
27
28

29

if A is a conjunction By ™11 Bn
fori=1fondo j=1init_proof(Bj)
return #’\I
B1™N:::™Bnp
else if Ais a disjunction By __:::_ Bn
| = shuffle(l,:::,n)
fori2 1 do
i =1init_proof(Bj)

if j &null return

B1_ i _Bn —
else if A is a negation =B
‘ return init_disproof(B)
else if A is an implication By ¥ By
if using classical logic
| = shuffle(l,2)
fori 2 1do
ifi=1
1 =1init_disproof(B1)

if ; &null return ? >E

B, ¥ By
else
> =1dnit_proof(B>)

if 5 & null return —2 L}
1 1B

else if using intuitionistic logic
Ax

return By ¥ B,

else if A is an existential quantification 9X.f(X)
let C be the set of known constants, numbers, and strings in T, and the
new constant
I = swap (shuffle(C))
forc2 ldo
c =1init_proof(f(c))

if ¢ & null return

¢ 9
Ix.f(x)
else if A is a universal quantification 8x.f(X)

— Ax
‘ return 8x.f(x)
else if A is an equality By = By
‘ return B, =B, Ax

else if A is a set membership statement s(C) where s was defined s = X.f(X)
=-nit_proof(f(c))

TA"
s= x.f(x) _r
s(c)

else if A is an atom (e.g. book (great_gatsby))
Ax

return

return A

else return null

45

46

REASONING MODULE

Algorithm 7: Helper function for init_proof (shown in algorithm 6) that
returns a proof that the given formula A is false. If any new axiom violates
the deterministic constraints in section 3.2.1.1, the function returns null.

1
2
3
4
5

11
12
13

14
15

16
17

18
19

20

21
22

23

24
25

26
27

28

29

31

function init_disproof (formula A)

if A is a conjunction By 7111 Bn

I = shuffle(l,:::,Nn)
fori 2 1do
i =1init_disproof(Bj)
—B ~ B Ax
17 ANPNS
if j &null return i Bi -E
> :
i
N :(B1 N NBp)
else if A is a disjunction By __:::__Bn
fori=1ltondo j=-1nit_disproof(Bj)
B—Ax B Ax
Ax 1 L. n n_ .
return B1_:''_Bn ? o ? E
> _
oI
2(B1_ Bn)

else if A is a negation =B
return init_proof(B)
else if A is an implication By ¥ By
1 =1init_proof(B1)
2 =1init_disproof(By)

—B 15 Ax
1 1 = b2 ' E
B
return _ 2 2 -E
?
2(By ¥ By) -

else if A is an existential quantification 9x.f(x)

Ax Ax
return Stize(xf(x)) =0 8S(size(S) =0 B -9x.S(X)) _r
2 9x.f(x) B
else if A is a universal quantification 8x.T(x)
let C be the set of known constants, numbers, and strings in T, and the
new constant ¢

I = swap (shuffle(C))
forc2 ldo
¢ =1init_disproof(f(c))
—— Ax
8x.f(x)
if ¢ &null return _¢ f(©) -E

> :

| 28x.f(x)

else if A is an equality By = By

return B, & B, Ax

else if A is a set membership statement s(C) where s was defined s = X.f(x)
=-init_disproof (f(c))

— Ax
return s= xf() _ E
zs(c)
else if A is an atom (e.g. book (great_gatsby))
Ax

return -A

else return null

3.3 INFERENCE AND IMPLEMENTATION

multiple probable explanations. In addition, there exist sentences that
expresses information about this uncertainty, such as “A liquid water
ocean probably exists under the surface of Enceladus.” These sentences
must have been generated with explicit awareness of this uncertainty.
Therefore, rather than inferring a single most probable theory, PWL
endeavors to infer the posterior distribution of the theory given the
observations.

To this end, PWL uses Metropolis-Hastings (MH). PWL performs
inference in a streaming fashion, starting by considering only the first
sentence (i.e. the case n = 1) to obtain MH samples from p(1, T j X1).
Then, for every new logical form X, PWL uses the last sample from
P(1,:::, n-1,T] X1,:::,Xn=1) as a starting point of the Markov
chain and then obtains MH samples from p(1,:::, n,TjX1,::1,%Xn).
This warm-start initialization serves to dramatically reduce the number
of iterations needed to mix the Markov chain. To obtain the MH
samples, the proof of each new logical form O s initialized using
algorithm 6, whereas the proofs of previous logical forms are kept from
the last MH sample. The axioms in these proofs constitute the theory
sample T, Then, for each iterationt = 1,:::, Niter, MH proposes a
mutation to one or more proofs in (Y. The possible mutations are
listed in table 1. These mutations may change axioms in T(®. Let
T?, E be the newly proposed theory and proofs. Then, compute the
acceptance probability:

pTh ¥ p(ijTh g(r®, ©jT0 0

in 1
TN I ®) L p(@ T@) o 1jTO, ©®)

(24)

whereg(T!, ?jT(®,)isthe probability of proposing the mutation
from TM®, O T 0 and g(T®, ®jTl)i the probability of
the inverse of this mutation. Since this quantity depends only on the
ratio of probabilities, it can be computed efficiently (see equations 21
and 23). Once this quantity is computed, sample from a Bernoulli
with this quantity as its parameter. If it succeeds, MH accepts the
proposed theory and proofs as the next sample: T(t*1) = T0 and

§t+1) = 9 Otherwise, reject the proposal and keep the old sample:
T = 7M and §t+l) = gt). If every possible theory and proof
is reachable from the initial theory by a sequence of mutations, then
with sufficiently many iterations, the samples T(® and i(t) will be
distributed according to the true posterior p(T, 1,:::, njX1,:::,Xn).
In our experiments, we use Nijtr = 400 or Njier = 600 iterations of MH,
which we find provides good estimates of the posterior probabilities.
If only a subset of possible theories and proofs are reachable from the
initial theory, the MH samples will be distributed according to the
true posterior conditioned on that subset. This may be good enough
for many applications, particularly if the theories in the subset have
desirable properties such as superior tractability. However, the subset
cannot be made too small as then PWL would lose generality.

47

48

REASONING MODULE

Probability
Proposal of selecting
proposal

Select a grounded atomic axiom (e.g. square(Cy)) and propose
to replace it with an instantiation of a universal quantification (e.g.
8x(rectangle(x) ™ rhombus(x) ¥ square(x))), where the antecedent
conjuncts are selected uniformly at random from the other grounded
atomic axioms for the constant c1: rectangle(cy), rhombus(cq), etc.

Z+

The inverse of the above proposal: select an instantiation of a universal
quantification and replace it with a grounded atomic axiom.

Zle

Select an axiom that declares the size of a set (e.g. of the form
size(X.state(x)) = 50), and propose to change the size of the set
by sampling from the prior distribution, conditioned on the maximum
and minimum allowable set size (to maintain consistency).

Z

Select a node from a proof tree in 1,:::, n of type _I, ¥ 1, or 9I
(and also disproofs of conjunctions, if using classical logic). These
nodes were created in algorithm 6 on lines 6, 14, and 26, respectively,
where for each node, a single premise was selected out of a num-
ber of possible premises. This proposal naturally follows from the
desire to explore other selections by re-sampling the proof: it sim-
ply calls init_proof again on the formula at this proof node. How-
ever, it is difficult to compute the probability of this proposal if init_
proof is used as written. Instead, we replace the function calls to
shuffle(...) or swap(shuffle(...)) with first(shuffle(...))
or first(swap(shuffle(...))), where firstsimply returns the first
element from its input list. This makes init_proof much cheaper to
compute, but much more likely to fail, since it only considers one possi-
ble proof for the given formula rather than searching over a large space
of possible proofs. In case of failure, this proposal simply tries init_
proof again, and repeats this process until it succeeds. In our exper-
iments, we find that this modified init_proof function fails roughly
70.8% of the time.

ZF

Merge: Select a “mergeable” event; that is, three constants (Cj, Cj, Ck)
such that arg1(c;) = cj, arg2(cj) = ck, and t(c;) for some constant t
are axioms, and there also exist constants (Cjo, Cjo, Cko) such that i!>i,
argl(cjo) = Cjo, arg2(Cjo) = Cko, and t(Cjo) are axioms. Next, propose
to merge Cjo with cj by replacing all instances of cjo with c; in the proof
trees, cjo with cj, and cie with ck. This proposal is not necessary in
that these changes are reachable by a sequence of other proposals, but
those proposals may have low probability, and so this proposal serves
to more easily escape local maxima.

Zl

Split: The inverse of the above proposal. N

Table 1: A list of the Metropolis-Hastings proposals implemented in PWL

thus far. N, here, is a normalization term: N = jAj + jUj + |Cj + jP] +

iMj+ jSjwhere: A is the set of grounded atomic axioms in T (e.g.

square(cy)), U is the set of universally-quantified axioms that can be

eliminated by the second proposal, C is the set of axioms that declare

thesize of aset (e.g. size(A) = 4),Pisthesetof nodesoftype I, ¥ 1,

or 91 (and also disproofs of conjunctions, if using classical logic) in

the proofs 1,:::, n, Mis the set of “mergeable” events (described

above), and S is the set of “splittable” events. In our experiments,
=2and =0.001.

3.3 INFERENCE AND IMPLEMENTATION

The function init_proof in algorithm 6 recursively calls init_
disproof, shown in algorithm 7, which closely mirrors the structure
of init_proof. The purpose of init_proof is to find some proof of a
given higher-order logic formula, or return null if none exists. Its task
is abduction, which is computationally easier than theorem proving,
since new axioms can be created as needed. The returned proof need
not be “optimal” since it serves as the initial state for MH, which will
further refine the proof. The validity of the proofs is guaranteed by the
fact that init_proof only returns valid proofs and MH only proposes
mutations to proofs that preserve the correctness of the proof.

In algorithm 6, the shuffle function uniformly shuffles its input.
The swap function (called on line 26, in the case of existential quantifi-
cation) will randomly select an element in its input list to swap with
the first element. The probability of moving an element c to the front
of the list is computed as follows: Recursively inspect the atoms in the
formula f(c) and count the number of “matching” atoms: The atoms
t(c) or c(t) is considered “matching” if it is provable in T. Next, count
the number of “mismatching” axioms: for each atom t(c) in the for-
mula f(c), an axiom t’(c) is “mismatching” if t € t’. And similarly for
each atom c(t) in the formula f(c), an axiom c(t’) is “mismatching” if
t & t'. Let n be the number of “matching” atoms and m be the number
of “mismatching” axioms, then the probability of moving ¢ to the front
of the list is proportional to expfn —2mg. This greatly increases the
chance of finding a high-probability proof in the first iteration of the
loop on line 27, and since this function is also used in an MH proposal,
it dramatically improves the acceptance rate. This reduces the number
of MH iterations needed to sufficiently mix the Markov chain.

Note that it is possible for init_proof to fail even if the given log-
ical form is not inconsistent with the other observations. Consider
the case where the observed logical forms are: (1) planet(pluto)__
dwarf_planet(pluto), and (2) zplanet(pluto). Suppose the first
logical form is added to the theory, and the last sample of T in the
Markov chain has the axiom planet(pluto), then when PWL adds the
second logical form, :planet(pluto), init_proof will fail to find a
valid proof. When this happens, PWL performs 20 random walk steps
to change the theory, and then attempts init_proof again. If this fails,
PWL repeats the process: perform another 20 iterations of random
walk and then try init_proof again, etc. We find in our experiments
that during proof initialization, init_proof returns null 72.5% of the
time on the question-answering task of the PRooFWRrITER dataset when
using classical logic (not counting the invocations of init_proof by
the fourth MH proposal in table 1). However, when we switch to in-
tuitionistic logic, init_proof did not return null on the same dataset.
This is due to the fact that under classical logic, the formula A ¥ B
is equivalent to - A__B, and so init_proof will attempt to prove either
zAor Bis true, but this equivalence is not necessarily true under intu-

49

50

REASONING MODULE

itionistic logic. The examples in PRoorFWRITER contain many instances
of A ¥ BbutnotA_B.

MH can become stuck in regions of locally high probability, and
unless it is run for significantly more iterations, it will be unable to
find globally optimal regions of the space of theories and proofs. To
help alleviate this, at every 100" iteration, we perform 20 steps of
a random walk: Each step is an MH step, only using the third and
fourth proposal in the table 1, and every MH proposal is accepted
regardless of its acceptance probability. This re-initialization is in
many ways analogous to a random restart and can help to escape from
local maxima.

We emphasize that while the generative process describes deductive
reasoning, the inference algorithm is that of abductive reasoning (coupled
with deductive reasoning for consistency checking).

3.3.1 Computing the semantic prior p(X | X)

An important quantity that PWL needs to compute is the semantic prior
p(x jX), which is the probability of a new logical form X given a set
of previously observed logical forms X , fX1,:::,Xny. The quantity is
needed when reading a sentence, in order to rerank the list of candidate
logical forms, and is the principal way in which semantic information
from the theory is incorporated during reading. PWL also computes
this quantity when answering true/false or multiple-choice questions,
since it can compare the probability of one logical form versus another.
This expression can be written

p(X1,: i Xn, X)

p(X1,:::, Xn) (25)

p(x jx) =

The numerator and denominator are approximated with a sum over
the possible theories T and proofs

X '
p(X1,:::,Xp) = p(T) 1f jisaproofof Xigp(ijT), (26)
T, i=1
Ny
pT®) p((PjT®), (27)
T, O distinct i=1
samples from T, jx
X
p(X1,:::, Xp, X) = p(T)1f isaproofofx gp(jT)
Ty
1f jisaproof of Xigp(ijT), (28)
i=1

Ny
pTO)p(@jT®) * p(@ jT1®). (29

TO, © O gigtinet =1
samples from T, , jx

3.4 KEY DESIGN CHOICES AND FUTURE DIRECTIONS

Since the quantity in equations 26 and 28 are intractable to compute,
PWL approximates them by sampling from the posterior T, 1,:::, nj
X1,:::,Xn and summing over the distinct samples. Although this
approximation seems crude, the sum is dominated by a small number
of the most probable theories and proofs, and MH is an effective way
to find them, as we observe in experiments. But it may be promising
to explore other approaches to compute this quantity, such as Luo
et al. (2020). In many applications, we do not need to compute the
denominator. For example, if we wish to determine which of two
logical forms is more probable, X or X+, given the previously observed
logical forms X, we can approximate the ratio

P(X jX1,::1,%Xn) _ P(X1,:11 Xn, X) (30)
P(X+ jX1,::5,Xn) P(X1,::0, X, X+)
using the sampling procedure. The term p(X1,:::,Xn) appears in both

the numerator and denominator, and so it cancels.

3.4 KEY DESIGN CHOICES AND FUTURE DIRECTIONS

Many of the design choices in the design and implementation of the
reasoning module were made for the ease of implementation and rapid
prototyping. As a result, there is significant room for improvement on
many aspects of this module. For example, the prior on the theory
p(T) is very simple. The real world has much richer structure, with an
ontology of types. A better prior for T would explicitly generate this
hierarchical ontology, along with mutual exclusion and subsumption
relationships.

While our prior for entity names prefers that each entity has a small
number of names (usually 1), it does not prefer that each name refers
to a small number of entities. A better choice of prior would be one
where the mapping between entities and names is closer to one-to-one.
An even better approach would be to alter the prior on the theory p(T)
so that with some probability, each generated relation is one-to-one
(or very close to one-to-one). The name relation would be specified as
one-to-one, and we would not need a separate prior for entity names.

The largest bottleneck in PWL is consistency checking, performed
by provable (algorithm 1) along with its helper functions. These al-
gorithms take into account every axiom in the theory, regardless of
whether or not the axiom is related to the formula argument A. Find-
ing a way to relax this would substantially improve the scalability to
larger theories that contain many more axioms. For instance, prov-
able could be modified to only consider axioms that are sufficiently
relevant to the formula argument A. This would require appropriately
defining “relevance” and to be permissive of at least some inconsisten-
cies. One natural question that arises is whether the inconsistencies
should be part of the model or a consequence of approximate infer-
ence. Furthermore, provable currently does not consider all possible

51

52

REASONING MODULE

proofs of the given formula A. While this sufficed in our experiments,
there may be cases where it does not. Further exploration is needed to
identify such cases and to find ways to extend provab'le to consider
additional proof paths as appropriate.

Related to this issue is the algorithm for checking the consistency
of set sizes (algorithm 5). This algorithm has exponential running
time in the worse-case, even though it always terminates quickly in
our experiments. Further exploration is needed here, as well, to find
cases where the running-time is problematic. In the same vein as
consistency checking above, one possible way to resolve the worst-case
complexity issue is to modify the algorithm to only consider a small
number of “relevant” sets, rather than all known sets in the theory. In
addition, PWL does not find all possible inconsistencies in set sizes. For
example, consider the collection of set size axioms size(X.cat(x)) =
3, size(X.small(x)) = 2, and size(X(cat(x) _small(x))) = 10.
Again due to the fact that JA [Bj = jAj + jBj — JA \ Bj for any two sets A
and B, it must be the case that the set x(cat(x) __small(x)) has size at
most 5. But algorithm 5 will only provide an upper bound on the size
of a set A if that set is a subset of another set A S (and is therefore
part of a clique of subsets of S that are mutually disjoint). Future work
to extend the consistency checking of set sizes to handle the above case
is welcome.

The prior for the proofs p(i j T) is very simple. The premises
of each proof step are sampled uniformly at random from the set
of available logical forms, which grows linearly with the size of the
proof. Thus, longer proofs will be unfairly penalized by this prior.
This was not a problem in our experiments as the proofs tended to
be fairly short. A more realistic prior would be more directed and
context-aware. For example, if a logical form is being generated for
a sentence that is part of a conversation about astronomy, then the
next logical form is more likely to utilize constants and axioms from
the domain of astronomy. A more realistic prior would also generate
reusable proof fragments, which can be used multiple times across
proofs. An alternate approach for generating proofs could be to use
a compositional exchangeable distribution such as adaptor grammars
(Johnson, Griffiths, and Goldwater, 2006).

The init_proof function (algorithm 6) attempts to find a proof of a
given logical form (creating axioms as needed) without any modifica-
tions to existing axioms in the theory. As a result, it may fail to a find
a proof if there is an axiom that is inconsistent with the given logical
form, even if the logical form is consistent with all other observed logi-
cal forms. While we described a workaround above, the random walk
approach is unfocused: and for large theories, it is unlikely to change
the specific axioms that are inconsistent with the given logical form. A
better approach would be to focus the random walk on these axioms.

3.4 KEY DESIGN CHOICES AND FUTURE DIRECTIONS

Perhaps a better approach is to allow init_proof to change existing
axioms to accommodate the new proof.

The first MH proposal in table 1 is simple but restrictive: the an-
tecedent conjuncts and the consequent are restricted to be atomic. The
inference would be able to explore a much larger and semantically
richer set of theories if the antecedent or consequent could contain
more complex formulas, including other quantified formulas. In ad-
dition, the inference algorithm sometimes becomes stuck in local max-
ima, requiring more MH iterations to find more global maxima. One
way to improve the efficiency of inference is to add a new MH proposal
that specifically proposes to split or merge types. For example, if the
theory has the axioms cat(c1) and dog(c1), this proposal would split
C1 into two concepts so that cat(c1) and dog(cy) are axioms. Without
this new proposal, this transformation is still reachable via successive
applications of the 4™ proposal in table 1, but if both axioms are used
in multiple proofs each, the intermediate proposals would have very
low probability. This kind of type-based Markov chain Monte Carlo is
similar in principle to Liang, Jordan, and Klein (2010).

The MH proposal distribution in PWL is very naive, picking a pro-
posal almost uniformly at random. This is potentially very wasteful,
especially when the number of proofs is high and/or the proofs are
large. A better algorithm would be aware of the task at hand. For
example, if the current task is to answer a question about geography,
the MH proposals should focus on proofs of logical forms related to ge-
ography, and very rarely select a proof of a logical form in an unrelated
domain.

The experiments did not have any situations where there was sig-
nificant uncertainty in the theory, and so it sufficed to use a single
Markov chain for inference. However, if the true posterior of the the-
ory is multi-modal, a single Markov chain might only be able to find
one of the modes, especially if the regions between the modes have
low probability. Using multiple Markov chains would provide a more
robust approximation of the posterior.

The following list summarizes the key design choices discussed in
this chapter:

o The prior for the theory p(T) was chosen to be fairly simple and
flat in structure. Even so, it has the property that larger and
more complex theories have lower probability (Occam’s razor).
While this worked sufficiently well in our experiments, a richer
prior, such as one that includes an explicit ontology, would be
preferable.

« However, the theory prior is not so simple as to treat entity names
and sets in the same way as it treats other objects. The prior on
entity names was chosen in order to encourage each entity to have
a small number of names, and this aligns with our assumption
that the name relation is almost one-to-one.

53

54

REASONING MODULE

 The reasoning module contains a specialized “submodule” for

reasoning about sets, and a data structure to facilitate this. We
chose to do so since a large part of reasoning in natural lan-
guage is reasoning over collections of objects. Language has
many built-in features that enable the seamless communication
of information about such collections.

« The set reasoning component, along with the provable func-

tion (algorithm 1) and its helper functions, provides PWL with
a way to check for the consistency of the theory. This does not
search over all possible proofs, as such an approach would never
terminate (e.g. provable_by_exclusion in algorithm 2 explic-
itly avoids searching for nested proofs by exclusion). But the
coverage of this approach is evidently sufficient to find the con-
tradictions that arise when reading natural language sentences
in our experiments.

 The consistency checking is unfocused: when checking for the

consistency of a new axiom, PWL currently attempts to find in-
consistencies with respect to every other axiom in the theory,
no matter how unrelated. This approach is computationally ex-
pensive but conceptually simple, since we can avoid questions
about how to measure “relatedness” and whether logical incon-
sistencies are part of the model or a consequence of approximate
inference.

« The prior for the proofs p(j j T) was also chosen to be fairly sim-

ple. The premises for each proof step are sampled uniformly at
random from the conclusions of the previous proof steps, which
while simple, is highly unrealisticc. Human reasoning is much
more directed, and relies on common proof fragments that are
re-used across proofs.

 The proof initialization function init_proof (algorithm 6) at-

tempts to find a proof for the given logical form, creating new
axioms as needed. Its recursive structure over the expression
tree of the logical form allows init_proof to handle a wide va-
riety of logical forms, while keeping the axioms simple. A naive
alternative would be to simply add the given logical form as an
axiom, but this would only move the complexity from proof ini-
tialization to the MH proposals. init_proof does not consider
proofs that utilize existing theorems in the theory.

« In addition, init_proof does not try to modify already existing

axioms in order to make the theory consistent with the new
logical form. In this case, we perform 20 steps of a random
walk to modify the existing axioms in the theory, with the hope
that they become consistent with the new logical form. This

3.4 KEY DESIGN CHOICES AND FUTURE DIRECTIONS

procedure is unguided, and a better alternative would be to focus
on changing the specific axioms that led to the inconsistency:.

In init_proof, the swap function (on line 26) reorders the possi-
ble instantiations of an existential quantifier in order to produce a
proof with higher prior probability, thereby reducing the number
of MH iterations needed to find a good theory and proofs.

PWL uses a fairly simple set of MH proposals (listed in table
1). The fourth proposal in the list was designed to explore the
other possible proofs that may be constructed by the init_proof
function. It is also fairly easy to implement since it can use a
slightly modified version of the init_proof function. However,
this proposal will select proof nodes uniformly at random to
resample, regardless of the size of the proof at that node. init_
proof will then proceed to try resampling the full proof. If the
selected proof is large, it may require many attempts of init_
proof to find a new proof. An alternate approach that only
resamples fragments of proofs may perform better.

PWL has a MH proposal specifically to change the sizes of sets.
This proposal is not strictly necessary since the fourth proposal
can achieve the same thing, but to do so would require more iter-
ations, since it would need to select the appropriate proof node.
This proposal also helps to ensure that MH is able to sufficiently
explore the space of possible set sizes. However, if the selected
set is equivalent to another known set, then our algorithms for
finding the upper and lower bound for the size of the selected
set will return the same size, essentially wasting an MH step. To
avoid this, this step should instead simultaneously change the
sizes of all sets that are equivalent to the selected set. In our
graph-based data structure for maintaining the consistency of
set sizes, this entails finding the strongly-connected component
that contains the vertex that corresponds to the selected set, con-
tracting the component into a single vertex, and then continuing
with our algorithms to find the lower and upper bound on the
size of the set that corresponds to this vertex.

PWL also includes a split and merge proposals for MH, where
it proposes to merge repeated events in the theory, or split an
event into two. This is helpful in a case such as when two entities
have the same name. The merge operation will propose merging
these two entities into a single entity (and the two name events
into a single event). In principle, repeated applications of the
fourth MH proposal could produce the same result, but it would
require more iterations. The split proposal is necessary to ensure
that the MH acceptance probability is not 0, but the probability

55

56

REASONING MODULE

of proposing a split is set very low, since the prior on the theory
p(T) favors smaller theories.

« Atevery 100" iteration of MH, we perform 20 steps of a random

walk, akin to a “random restart” in optimization. This helps MH
to escape regions of locally high probability and hopefully find
regions of globally high probability.

» We chose to compute the semantic prior by using MH to find

distinct high-probability samples of the theory and proofs. MH
is an effective way to find high-probability regions of the space
of theories and proofs.

LANGUAGE MODULE

In the previous chapter, we described the reasoning module,
which constitutes one half of PWL. In this chapter, we present
the other half: the language module. This module governs
the relationship between the logical forms and the natural lan-
guage utterances. A mathematical description of the model is
provided in section 4.2. In section 4.3.1, we describe the al-
gorithms for training and parsing, including details on their
implementation. In section 4.4, we apply this parsing approach
to the GEoQuery and Joss datasets (Tang and Mooney, 2000;
Zelle and Mooney, 1996), using the Datalog representation of
the provided logical form labels, and demonstrate that the ac-
curacy of the parsed logical forms is comparable to that of the
state-of-the-art on these datasets. Since the Datalog represen-
tation in these datasets are fairly domain-specific, we present
a new wide-coverage semantic representation based on higher-
order logic in section 4.5.

Accurate and efficient semantic parsing is a long-standing goal in nat-
ural language processing. Existing approaches are quite successful in
particular domains (Dong and Lapata, 2016; Kwiatkowski et al., 2013,
2010, 2011; Li, Liu, and Sun, 2013; Liang, Jordan, and Klein, 2013; Rabi-
novich, Stern, and Klein, 2017; Wang, Kwiatkowski, and Zettlemoyer,
2014; Wong and Mooney, 2007; Zettlemoyer and Collins, 2005, 2007;
Zhao and Huang, 2015). However, they are largely domain-specific,
relying on additional supervision such as a lexicon that provides the
semantics or the type of each token in a set (Dong and Lapata, 2016;
Kwiatkowski et al., 2010, 2011; Liang, Jordan, and Klein, 2013; Rabi-
novich, Stern, and Klein, 2017; Wang, Kwiatkowski, and Zettlemoyer,
2014; Zettlemoyer and Collins, 2005, 2007; Zhao and Huang, 2015), or
a set of initial synchronous context-free grammar rules (Li, Liu, and
Sun, 2013; Wong and Mooney, 2007). To apply the above systems to
a new domain, additional supervision is necessary. When beginning
to read text from a new domain, humans do not need to re-learn ba-
sic English grammar. Rather, they may encounter novel terminology.
With this in mind, our approach is akin to that of (Kwiatkowski et
al., 2013) where we provide domain-independent supervision to help
train a semantic parser. More specifically, PWL restricts the rules that
may be learned during training to a set that characterizes the general
syntax of English. While we do not explicitly present and evaluate

57

58

LANGUAGE MODULE

an open-domain semantic parser, we hope our work provides a step in
that direction.

Knowledge plays a critical role in natural language understanding.
Even seemingly trivial sentences may have a large number of ambigu-
ous interpretations. Consider the sentence “Ada started the machine with
the GPU,” for example. Without additional knowledge, such as the fact
that “machine” can refer to computing devices that contain GPUs, or
that computers generally contain devices such as GPUs, the reader can-
not determine whether the GPU is part of the machine or if the GPU is
a device that is used to start machines. Context is highly instrumental
to quickly and unambiguously understand sentences.

In contrast to most semantic parsers, which are built on discrimina-
tive models, our model is fully generative: To generate a sentence, the
logical form is first drawn from a prior. A grammar then recursively
constructs a derivation tree top-down, probabilistically selecting pro-
duction rules from distributions that depend on the logical form. The
generative nature of the semantic parsing model allows it to fit seam-
lessly into our larger model. The semantic prior distribution provides
a straightforward way to incorporate background knowledge, such as
information about the types of entities and predicates, or the context
of the utterance. In fact, to fit this semantic parsing model into our
larger model, the semantic prior is simply replaced with our distribu-
tion of logical forms conditioned on the theory p(j T). Additionally,
our generative model presents a promising direction to jointly learn
to understand and generate natural language. In addition, our parser
can return partial parses of sentences, which is useful for sentences
that contain a small number of unseen words, such as definitions of
new tokens. This can be exploited to learn new tokens and concepts
outside of training.

4.1 BACKGROUND: HIERARCHICAL DIRICHLET PROCESSES

Before introducing the model for the language module in the next sec-
tion, we first provide background on performing inference in Dirichlet
processes using Gibbs sampling, and on hierarchical Dirichlet pro-
cesses, which constitute a central component in the language module
of PWM. Later in this section, we present a novel application of the
HDP to model distributions that depend on discrete structures, such
as sequences, tree, logical forms, etc. See section 3.1 for background on
the definition of Dirichlet processes and Chinese restaurant processes.

GIBBS SAMPLING FOR DIRICHLET PROCESSES: The Chinese restau-
rant process (CRP) representation of the Dirichlet process enables ef-
ficient inference using Markov chain Monte Carlo (MCMC) methods.
Suppose that we are giveny , fy1,:::,yn(observations and we wish
to infer the values of the latent variables: ; and z; (using the same

4.1 BACKGROUND: HIERARCHICAL DIRICHLET PROCESSES

notation as section 3.1). A Gibbs sampling algorithm can be derived,
where initial values for j and z;j are selected, i(o) and Zgo), and for
each iteration t, we sample new values of gt) and th)' One straight-
forward initialization for gO) and Z§0) is to assign each observation
to its own table: go) =yjand Z§0) =ifori=1,:::,n. Note that the
value of gt) is deterministic and equal to Y, ® for all z}t) =i. Thus,
only th) needs to be sampled at each iteration (foralli=1,:::,n). In

Gibbs sampling, each random variable is sampled from its conditional

distribution given all other variables: Z§t+1) zij M, Z(_ti), y.
PGEij .z-i.y)/pz .Y) (31)
Y v
=p(z1,::0zn) pC) Pl . Zj) (32)
=1 i=1
/%(Z @52 m)ifyi= 26, (33)
< n .
. 1fy; = k if N >0,
p(zi=kj ,z-i,Y) 7/ _ Vi= (““_1 N « (34)
“ifyi = WgPEYY ifng =0,

where Ny is the number of customers sitting at table k not including
the ith customer, , f 1, »,:::gand z_j = znfzjgis the set of all Zj
except zj, and 1f gis 1 if the condition is true and zero otherwise. In this
derivation, we used exchangeability to change the order of the table
assignments z so that z; is the last assignment. After sufficiently many
iterations, the distribution of the samples gt) and th) will approach
the true posterior p(,z]y).

Note that this presentation of the DP differs from the classical pre-
sentation, where the DP is part of a mixture model, as in:

G DP(,H), (35)
1, 2,.10 G, (36)
yi F(i), (37)

where F() is a distribution with parameter ;. If H is a conjugate
prior of F, then an efficient Gibbs sampling algorithm is available, for
example if H is a Dirichlet distribution and F is a multinomial, or if
both H and F are normal distributions. In this thesis, F is assumed to
be the delta function (the distribution whose samples are identical to
the input parameter), and no assumptions are made on H other than
there exists an efficient way to compute the prior probability p().

4.1.1 Hierarchical Dirichlet processes

The DP can be used as a component in larger models. The hierarchi-
cal Dirichlet process (HDP) (Teh et al., 2006) is a hierarchy of random
variables, where each random variable is a distributed according to a
Dirichlet process whose base distribution is given by the parent node

59

60

LANGUAGE MODULE

in the hierarchy. Suppose each observation y; is coupled with a pa-
rameter X; that indicates the source node from which to sample the
observation. Let the label of the root node in the hierarchy be o, and
the model can be written:

8
< :
DP(°,H fn=o,
Gn () ifn=o0 (38)
- DP(™, GParent(m) otherwise,
yi G, (39)

for all nodes in the hierarchy n. An equivalent “Chinese restaurant”
representation may be written, which is coined a Chinese restaurant
franchise (CRF), where each node n has a restaurant. For simplicity,
assume that all X; are leaf nodes, then the CRF is written:

1, 2,00 H, (40)
2= %3 (41)
< . . Ny
k with probability —%-,
Zril+1 = _ p y :_I (42)
éknew with probability —5,
n < Z(il ifn= o,
i~ Z parent(n) . (43)
zn otherwise,
yi= 8.0, (44)

for all nodes in the hierarchy n, wheren, , #fj 6 i : Z}‘ = Kkgis the num-
ber of customers at node n sitting at table k, K™Y , maxfzf,:::,z{g+1
is the next available table at node n, and u; , #fj <i:X; = X;(is the
number of previous observations drawn from node n. In this extended
metaphor, whenever a customer sits at a new table in the restaurant at
node n & o, a “new customer” appears in the parent node parent(n)
which corresponds to this table. The 7 are the samples from G". Note
that the above model is valid only when X; is a leaf node. If X; were a
parent node, then the output samples }(‘ are used by both the child
nodes of X; as well as the observations yj. In the restaurant metaphor,
the customers at node X; not only come from its child nodes but also
from the observations. In this case, the }(i that are assigned to the
observations come after those assigned to child nodes (the order does
not actually matter thanks to exchangeability, so long as the samples/
customers are partitioned between the two). More precisely, y;j would
beequalto 1} +u;+1 Where ¢ = maxfz{ : ¢ 2 children(n)g is the num-
ber of J)-(i used by the child nodes of n (i.e. the number of customers
that come from the child nodes of n).

4.1 BACKGROUND: HIERARCHICAL DIRICHLET PROCESSES

INFERENCE: The Gibbs sampling update can be derived similarly to
the DP case: Given (X,¥,2z), and can be computed deterministi-
cally. Thus we only need to sample each z}:

28, 27N Z2hax,) Zp(z, . XY),
PE L, 2N/ PG, xY) v @
= p(p p@ELz) pCF 0 TN pWEE LX),
(46)
8
/<p(z°(l),z°(2),:::)1f 0= L0 ifn=o,)
TP 1y 2" 2y DAF] = Eiﬂrent(n)g otherwise,
p(zi =kj , ,z7"z28ix,y) 7/ (48)

3

Elf . - if n=o0,n% >0,
1f (i’: new{ B¢ ne;vfnoi) - ifn= 0, nlll = 0,

(49)

-

parent(n) ny
glf P .
parent(n) g fparent(m) (- my n

= n
1f i new nNn

ifn&o,ni >0,

ifn&o,n =0,

where nj; is the number of customers at node n sitting at table k not in-
cluding the customer currently being resampled, n" is the total number
of customers at node n (also not including the current customer), and
f™(v) is shorthand for p(fe, =VJ , ,27"2%;,XYy) for any node
m. Note that in the case where n & o, sampling z} requires computing

fparent(m)(My j e the probability of a customer at node n choosing to

sita “new” table p(3255“““)). This value can be computed recursively,

so if the node m & o:

mfparent(m)(v) . X ni?o 1f ﬁ%rent(m): Vg

m J—
W)= — K (50)
fko:nm, >0g
In the case where m = o:
° =v) X n%if w=v
fO(V) = M + M (51)
0 4 nO 0 4 nO
fki:n?(=>0g

If 7§ is sampled to be a “new” table, a new customer will appear in the
parent node of n, and its table assignment must be sampled next. This
new customer may itself be assigned to a new table, and so this process
continues recursively until a customer sits at a non-empty table, or a
customer sits at an empty table at the root node 0. The computation
required in this recursive sampling procedure overlaps heavily with
that in computing the probabilities in equations 50 and 51, so they
should be done simultaneously to avoid wasted computation.

In our code, for each iteration of Gibbs sampling, we traverse the
tree nodes n in prefix order, and resample z} in random order.

61

62

LANGUAGE MODULE

In many applications, including in PWL, we need to compute the
probability of a new observation yn+1, given its source node Xp+1 and
previous observations (X, y):

Z
P(Yn+1]Xn+1,XY) = P(Yn+1]Xn+1,2)P(Z] X, y)dz, (52)
1 > P t t t
N P(Yn+1jXn+1,2H, ® ®) (53)
samples 7 zjxy

The integral is approximated as a sum over posterior samples of z,
which can be obtained using the MCMC algorithm described above.
However, we find in our experiments that the posterior is concentrated
at a single point, and it suffices to keep only the final sample (i.e.
Nsamples = 1) as a point estimate of z, , . In either case, we can
compute the quantity within the sum:

p(Yn+1 J Xn+1,Z,) = p(1)’1(3;1 =¥Yn+1 J z,) (54)

This quantity can be computed as in equations 50 and 51 (but since
we are not resampling z}', we don’t exclude any customers in the N
terms).

The above can be extended to the case where rather than 1 new
observation, there are k new observations, and we want to compute
their joint probability:

k k
p(ﬂ Yn+i [X, Y, m Xn+i>
i=1 i=1

~N¢
= p (Yn+i

i=1

i i—1
X, Y, m Xn+j; ﬂ Xn+j)- (55)

=1 =1

So to compute this, first compute the probability of the first observation
Yn+1 alone. Next, add (Xn+1,Yn+1) to the HDP (treat them as part of
x and y) and compute the probability of y+2 alone. Repeat until all k
probabilities are computed and then return the product. We observe
that the joint probability does not factorize over each observation. This
is due to the “rich get richer” effect observed in the Chinese restaurant
process: If one observation is sampled, the same observation is more
likely to be sampled in the future, since future customers are more
likely to sit at tables with existing customers. And so the distribution
isnot i.i.d.

But as the number of customers n becomes very large, the effect of

and any single customer on the distribution of the next observation
becomes negligible, and so the distribution becomes more i.i.d.:

k k ~N¢
nll!rnlp< _ﬂlymi X,Y, _ﬂlxn+i> = lim
i= i=

k
%Y. () xn+i).

i=1
(56)

p<yn+i

i=1

4.1 BACKGROUND: HIERARCHICAL DIRICHLET PROCESSES

This fact can be useful when approximating

K K ¢ K
p< ﬂ Yn+i | X\Y, ﬂ Xn+i> p(Yn+i XY, m Xn+i>1 (57)
i=1 i=1 i=1 i=1
when n is large.
LEARNING THE CONCENTRATION PARAMETER : Welearn the con-

centration parameter from the data by placing a Gamma prior on

" Gamma(a®, b"). (58)

An auxiliary variable sampling method can be used to infer , which
is described in appendix A of Teh et al. (2006) and section 6 of Escobar
and West (1995). The Gibbs sampling step for ™ is:

. n"
s" Bernoulli < — nn> , (59)
w" Beta("+1,n"), (60)
" Gamma(a" + maxfzjg - s", b" — logw"). (61)

Here, maxfz}g is the number of occupied tables in restaurant n. The
above updates assume that each node n has an independent ™. How-
ever, in many scenarios, we wish to tie the concentration parameters
together to improve statistical efficiency. Suppose we constrain all the
concentration parameters at each level in the hierarchy to be equal.
Let L(n) be defined as the level of the node n (i.e. L(o) = 0 and
L(n) = L(parent(n)) +1). Let ; be the concentration parameter at
leveli,andso ™ = (). Letits priorbe ; Gamma(a;,bj). Then,
the Gibbs sampling step for j is:

X X
i Gamma [a; + (maxfzig—s"), bj — logw" | . (62)
fn:L(n)=ig fn:L(n)=ig

This is the approach we implement in PWL when training the language
module. PWL has several HDP hierarchies, and each has its own set
of hyperparameters a and b. As an example, for one such hierarchy
in PWL (corresponding to the nonterminal VPR), the hyperparameters
are a; = 100,a, = 10,b; = 0.1, b, = 1, but the other hierarchies have
similar values for their hyperparameters.

4.1.2 Inferring the source node X

The above describes how to obtain posterior samples of z (and there-
fore, and), given a set of observations y; and the corresponding
nodes X; from which they were sampled. But now consider the case

63

LANGUAGE MODULE

where the X are random variables, and we encounter a new observation
y , but the source node X (from whichy was sampled) is unknown,
and we would like to infer it. That is, we would like to compute:

z
argmaxp(x jy ,x,y) =argmaxp(x) p(y jx ,2)p(zix,y)dz, (63)

>

X .

argmax P) ply jx ,z®, ® Oy (g

X Nsamples .

z® zjxy

wherep(y jx.,z, ,)=p(pew=Y 12 ,). (65)

Again, this quantity is computed as in equations 50 and 51. The arg max
over this objective is a discrete optimization problem, which, if solved
naively, would require computing the objective function for every node
n in the tree. This is intractable if the tree is very large. Therefore, we
present a branch-and-bound algorithm to perform this optimization
efficiently.

Algorithm 8: Pseudocode for a generic brand-and-bound algorithm for
k-best discrete optimization.

1 function branch_and_bound (objective function f, heuristic h, domain X)
2 | Cisan empty list

3 | Qis an empty priority queue

4| Q.push(X,1)

5 | while Q not empty do

¢ | 5v)=Q.pop()

7 if S = fxq is a singleton

8 ‘ C.add(x, f(x))

9 else

10 (S1,:::,8n) = branch(S)
11 fori=1,:::,ndo

12 | Q.push(Si,h(S))

/* check termination condition */
13 if there are K elements in C with priority at least v
14 Lbreak

15 | return C /* the k elements of X that maximize f x/

Branch-and-bound (Land and Doig, 1960) is a method for solving
discrete optimization problems. Pseudocode is shown in algorithm
8. Given an objective function f, heuristic h, and search space X, the
algorithm returns the k-best elements of X that maximize the objective
f. The algorithm requires that the heuristic h be an upper bound for f.
That is, for any set S,

h(S) > max f(x). (66)

The algorithm begins by considering the full search space X. A pro-
cedure called branch then partitions X into n disjoint subsets X; (this
procedure is specific to the optimization problem). Each subset is

4.1 BACKGROUND: HIERARCHICAL DIRICHLET PROCESSES

pushed onto the priority queue, with its key given by the heuristic
h(Xi). Then, for each iteration of the main loop, pop a set S from
the priority queue, and repeat the process: using branch, partition
S into (S1,:::,Sn), and then push each subset into the priority with
key h(S;). If S = fxg is a singleton set only containing the element X,
then add it to a list of potential solutions. The algorithm terminates
when there are k potential solutions whose objective function values
are at least the priority of S, or when the priority queue becomes empty.
Once the algorithm terminates, the objective function values of the re-
turned solutions are at least as large as the heuristic of the remainder
of the search space. And since h is an upper bound for f, the returned
solutions are guaranteed to be optimal.

We develop a branch-and-bound algorithm to perform the optimiza-
tion in equation 64. The HDP hierarchy provides a convenient search
tree structure for the optimization. Let D(n) be the set of descendent
nodes of n, including n itself. The function branch(D(n)) is defined to
partition D(n) into (fng, D(c1), :::, D(cn)) where ¢; are the child nodes
of n. We define a heuristic for D(n):

hy(D(n)) " >
&‘7 max fif g =y ¢,p(few =Y)9 (67)
samples ., fking=0g

h(D(n)) =
where hy(S) is an upper bound on the prior hyx(S) > maxxzs p(x), the
max is taken over all occupied tables in the restaurant at node n, and
the references to within the sum are for the tth sample, M. D(n)
can be sparsely represented in the implementation as a simple pointer
to n. The heuristic is convenient since it can be computed only using
the information available at node n, and so its running time is not a
function of the size of the HDP hierarchy, as long as the heuristic on the

prior hy() is easy to compute. Furthermore, our algorithm avoids the

recursion in the computation of p(p.,), since the term p(gg‘rﬁm(“))
was already computed in the computation of the heuristic for the parent

node, and our algorithm re-uses it in future heuristic evaluations.

Thm 1. The heuristic h(D(n)) is an upper bound on MaXyopny F(X) where
t is the objective function given by equation 64.

Proof. Consider any nodem 2 D(n) a descendant of n, and any MCMC
sample t. We first aim to show that the quantity within the sum is an
upper bound:

max f1f k=Y 6p(few =Y N> P x=m2®, @, ©),

fk:nk=0 new

(68)

65

66

LANGUAGE MODULE

Since the right-hand sideisequaltop(., =Y), theboundis trivially

new
true in the case where m = n. So we can assume without loss of

generality that m & n, and the right-hand side can be written:

ply jx=m,z®, ® Oy=pcm =y (69)
mp(R W=y) X npmaf Pre=y g
m m + m m ! (70)
+nNn +n
kN >0g

according to equation 50. Since this expression is a convex combination
of 1f i%rent(m): y gand p(Eiﬁf“t(‘“)z y), itis bounded above by:

parent(m)__ parent(m)__
6 fkomg; o 1f o =Y 0P(new = =Y) - (71)
Due to equation 50, observe that p(2.,=VY) 6 p(gzifnt(a)= y) for

any node a. In addition, by construction of the HDP, the § at any
node a are a subset of the Earent(a). That is, for all k, there is a k? such
that § = ﬁ%rent(a). These observations extend to all ancestors of a.
Applying these two observations to the node m, we can conclude that
the above expression is further bounded above by:

6 L o 1 K=Y 0PC pew=Y 0. (72)
We have shown that the quantity within the sum of the heuristic is an
upper bound. Since by definition, hyx(D(n)) > Maxyopm) P(X) >
p(x = m), the full heuristic h(D(n)) is an upper bound on f(m),
the objective function evaluated at m, for all m 2 D(n). Therefore,
h(D(n)) > MaXm20(r) Fm).

The branch-and-bound algorithm starts with the input set D(o),
which is the set of all nodes in the tree, and will efficiently compute
the k most probable values of the source node x , from which the
observation y was sampled. Note that the above algorithm is easily
extended to the case where the HDP is part of a mixture model (i.e. F
is not a delta function). To do so, replace each instance of 1f } =y ¢
withp(y jy F(R),z,) forallnand k.

The above algorithm can be generalized to the case where X is re-
stricted to a subset of the nodes X in the hierarchy: argmaxyx p(X]
X 2 XY ,XY). In this case, the algorithm is started with the input
set D(0) \ X. The branch function is modified: branch(D(n) \ X) par-
titions the set D(n) \ X into (fng \ X, D(c1) \ X, :::,D(cn) \ X) where
cj are the child nodes of n.

4.1.3 Infinite hierarchies

To apply the HDP in the language module of PWL, we need to be
able to handle the case where the HDP hierarchy is infinite (but with

4.1 BACKGROUND: HIERARCHICAL DIRICHLET PROCESSES

finite height). Thatis, every non-leaf node in the hierarchy may have an
infinite number of children. But this makes no difference in the MCMC
algorithmtoinferz, , ,sincethenumber of given observations (X,y)
is finite. We only need to compute and keep track of the variables that
are associated with an observation (either at the current node or a
descendant). Thus, the only nodes of the tree that we need to explicitly
keep in memory are those of X and their ancestors, as the restaurants
at all other nodes are empty. The explicitly-stored tree size is bounded
by the product of the number of distinct Xj and the height of the tree.

However, the branch-and-bound algorithm to find the most probable
source node X needs to be adapted, since the branch function would
otherwise return an infinite number of subsets. Consider any node
n that has no observations (i.e. has an empty restaurant). Then by
equation 50, P(pew) = P(Egiim(“)) =i =p(&) where a is the
most recent non-empty ancestor of n. For such nodes, the objective
function in equation 64 can be simplified

pm) X<

Nsamples p(new — y) (73)

z® zjxy

Aside from the prior term p(n), all empty descendant nodes of a have
the same objective function value, which is independent of n. So to
adapt the algorithm to the infinite hierarchy case, the branch function
is modified:

1
branch(D(a)) returns <fag, D(c1),:::,D(cn), U D(ci)>, (74)

i=n+1

where (c1, 1, cn) are the non-empty child nodes of a, and (¢n+1, ¢h+2,
:1:) are the empty child nodes of a. Next, in algorithm 8, following
line 8, we add a new else-if statement to check for the case that S is a
set of empty nodes. If so, S is added to C, and we don’t continue the
search in the empty descendant nodes. The resulting adapted branch-
and-bound algorithm correctly and efficiently solves the optimization
problem for infinite hierarchies.

4.1.4 Modeling dependence on discrete structures

HDPs can be used to learn distributions that depend on sequences of
non-negative integers. Consider the data f(x1,y1),:::, (Xn, Yn)y where
each x; 2 ZR is a sequence of h non-negative integers . The distribu-
tion of y; is dependent on the value of X;. We can use the HDP to learn
the relationship of this dependence: construct a hierarchy of height h,
where each non-leaf node has a countably infinite number of children,
every child node corresponding to a non-negative integer. Here, each
Xj uniquely identifies a leaf node in the hierarchy by characterizing a
path from the root o to a leaf: the first integer in the sequence identifies

67

68

LANGUAGE MODULE

the child of the root node, the second integer identifies the grandchild,
and so on. The y; are then sampled from the corresponding leaf node.
We can apply the MCMC algorithms derived above to learn the dis-
tributions of the yj, and how those distributions relate to the integer
sequences Xj.

Given a new observation y , the branch-and-bound algorithm can
be used to find the most probable corresponding integer sequence X ,
but we need to be able to convert the output of the branch-and-bound
into the corresponding integer sequence. The algorithm will output
a list of the k most probable source nodes from which y is sampled,
or sets of empty source nodes (since the HDP hierarchy is infinite).
More precisely, let (01, :: :, 0k) be the output of the branch-and-bound
algorithm. For each 0j, there are two cases:

1. 0j is a single leaf node, in which case it is straightforward to
convert the node into its corresponding integer sequence.

2. 0j is the set of empty descendants of a node a. In this latter case,
it can be converted into an “incomplete” sequence of integers,
where the first L(a) numbers of the sequence correspond to the
node a, where L(a) is the level of a. This incomplete sequence
represents the set of all integer sequences that begin with the
same L(a) integers, that do not already explicitly exist in the tree.

For example, let ng be the ath child of the root node o in the HDP
hierarchy. Let ngp be the b'™" child of n,, and so on. Suppose the
training set contains only the sequences (4,3,1), (4,7,4), and (4,8, 2).
Therefore, the nodes in the HDP with non-empty restaurants are: na 3 1,
Nng74, N4ag2, N43, Ng7, Ng8, Ny, and o. If the branch-and-bound
algorithm returns ns 7 4, the corresponding output integer sequence
is (4,7,4). If instead, branch-and-bound returns the set of the empty
descendant nodes of n4, the corresponding output integer sequence
is (4, nf3,7,8y,). The” ’is a “wildcard” symbol that represents the
set of all non-negative integers. Thus, (4, nf3,7,8y,) represents the
set of all integer sequences that start with (4, : ::) but do not start with
4,3,::2),(4,7,::)),0r (4,8,::).

This model can be extended to the case where the x; 2 X have
richer structure (e.g. Xis the set of labeled trees, graphs, logical forms,
etc). To do so, define d functions fi . X ¥ Z, that characterize an
aspect of the input structures Xj. We call these functions fi feature
functions. For example, if X is a labeled binary tree, f1(X) returns the
label of the root node, and f2(X) returns the label of the left child, etc.
The functions serve to map the structures X; into sequences of non-
negative integers: (f1(Xi),:::,fa(Xi)). Then the above HDP model
can be directly used to learn the relationship between these integer
sequences and the distribution of the observations y;. For a new
observation y , the branch-and-bound algorithm will return the k
most likely integer sequences (possibly with wildcard symbols) that

4.2 MODEL: SEMANTIC GRAMMAR

represent the unknown structure x . To convert the integer sequence
(wq,:::,wq) into the corresponding structure in X, we can compute:

frhwa) ()i) fa" (Wa) where fit(Wid) 5 : fie(X) 2 Wig. (75)

PWL implements three functions to perform the above mapping be-
tween integer sequences and more structured representations in X:

1. get_feature(f, X): Given a feature function fand aset X X,
return ff(x) : x 2 Xg.

2. set_feature(f, X°'Y, w): Given a feature function f, a set
xold X, and a non-negative integer w 2 Z., return xold \
f~1(w). This function is used in the case that w is an integer
(not a wildcard).

3. exclude_features(f, X°'9, W): Given a feature function f, a
set X°ld X, and a finite set of non-negative integers W 2 Z,
return X°'4 nf~1(W). Thisis used in the case that wy is a wildcard

nW.

S ¥ N:select_argl VP:delete_argl
VP ¥ V:identity N:select_arg2
VP ¥ V:identity

N ¥ “New Jersey” V I “borders”
N ¥ “NJ” V ¥ “bordered”
N ¥ “Pennsylvania” V ¥ “has”

N ¥ “Michael Phelps” V 1 “swims”
N ¥ “tennis” V I “plays”

Figure 10: Example of a grammar in our framework. This example grammar
operates on logical forms of the form predicate(first argument, second
argument). The semantic function select_argl returns the first
argument of the logical form. Likewise, the function select_arg2
returns the second argument. The function delete_argl removes
the first argument, and identity returns the logical form with no
change. In our work, the interior production rules (the first three
listed above) are examples of rules that we specify, whereas the
terminal rules and the posterior probabilities of all rules are learned
via grammar induction. A simplified semantic representation is
shown here for the sake of illustration. PWM uses a richer semantic
representation. Section 4.2.2 provides more detail.

4.2 MODEL: SEMANTIC GRAMMAR

A grammar in our formalism operates over a set of nonterminals N and
a set of terminal symbols W. It can be understood as an extension of

69

70

LANGUAGE MODULE

“borders” “NJ”

Figure 11: Example of a derivation tree under the grammar given in Figure
10. The logical form corresponding to every node is shown in blue
beside the respective node. The logical form for Vis borders(,nj)
and is omitted to reduce clutter.

a context-free grammar (CFG) (Chomsky, 1956) where the generative
process for the syntax is dependent on a logical form, thereby cou-
pling syntax with semantics. In the top-down generative process of a
derivation tree, a logical form guides the selection of production rules.
Production rules in our grammar have the form A ¥ Bj:f;:::Byk:fk
where A 2 Nisanonterminal, Bj 2 N [W are right-hand side symbols,
and f; are semantic transformation functions. These functions describe
how to “decompose” this logical form when recursively generating
the subtrees rooted at each Bj. Thus, they enable semantic composi-
tionality. An example of a grammar in this framework is shown in
Figure 10, and a derivation tree is shown in Figure 11. Let R be the set
of production rules in the grammar and Ra be the set of production
rules with left-hand nonterminal symbol A.

4.2.1 Generative process

A derivation tree in this formalism is a tree where every interior node
is labeled with a nonterminal symbol in N, every leaf is labeled with a
terminal in W, and the root node is labeled with the root nonterminal
S. Moreover, every node in the tree is associated with a logical form:
let X" be the logical form assigned to the tree node n, and xX° = x for
the root node o.

The generative process to build a derivation tree begins with the
root nonterminal S and a logical form X. Recall that in PWM, the
logical form X is the conclusion of each proof generated from the the-
ory, as described in section 3.2.2, but other prior distributions may be
used for X, and the presentation here will be agnostic to the choice of
this prior. PWM expands S by randomly drawing a production rule
from Rs, conditioned on the logical form X. This provides the first
level of child nodes in the derivation tree. For example, if the rule
S ¥ B;:f;:::Bk:fk were drawn, the root node would have k child
nodes, nip,:::,nk, respectively labeled with the symbols B1,:::,Bk.
The logical form associated with each node is determined by the se-
mantic transformation function: x™ = f;(x°). These functions describe
the relationship between the logical form at a child node and that of its

4.2 MODEL: SEMANTIC GRAMMAR

parent node. This process repeats recursively with every right-hand
side nonterminal symbol, until there are no unexpanded nonterminal
nodes. The sentence is obtained by taking the yield (i.e. the concatena-
tion) of the terminals in the tree.

The semantic transformation functions are specific to the semantic
formalism and may be defined as appropriate to the application. In
our semantic parsing experiments in section 4.4, we define a domain-
independent set of transformation functions specific to the Datalog
representation of GEoQuery and Joss (e.g., one function selects the
left N conjuncts in a conjunction, another selects the Nt" argument
of a predicate instance, etc). Some examples of these transformation
functions are:

e The function select_left returns the left conjunct of a con-
junction. For example, given the Datalog expression (river (A),
loc(A,B),const(B,stateid(colorado))), thisfunctionreturns
river(A).

 The function de'lete_left returns a conjunction where the first
conjunct is removed. For example, given (river(A),loc(A,B),

const(B,stateid(colorado))), thisfunctionreturns (loc(A,B),

const(B,stateid(colorado))).

» The function select_arg2 returns the second argument in an
atomic formula. For example, given const (A,stateid(maine)),
this function returns stateid(maine).

In PWL, we define a different set of domain-independent transforma-
tion functions for a new semantic formalism based on higher-order
logic that we will present in section 4.5.

Semantic transformation functions are allowed to fail, which is use-
ful in defining richer transformation functions and providing more
flexibility when designing the production rules of the grammar. If in
the generative process, a transformation function returns failure, the
generative process is restarted from the root (all progress up to the
failure is discarded). As an example, failure enables the definition of
transformation functions that check whether the input logical form
satisfies a specific property: require_binary_conjunction returns
the input logical form, unchanged, if it is a conjunction of length 2;
otherwise, it returns failure. Since failure can cause the generative pro-
cess to repeatedly restart, the process of sampling using the generative
process can be expensive. However, PWL does not generate sentences
using this algorithm , and as we show in section 4.3, the performance
of PWL is not adversely affected.

4.2.2 Selecting production rules

The above description does not specify the conditional distribution
from which rules are selected from Ra given the logical form. There

71

72

LANGUAGE MODULE

are many modeling options available in choosing this distribution,
but we need a distribution that captures complex dependencies be-
tween the logical form and selected production rule. For example,
consider the grammar in figure 10 and the logical form plays_sport(
michael_phelps,tennis). When generating a sentence for this log-
ical form, at the root nonterminal S, there is only one production
rule available, S ¥ N:select_argl VP:delete_argl, so this rule
is selected. Now consider the child node corresponding to the non-
terminal VP. Its logical form is plays_sport(,tennis), which is
the output of the function delete_argl when applied to the logi-
cal form at the root node. At this point, there are two choices of
production rules with VP on the left-hand side: VP ¥ V N and
VP ¥ V. In this case, we want the conditional distribution to select
VP T V N, since the most likely sentence that conveys the semantics
in the logical form is “plays tennis.” In fact, VP ¥ V N should be
selected even in when the logical form is plays_sport(,baseball)
or plays_sport(,soccer) or almost any other sport. However, if the
logical form were plays_sport(,swimming), we want the conditional
distribution to give higher probability to VP ¥ V, since the verb phrase
“swims” is much more likely. Therefore, a desirable property of the
conditional distribution for VP production rules is that the distribu-
tion depends primarily on the predicate symbol (e.g. plays_sport)
but also depends secondarily on the object argument (e.g. swimming
or tennis).

PWL uses the HDP model, as presented in section 4.1.4, to capture
this dependence. Every nonterminal in our grammar A 2 N will be
associated with an HDP hierarchy. For each nonterminal, we specify
a sequence of semantic feature functions, f91,:::,9mg, each of which,
when given input logical form X, returns a non-negative integer. The
HDP hierarchy is a complete infinite tree of height m, where every
parent node has an infinite number of child nodes, one for each non-
negative integer. The base distribution H at the root of the HDP is over
RAa.

Take, for example, the derivation in Figure 11. In the genera-
tive process where the node VP is expanded, the production rule is
drawn from the HDP associated with the nonterminal VP. Suppose
the HDP was constructed using a sequence of two semantic features:
(predicate,arg2). In the example, the feature functions are evalu-
ated with the logical form borders(,nj) and they return a sequence
of two integers, the first is the identifier for the symbol borders and
the second is the identifier for the symbol nj. This sequence uniquely
identifies a path in the HDP hierarchy from the root node o to a leaf
node n. The production rule VP ¥ V N is drawn from this leaf
node G", and the generative process continues recursively. As desired,
the distribution of the selected production rule G™ depends on the
HDP source node n, which itself depends primarily on the first fea-

4.2 MODEL: SEMANTIC GRAMMAR

ture and secondarily on the second feature and so on (in this example,
the predicate and arg2 of the logical form are the first and second
features, respectively).

In our implementation, the set of nonterminals N is divided into two
disjoint groups: (1) the set of “interior” nonterminals, and (2) preter-
minals. The production rules of preterminals are restricted such that
the right-hand side contains only terminal symbols. The rules of in-
terior nonterminals are restricted such that only nonterminal symbols
appear on the right side.

1. For preterminals, H is a distribution over sequences of terminal
symbols. The sequence of terminal symbols is distributed as
follows: first sample the length of the terminal from a geometric
distribution (i.e. the number of words) and then generate each
word in the sequence i.i.d. from a uniform distribution over a
finite set of (initially unknown) terminals. Note that we do not
specify a set of domain-specific terminal symbols in defining this
distribution.

2. For interior nonterminals, H is a discrete distribution over a
domain-independent set of production rules, which we specify.
Since the production rules contain transformation functions, they
are specific to the semantic formalism. However, prior knowl-
edge of the English language can be encoded in these specified
production rules, which dramatically improves the statistical ef-
ficiency of our model and obviates the need for massive training
sets to learn English syntax. It is nonetheless tedious to design
these rules while maintaining domain-generality. Once specified,
however, these rules in principle can be re-used in new tasks and
domains without further changes.

We emphasize that only the prior is specified here, and PWL uses gram-
mar induction to infer the posterior. In principle, a more relaxed choice
of H may enable grammar induction without pre-specified production
rules, and therefore without dependence on a particular semantic for-
malism or natural language, if an efficient inference algorithm can be
developed in such cases.

4.2.3 Modeling morphology

The grammar model is easily modified to incorporate word morphol-
ogy. To do so, we add an additional step to the generative process after
generating the terminal symbols. Instead of the terminal symbols con-
stituting the tokens of the sentence directly, the terminal symbols are
instead word roots coupled with morphological flags that indicate their
inflection. For example, in the grammar in figure 10, rather than having
multiple rules for the various inflections of the verb “to border”, such
asV 1 “borders”, V ¥ “bordered”, V ¥ “bordering”, there would

73

74

LANGUAGE MODULE

“border”[3rD,rrES] “NJ”

|
“borders”

Figure 12: Example of a derivation tree under a grammar with a model of
morphology. The logical form corresponding to every node is
shown in blue beside the respective node. The logical form for V
is borders (,nj)[3rD,rPrES] and is omitted to reduce clutter. Mor-
phology is not modeled for proper nouns such as “Pennsylvania”
and “NJ.”

only be a single production rule for theroot: V' ¥ “border”. In order to
produce the various inflections, the logical form is augmented to carry
morphology information. Semantic transformation functions may add
or modify morphological flags. For example, suppose we have the
rule VP ¥ V:add_third_person,add_present_tense where add_
third_person is a function that adds the 3rp flag (indicating third
person) to the logical form, and add_present_tense is a function that
adds the rres flag (indicating present tense) to the logical form. These
morphological flags are copied into the terminal symbols, and as a
final step, the roots are inflected according to the morphological flags
(e.g. “border[3rD,rrES]” is inflected to “borders”). See figure 12 for an
example of a derivation tree for a grammar that models morphology.

If a root with morphological flags has multiple inflections, such as
“octopus”[rL] (pL indicates plural), the generative process selects one
uniformly at random. During inference (i.e. parsing), this morpholog-
ical model has the effect of performing morphological and syntactic-
semantic parsing jointly, as we will show in the next section. Wik-
tionary (Wikimedia Foundation, 2020) provides comprehensive high-
quality morphology information for English verbs, common nouns,
adjectives, and adverbs. PWL uses Wiktionary to construct a map-
ping between uninflected roots and inflected words, which is used in
both directions: (1) given root and morphological flags, find the cor-
responding set of inflections, or (2) given an inflected word, find the
corresponding set of roots and morphological flags. Note that only
(2) is necessary for parsing and training, whereas (1) is necessary for
generation.

Although this morphology model is implemented in PWL, we do
not use it in our experiments on GEoQuEery and Joss. The morphology
model is used in the experiments described later in the thesis.

4.3 INFERENCE AND IMPLEMENTATION

4.3 INFERENCE AND IMPLEMENTATION
4.3.1 Training

In this section, we describe how to infer the latent derivation trees
t , ftg,:::,thy, given a collection of sentences y , fyi,:::,yngand
logical form labels x , fx1,:::,Xn0, where each derivation tree t; is
distributed according to the conditional distribution described by the
generative process in section 4.2.1 above.

We describe grammar induction independently of the choice of rule
distribution. We wish to compute the posterior p(t j X, y) of the latent
derivation trees. Thisis intractable to compute exactly, and so we resort
to MCMC. To perform blocked Gibbs sampling, we pick initial values
for t and repeat the following: For i = 1,:::,n, sample t; j t_j, Xi, Yi
where t_; = tn ft;g.

h'd
p(ti j t-i, Xi,yi) / 1fyield(ti) = yig p(nr
A2N fn2t;:n
has label AJ

t—i,Xi>, (76)

where N is the set of nonterminals, and the intersection is taken over
the nodes n 2 t; labeled with the nonterminal A in the it" derivation
tree, and " is the production rule at node n. Note that the probability
does not necessarily factorize over rules, as is the case when using
the HDP. So in order to sample t;, we use Metropolis-Hastings (MH),
where the proposal distribution is given by the fully factorized form:

Y
P(t j t-i, Xi,yi) 7 Lyield(t;) =yig p(jti,xy). (77)
n2t;
The algorithm for sampling t; is detailed in section 4.3.1.1. After
sampling t;, we choose to accept the new sample with probability

2 1S)
min <1 Qn2ti p(r™ j x*, t_j) P‘)(ngti rmj X,t_i> =
27 P (Mg M iX toi) nor, PO XM E5) 3

(78)

where t;j, here, is the old sample, and t; is the newly proposed sample.
In practice, this acceptance probability is very high. This approach is
very similar in structure to that in Blunsom and Cohn (2010), Cohn,
Blunsom, and Goldwater (2010), and Johnson, Griffiths, and Goldwater
(2007).

Computing the conditional probabilities of the production rules
p(r™ j x™ t_;) and p(ﬂnzti r" j x,t_;) (as well as the quantities re-
quired in sampling t;) depends on the model for selecting production
rules. In PWL, which uses an HDP model, these quantities can be
computed using equations 52 and 55. PWL only keeps the last MCMC
sample (Ngamples = 1), s0 for each node in every derivation tree m 2 tj,
the production rule at that node r™ corresponds to a customer in the

75

76

LANGUAGE MODULE

Chinese restaurant representation of the HDP associated with the non-
terminal at node m. When resampling the derivation tree tj, PWL
removes all customers that correspond to a production rule in t;. Then
it is straightforward to compute conditional probabilities according to
equations 52 and 55 with the remaining customers. Once a new t; is
sampled, the customers corresponding to production rules in t; are
added to their respective restaurants.

There may be additional random variables in the grammar apart
from the derivation trees, such as in the HDPs. We perform Gibbs
sampling steps for these variables after each loop of resampling the
treestj, 1 = 1,:::, n. The grammar induction algorithm is summarized:
Pick initial values for tand and repeat the following,

1. Fori = 1,:::,n, sample t; | ,t_j, Xj,Yi from the distribution
given by equation 77. Then accept this sample as the new value
for t; with probability given by equation 78.

2. Perform the Gibbs sampling step for jt.

In all experiments throughout the thesis, we run the above loop for
10 iterations. Note that this algorithm requires no further supervision
beyond the utterances y and logical forms Xx. However, it is able to
exploit additional information such as supervised derivation trees: if
t t is a subset of derivation trees that are supervised, the Gibbs
sampling algorithm simply avoids resampling the trees in t. These
supervised derivation trees do not necessarily need to be rooted in
the nonterminal S. For example, a lexicon can be provided where each
entry is a terminal symbol y; with a corresponding logical form label
Xi. In our experiments on GEoQUEry and Joss, we evaluate our method
with and without such a lexicon.

4.3.1.1 Sampling t;

To sample from equation 77, we use inside-outside sampling (Finkel,
Manning, and Ng, 2006; Johnson, Griffiths, and Goldwater, 2007),
a dynamic programming approach. For every nonterminal A 2 N,
sentence start position i, end position j, and logical form X, let I (A j j x)
be the probability that t; has a node n with the label A and logical
form x and spans the sentence from i to j. This is known as the
inside probability. Similarly, for all production rules in the grammar
A 1 Bj:f;:::Bk:fk, sentence boundary positions between the right-
hand side nonterminals 11 < ::: < lk+1, and logical forms X, let
I(s B, :f1 By fi 1,x) D€ the probability that t; has a node n with the
label A and logical form X and has child nodes By, each with logical
forms fy(x), and each spanning the sentence from Iy to ly+1. This
is known as the inside rule probability. Note that we don’t need to
compute all possible inside probabilities for all logical forms (in many
applications, the set of logical forms is infinite). Therefore, we compute

4.3 INFERENCE AND IMPLEMENTATION

these inside probabilities top-down, beginning at the root nonterminal
I(s,0,jyiixi) With the known logical form X; where jyjj is the length
of sentence yj. The following formula can be used to compute this
quantity recursively:
< <
laijx = (A 1B, BrFi, 1) (79)
AT B;:f::Bk:fk i=lhi<ii<lk+1=j
(A 1By Brfi 1) =

N
p(A | Blﬁfl:::BK:ijX,t_i) I(Bu,|Uy|u+1yfu(X))' (80)

u=1

If fu(X) returns failure, then (g, 1,1,.1.fu00) = 0. Note that in the
case that A is a preterminal,

l(axw, iy 1,x) = 1fwmatches yj at (11, 12)gp(A ¥ wjt_;). (81)

where w is a terminal. Aside from the inside probabilities that were
required to compute the root inside probability I(sjy;jx;). all other
inside probabilities are 0. In PWL, this recursion is implemented itera-
tively, in order to avoid any issues with limited stack size and to share
code with the parsing and generation algorithms. We also take care
not to recompute previously computed inside probabilities.

All that remains is the outside step: sample the derivation tree
using the computed inside probabilities. To do so, start with the
root nonterminal S at positions i = 0 to j = jy;j and logical form X;,
and consider all production rules with S on the left-hand side S ¥
B1:f1:::Bk:fk and all sentence boundaries between the right-hand
side nonterminals 11 < ::: < Ix < lk+1 where I; = i and Ix+1 = j.
Sample a production rule and sentence boundaries with probability
proportional to the inside rule probability I(s s B,:f,:::B,c:fi,1.x;)- Next,
consider each right-hand side nonterminal of the selected rule By, start
position Iy, end position l+1, and logical form fy, (X;j), and recursively
repeat the sampling procedure. The end result is a tree sampled from
equation 7.

4.3.2 Parsing

Foranew sentencey , we aim to find thelogical form X and derivation
t that maximizes

Z
p(x .t jy ,x,y)= pXx.,t jy , Dp(tjxy)dt (82)
1 x .
—_— p(x ,t jy ,t). (83)
Nsamples .
Yy gxy

These samples of t are obtained from the above training procedure.
For the parsing approach presented in this section, it is assumed that

77

LANGUAGE MODULE

Nsamples = 1, and sop(x ,t jy ,X,y) p(X ,t jy ,t), where tisthe
last MH sample from the training procedure. Thus, we can write the
objective function for parsing:

p(x .t jy ,)/ p(x)ply jt)p(t jx 1),

= 1fyield(t) =y gp(x)p< nr x“,t), (84)
2t
Ifyield(t) =y gp(x) p(r"jx"t).* (85)
n2t

This is a discrete optimization problem, which we solve using branch-
and-bound (see algorithm 8). The algorithm starts by considering the
set of all derivation trees of y and partitions it into a number of subsets
(the “branch” step). For each subset S, we compute an upper bound
on the log probability of any derivation in S (the “bound” step). This
bound is given by equations 87, 88, and 89. Having the computed the
bound for each subset, we push them onto a priority queue, prioritized
by the bound. We then pop the subset with the highest bound and re-
peat this process, further subdividing this set into subsets, computing
the bound for each subset, and pushing them onto the queue. Even-
tually, we will pop a subset containing a single derivation which is
provably optimal, if its objective function value according to the above
equation is at least the priority of the next item in the queue. We can
continue the algorithm to obtain the top-k derivations/logical forms.
Since this algorithm operates over sets of logical forms (where each set
is possibly infinite), we must implement a data structure to sparsely
represent such sets of formulas, as well as algorithms to perform set
operations, such as intersection and subtraction.

Each set of derivations is sparsely represented in PWL as a single
incomplete derivation tree (i.e. the leaf nodes may be either terminals
or nonterminals) and a logical form set. The logical form set repre-
sents the logical form of the root node of every derivation tree in the
set. The logical forms at the other nodes can be computed by using
the semantic transformation functions. In addition, every nonterminal
node with non-zero children has two integer indices that indicate its
start and end positions in the sentence y . This data structure repre-
sents the set of all derivation trees whose nodes match the nodes in
the incomplete derivation tree at the given sentence positions. In addi-
tion, each derivation tree set has an integer counter to indicate to the
branch function how to subdivide the set. Each such set of derivation
trees is also called a search state. As an example, consider the input
sentence “Trenton is the capital of New Jersey.” Now consider a search
state where the incomplete derivation tree contains only a single node

Equations 84 and 85 are not equal since the conditional distribution of production rules
is not necessarily i.i.d. PWL uses an HDP for this conditional distribution, which has
the nice property that as the size of the training set increases, this approximation
becomes more exact.

4.3 INFERENCE AND IMPLEMENTATION

labeled NP with start position 3 and end position 7 (corresponding to
“capital of New Jersey”) and the logical form set is the set of all logical
forms. This search state represents the set of all derivation trees that
have a node with label NP and is the common ancestor of the terminals
in “capital of New Jersey.”

Given a set of derivation trees, the branch function is defined in algo-
rithm 9. The branch-and-bound algorithm is started with a derivation
tree set whose incomplete derivation tree has a single root node with
nonterminal S, the set of all logical forms, start position 0, and end
position jy j.

There are two missing pieces in algorithm 9: the first is on line 17.
To compute this, we can augment the branch-and-bound algorithm to
return the m'™ best element(s) that maximize(s) an objective function
over a set. This augmented function is shown in algorithm 11. When-
ever line 17 is first executed for a given nonterminal By, start position
ik, end position jk and logical form set fi(X), initialize the priority
queue Q in algorithm 11 with: Q.push(S ,h(S)) where S is the
search state with an incomplete derivation tree consisting of a single
node at the root with nonterminal By, start position ik, end position
Jk, and logical form set fi(X).

The other missing piece in algorithm 9 is line 28, which depends on
the model for selecting production rules. PWL uses an HDP model,
and is able to directly use the algorithm described in section 4.1.2 to
compute X . Algorithm 11 may also be used here to return the mt"
most likely logical form(s).

The above branch-and-bound algorithm requires a heuristic function
that, for an input search state (set of derivation trees), returns an upper
bound on the objective function in equation 85 over all derivation trees
in the set. This heuristic function determines the order of the search
states to visit. The product in the objective ~ ¢ pP(r" j x" t) can
be decomposed accordingly into a product of two components: (1)
the inner probability at a node n 2 t is the product of the terms that
correspond to the subtree rooted at n, and (2) the outer probability is the
product of the remaining terms, which correspond to the parts of t
outside of the subtree rooted at n.

To help define this heuristic, we define an upper bound on the log
inner probability I(a ; j) for any derivation tree rooted at nonterminal
A at start position i and end position j in the sentence.

max
ATB;:::Bk

laij) »
. X
' P 1 +
maxlogp(A B By, B j X,)+ max '(sk,uk,ukﬂ)), (86)
k=1
where 11 = 1, Ik+1 = j. Note that the left term is a maximum over

all logical forms x', and so this upper bound only considers syntac-
tic information. Computing the left term depends on the model for

79

8o

LANGUAGE MODULE

Algorithm 9: Pseudocode for branch in the branch-and-bound algorithm

for the parser, which aims to maximize equation 85.

1 function branch (derivation tree set S)

2

w

© o N O U»n A

10
11
12
13
14
15
16

18
19

20

21
22

23

24

25
26
27
28

29
30

31

32

L is an empty list
n is the root of the incomplete derivation tree of S
Xis the logical form set at n
i is the start sentence position of n
j is the end sentence position of n
if n has no child nodes
A is the nonterminal symbol of n
return expand (A, i,j,X) /* see algorithm 10 */
else if n has a nonterminal child node with no children
A T Bjfy :::Bkifk is the production rule at n
Ck is the first nonterminal child node of n with no children
By is the nonterminal symbol of ¢k
ik is the start sentence position of ¢k
Jk is the end sentence position of ¢y
m is the counter of S
Smm is the mt most probable set of derivation trees with root nonterminal
By, start position iy, end position jik, whose logical forms are a subset of
fk(X) , ff(X) & fail : x 2 Xy, according to equation 85
if Sm exists
for sentence positions jk41 such that ji < jx+1 <j do
/* the operation X\ fl:l(Xm) can return a union of sets x/
let Xk 1 [::: [Xk r be the output of X\ f;l(Xm) where Xm is the logical
form set of Sm, and fi ! (Xm) . X : fi(X) 2 Xmg
for Xk,l 2 kavl’ il Xk,rg do
S is a new derivation tree set with counter 1, the incomplete
derivation tree is identical to that of S except ¢y is substituted with
the incomplete derivation tree of Sm, the logical form set at the root is
Xk,1, and the end position of ¢x+1 is jk+1
L.add(S)

L.add(a new derivation tree set identical to S except its counter is m + 1)

else
A T Bjfy :::Bkifk is the production rule at n
m is the counter of S
Xm is the m™ most likely set of logical forms according to
p(A ¥ By:f;:i:Bkifk jx2 X, t)
if X exists
L.add(a new derivation tree set identical to S except its logical form set is
Xm, and is marked as COMPLETE)
L.add(a new derivation tree set identical to S except its counter is m + 1)

return L

4.3 INFERENCE AND IMPLEMENTATION

Algorithm 10: Pseudocode for the expand helper function, which algo-

rithm 9 invokes.

1 function expand (nonterminal A, start position i, end position j, logical form set X)

2
3
4

wn

10

w

No I« BN e N

10
11

L is an empty list

if A is a preterminal

for rules A ¥ w where the tokens in the sentence’y matches the terminal w at
positions i to j do

/* if using the morphology model, we instead require that w

is a valid morphological parse of the tokens 1in the
sentence y at positions i to j %/

S is anew derivation tree set where the incomplete derivation tree
consists of a root node n with nonterminal A, start position i, end
position j, logical form set X, and child node w

L.add(S)

else

for rules A ¥ Bq:fy ::: Bfk and sentence positions K such that i <k < j do

S is anew derivation tree set with counter 1, the incomplete derivation
tree consists of a root node n with nonterminal A, start position i, end
position j, logical form set X, and for each child node c;j, the nonterminal
is Bj, and logical form set is f; (X) , ffj(X) & fail : x 2 Xg; the start position
of ¢4 is i, the end position of ¢; is k, and the end position of ck is j
L.add(S)

return L

Algorithm 11: A modified branch-and-bound algorithm to return the k"
best element(s) that maximize(s) the function f. Before the first call to this
function, C is initialized as an empty list, and Q is initialized with a single
element: Q.push (X, h(X)) where X is the domain on which to maximize f.
The changes to C and Q persist across subsequent calls to get_kth_best.

function get_kth_best (objective function f,

heuristic h,

priority queue Q,

list of completed elements C,

integer K)
if there are at least K elements in C with priority at least the highest priority in Q
L return K-best element in C

while Q not empty do

(S,v) =Q.pop()

if S is marked as COMPLETE

| C.add(x, f(x))

else
(S1,:::,Sn) = branch(S)
fori=1:::,ndo
| Q-push(Si,h(s0)

/* check termination condition x/

if there are at least K elements in C with priority at least v
L return K-best element in C

return ?

81

82 LANGUAGE MODULE

set of logical forms in this search state

— set of derivation trees

— x—Wn *

“Pennsylvania borders NJ”

- upper bound on log posterior of

branch according to any derivation in this search state
production rules with / ¢
S as left-hand side w5 ((Ep) *(x,%)
S S
V—‘—\ l—‘—|
N M “.‘ M
I | |
“Pennsylvania borders” “NJ” “Pennsylvania” “borders NJ”
branch according to upper bound: -12.98 upper bound: -5.26
derivation trees of first l l \
child (i.e. N, computed -
recursively) *(<entity of new type>,x) *x(pa,*x) *(<new state>,*)
S S S
\ Vi N Vi) Vi
“Pennsylvania borders” T “Pennsylvania” T “Pennsylvania” T
“NJ” “borders NJ” “borders NJ”
branch according to upper bound: -12.98 upper bound: -5.82 upper bound: -13.12
derivation trees of sec-
ond child (i.e. VP, com- / l \
puted recursively) borders(pa,nj) borders(pa,red) <new relation>(pa)
S S S
N VP N VP N VP
| I —— B I I
“Pennsylvania” V ITI “Pennsylvania” Y APJ “Pennsylvania” Y
“borders” “NJ” “borders” “NJ” “borders NJ”
upper bound: -6.74 upper bound: -18.62 upper bound: -10.13

Figure 13: The search tree of the branch-and-bound algorithm during parsing.
In this diagram, each block is a search state, which represents
a set of derivation trees. The blue asterisk * denotes the set of
all possible logical forms, whereas the black asterisk * denotes
the set of all possible derivation (sub)trees. Note only the logical
form at the root node is shown. The gray-colored search states
are unvisited by the parser, since their upper bounds on the log
posterior are smaller than that of the completed parse at the bottom
of the diagram (-6.74), thus allowing the parser to ignore a very
large number of improbable logical forms and derivations. In
this example, we use the grammar from figure 10. The branching
steps here are simplified for the sake of illustration. The recursive
optimization of the derivation subtrees for N and VP are not shown,
which have their own respective search trees.

selecting production rules. Since PWL uses an HDP, it uses the branch-
and-bound approach in section 4.1.2 to compute this term. The right
term can be maximized using dynamic programming with running
time O(K?). As such, classical syntactic parsing algorithms can be
applied to compute | for every chart cell in O(n®). For any terminal
symbol w 2 W, we define I j j) = 0.

4.3 INFERENCE AND IMPLEMENTATION

We now define the upper bound heuristic on any search state S with
an incomplete derivation tree that has root node n, start position i, end
position j, and logical form set X. If n has no child nodes:

logh(S) , h3(X) + I(aij)- (87)

Else, if n has a nonterminal child node without children, the production
ruleatnis A ¥ B1:f; :::Bk:fk, Kis the smallest index of a nonterminal
child node, and m is the value of the counter:

logh(S) , minfh%(X) + I, 1,.1.1): 109 m-10
X

+ oo+ max lBululusa): (88)
K+2--- K+lu=k+1

Else, if all the nonterminal child nodes of n has children, and m is the
value of the counter:

logh(S) , h3(X)+ +log m-1. (89)
where
<
, logp(r™jx 2 X, t),
m2Snn

h(X) > m2a>)<(log p(x™) is an upper bound on the semantic prior,
X

m » the objective function value of the m* most probable
derivation trees obtained on line 17,

m » M highest value of p(A ¥ Bp:fy:::Bk:f j X 2 X, t)
obtained on line 28.

The max in the third term of equation 88 can be computed via dynamic
programming with running time O(K?). In the equation for , the sum
over m 2 Snn is over all nodes in the incomplete derivation tree of
S, excluding n. To avoid recomputing every time h is invoked, PWL
stores it in every search state. Its initial value is 0. In algorithm 9, on
line 22, the log probability of the new search state S is equal to the
sum of the log probability of the old state S and the log probability of
Sm. In line 30, the log probability of the new search state is equal to
the sum of the log probability of the old search state S and log p(A ¥
By:f1:::Bk:fk] x 2 X,t). PWL then uses this quantity directly as

in the above heuristic. The heuristic also has the nice property that
when a search state is marked COMPLETE, its heuristic value is equal to
the logarithm of the objective, aside from the prior term. Thus, when
computing the objective function, such as checking the termination
condition in the branch-and-bound, we only need to compute the prior
term.

With a sufficiently tight upper bound on the objective, this algorithm
ignores a very large number of subproblems whose upper bound is
too high. Figure 13 shows the search tree for the branch-and-bound

83

84

LANGUAGE MODULE

algorithm. By ignoring sets of derivation trees with an upper bound
smaller than that of the highest-scoring element in the search queue,
the parser can ignore a large number of improbable logical forms
and derivations. Thus, with a good upper bound, the parser can
run in sublinear time with respect to the size of the theory. The parser
resembles a generalized version of the Earley parsing algorithm (Earley,

1970).
4.3.3 Generating sentences

In contrast with parsing, given a new logical form X , natural language
generation is the task of finding the unknown sentence y and deriva-
tion tree t . A straightforward way to do this in PWM is to sample
t jt,x , and simply compute y = yield(t). The sampling follows
the generative process directly.

However, in many situations, it is desirable to find the sentence y
and derivation t that maximize:

Z
ply .t jx,xy)= py .t jx,)p(tjxy), (90)
1 Da .
ﬁ p(y vt JX !t)l (91)
samples P
. . t tJX'y Y .
p(y .t jx,t) 1fyield(t)=y g p("jx"1). (92)
n2t

As with parsing, we assume that Ngamples = 1. This is also a discrete
optimization problem, albeit simpler than parsing, and we again ap-
ply branch-and-bound. Similar to the case in parsing, each search
state represents a set of derivation trees, represented by an incomplete
derivation tree, except that the nodes do not have any sentence posi-
tions, since y is not known, and there is only a single logical form
rather than a set of logical forms, since X is known. The branch func-
tion for generation is shown in algorithm 12. The algorithm is started
with a derivation tree set whose incomplete derivation tree consists of
a single node labeled S with logical form x .
The heuristic upper bound for a search state S is simply:

X .
logh(S) , logp(r™ jx™,t) =, (93)

m2Snn

where the sum is over all nodes in the incomplete derivation tree of S,
excluding the root node n. Note that, just as in parsing, the algorithm
keeps track of this quantity in each search state as the log probability
,and so logh(S) = .
Just as in parsing, in order to execute line 15, we can use the aug-
mented branch-and-bound in algorithm 11 to return the mt" best
derivation tree that maximizes the objective over the set of derivation

1
2
3
4
5
6
7

10
11
12
13
14
15

16
17

w W W
N -

@

34
35

36

4.3 INFERENCE AND IMPLEMENTATION

Algorithm 12: Pseudocode for branch and expand in the branch-and-
bound algorithm for generating the most likely sentence(s), given a logical
form, which aims to maximize equation 92.

function branch (derivation tree set S)
L is an empty list
n is the root of the incomplete derivation tree of S
X is the logical form at n
if n has no child nodes
A is the nonterminal symbol of n
return expand (A, X)
else if n has a nonterminal child node with no children
A 1 Bj:fy :::Bkfk is the production rule at n
Ck is the first nonterminal child node of n with no children
By is the nonterminal symbol of cx
m is the counter of S
is the log probability of S
if T (X) fails return ?
Sm is the mt most probable derivation tree with root nonterminal By and
logical form fi.(x), according to equation 92
if S exists
S =S\ Sm is a new derivation tree set with counter 1, the incomplete
derivation tree is identical to that of S except ¢y is substituted with the
incomplete derivation tree of Sm, and the log probability is the sum of
and the log probability of Sm
L.add(S)
L.add(anew derivation tree set identical to S except its counter is m + 1)

else

A T Bpfy :::Bkifk is the production rule at n
is the log probability of S

L.add (a new derivation tree set identical to S except its log probability is
the sum of and p(A ¥ B1:f1:::Bkifkj X, t), and is marked COMPLETE)

return L

function expand (nonterminal A, logical form X)
L is an empty list
if A is a preterminal
for rules A ¥ wdo
S isanew derivation tree set where the incomplete derivation tree consists
of a root node n with nonterminal A, logical form X, and child node w
L.add(S)

else
for rules A ¥ Bq:f; :::Bk:fk do
S is anew derivation tree set with counter 1, the incomplete derivation
tree consists of a root node n with nonterminal A, logical form X, and for
each child node c;, the nonterminal is Bj, and logical form is f; (X)
if T (X) did not fail forall i = 1,:::,K
| L.add(S)

return L

85

86

LANGUAGE MODULE

Sentence: “How large is Alaska?”
Logical form: answer (A, (size(B,A),const(B,stateid(alaska))))

Sentence: “How many people lived in Austin?”
Logical form: answer (A, (population(B,A),const(B,cityid(austin,_))))

Sentence: “What is the biggest city in Nebraska?”
Logical form: answer (A, largest(A, (city(A),
loc(A,B),const(B,stateid(nebraska)))))

Sentence: “Give me the cities in USA?”
Logical form: answer (A, (city(A),loc(A,B),const(B,countryid(usa))))

Figure 14: Examples of sentences and logical form labels from GEoQUuEry.

trees rooted at By with logical form fi(X). Whenever line 17 is first ex-
ecuted for a given nonterminal By and logical form fi (), initialize the
priority queue Q in algorithm 11 with: Q.push(S ,h(S)) whereS is
the search state with an incomplete derivation tree consisting of a single
node at the root with nonterminal Bk and logical form fi(x). The im-
plementation for our inside-outside sampler, branch-and-bound parser
and generator is available at github.com/asaparov/grammar.

4.4 SEMANTIC PARSING EXPERIMENTS ON GEOQUERY AND JOBS

To evaluate our parser, we use the GEoQuEry and Joss datasets (Tang
and Mooney, 2000; Zelle and Mooney, 1996). GEOQUERY contains 880
questions about U.S. geography. Each question is labeled with a logi-
cal form in Datalog. The dataset includes a database called GeoBask,
which, when each logical form is executed, returns the answer to the
corresponding question. The Joss dataset contains 640 questions about
computer-related job postings (from the USENET group austin. jobs).
Each question is also labeled with a Datalog logical form, similar to the
semantic formalism of GEoQuERy. Most question in the two datasets
are interrogative sentences, but there are some imperative sentences.
Figures 14 and 15 showcases some examples from each dataset, respec-
tively. The task is semantic parsing: given each sentence, predict the
logical form that represents its meaning.

We created a semantic grammar for the Datalog representation of
GeoQuERry and Joss, specifying the “interior” production rules and im-
plementing the semantic transformation functions and their inverses.?
These experiments are meant to evaluate the language module of PWL,
and so the reasoning module is not used as the semantic prior. Rather,
we experiment with a simpler prior: Let X be a Datalog logical form,
and x®' is the i*" predicate or “function” node in X in prefix order
whose smallest variable is a (“smallest” in the sense that A is smaller
than B is smaller than C etc). For example, size(A,B) is a predicate

This grammar is available at github.com/asaparov/parser/blob/master/english.
gram.

https://github.com/asaparov/grammar
https://github.com/asaparov/parser/blob/master/english.gram
https://github.com/asaparov/parser/blob/master/english.gram

4.4 SEMANTIC PARSING EXPERIMENTS ON GEOQUERY AND JOBS

Sentence: “Show me programmer jobs in Tulsa?”
Logical form: answer (A, (job(A),title(A,T),
const(T,’Programmer’),loc(A,C),const(C,’tulsa’)))

Sentence: “What jobs are there with a salary of more than 50000 dollars per year?”
Logical form: answer (A, (job(A) ,salary_greater_than(A,50000,year)))

Sentence: “What jobs in Austin require more than 10 years of experience?”
Logical form: answer (A, (job(A),loc(A,P),
const(P,’austin’),req_exp(A,E),const(E,10)))

Sentence: “Can I find a job making more than 40000 a year without a degree?”
Logical form: answer (A, (job(A),
salary_greater_than(A,40000,year),\+ req_deg(A)))

Figure 15: Examples of sentences and logical form labels from Joss.

4

node whose smallest variable is A, and most (B, C, ...) is a “function”
node whos&smallest variable is B. The prior probability of X is given
by p(X) /7 4 p(x®" j x®1=1) where the conditional p(x®! j x21-1)
is modeled with an HDP as in section 4.1.4. This HDP has height 2:
the first feature function is the predicate or “function” symbol of the
input node (e.g. size or most), and the second feature function is the
arity and “order” of the arguments (e.g. size(A) vs size(A,B) vs
size(B,A)).

We also follow Li, Liu, and Sun (2013), Wong and Mooney (2007), and
Zhao and Huang (2015) and experiment with type-checking, where ev-
ery entity is assigned a type in a type hierarchy (e.g. alaska has type
state, state has supertype polity, etc), and every predicate is as-
signed a functional type (e.g. population has type polity ¥ int ¥
bool, etc). We incorporate type-checking into the semantic prior by
assigning zero probability to type-incorrect logical forms. More pre-
cisely, logical forms are distributed according to the original prior,
conditioned on the fact that the logical form is type-correct. Type-
checking requires the specification of a type hierarchy. Our hierarchy
contains 11 types for GEoQuEry and 12 for Joss. We run experiments
with and without type-checking for comparison.

Following Zettlemoyer and Collins (2007), we use the same 600 GEo-
QuEry sentences for training and an independent test set of 280 sen-
tences. On Joss, we use the same 500 sentences for training and 140
for testing. We run our parser with two setups: (1) with no domain-
specific supervision, and (2) using a small domain-specific lexicon and
a set of beliefs (such as the fact that Portland is a city). For each
setup, we run the experiments with and without type-checking, for a
total of 4 experimental setups. A given output logical form is consid-
ered correct if it is semantically equivalent to the true logical form.3
In these experiments, we did not use a model of morphology in the
grammar. We measure the precision and recall of our method, where

The result of execution of the output logical form is identical to that of the true logical
form, for any grounding knowledge base/possible world.

87

88

LANGUAGE MODULE

precision is the number of correct parses divided by the number of
sentences for which our parser provided output, and recall is the num-
ber of correct parses divided by the total number of sentences in each
dataset . Our results are shown compared against many other seman-
tic parsers in Figure 16. Our method is labeled PWL-LM indicating
that while we use the same parser design as the language module of
PWM,, it uses a distinct grammar and logical formalism (Datalog vs
higher-order logic). The numbers for the baselines were copied from
their respective papers, and so their specified lexicons/type hierar-
chies may differ slightly. All code for these experiments is available at
github.com/asaparov/parser.

Many sentences in the test set contain tokens previously unseen in
the training set. In such cases, the maximum possible recall is 88.2 and
82.3 on GEOQUuERY and Joss, respectively. Therefore, we also measure
the effect of adding a domain-specific lexicon, which maps semantic
constants like maine to the noun “Maine” for example. This lexicon
is analogous to the string-matching and argument identification steps
in some other semantic parsers. We constructed the lexicon manually,
with an entry for every city, state, river, and mountain in GEOQUERY (141
entries), and an entry for every city, company, position, and platform
in JoBs (180 entries).

Aside from the lexicon and type hierarchy, the only training infor-
mation is given by the set of sentences y, corresponding logical forms
X, and the domain-independent set of interior production rules, as de-
scribed in section 4.2.2. In our experiments, we found that the sampler
converges rapidly, with only 10 passes over the data. This is largely
due to our restriction of the interior production rules to a domain-
independent set, which provides significant information about English
syntax.

We emphasize that the addition of type-checking and a lexicon are
mainly to enable a fair comparison with past approaches. As expected,
their addition greatly improves parsing performance. At the time of
the publication of our method (Saparov, Saraswat, and Mitchell, 2017),
we achieved state-of-the-art F1 on the Joss dataset. However, even
without such domain-specific supervision, the parser performs rea-
sonably well. This is a promising indication that this parser will work
effectively in the broader PWL system, and is able to correctly parse
sentences with complex and nested semantics. However, we notice a
common error is the incorrect determination of scope of functions like
highest, shortest, etc. This is likely due to the fact that the semantic
prior does not explicitly model the scope of these functions (it assumes
a uniform probability on all possible scopes). Thus, a more explicit
model of scope might further improve parsing performance. We found
that the semantic parsing problem is easier if the logical forms of each
sentence are more similar to the syntactic structure of that sentence. In
the extreme case, the logical forms would be identical to the sentences

https://github.com/asaparov/parser

4.4 SEMANTIC PARSING EXPERIMENTS ON GEOQUERY AND JOBS 89

METHOD SA;ZI;\I;?STS; GEeOQUERY JoBs
P R F1 P R F1
WASP (Wong and Mooney, 2006) AB 87.2 748 8o.5
-WASP (Wong and Mooney, 2007) ABF 92.0 86.6 89.2
Extended GHKM (Li, Liu, and Sun, 2013) ABJF 93.0 87.6 9go.2
Zettlemoyer and Collins (2005) CEF 96.3 79.3 8y.0 97.3 79.3 87.4
Zettlemoyer and Collins (2007) CEF 91.6 86.1 88.8
UBL (Kwiatkowski et al., 2010) E 94.1 85.0 89.3
FUBL (Kwiatkowski et al., 2011) E 88.6 88.6 88.6
TISP (Zhao and Huang, 2015) EF 92.9 88.9 90.9 85.0 85.0 85.0
PWL-LM — lexicon — type-checking D 86.9 757 80.9 89.5 67.1 76.7
PWL-LM + lexicon — type-checking D,E 884 818 850 914 757 828
PWL-LM — lexicon + type-checking D,F 89.3 779 832 932 693 795
PWL-LM + lexicon + type-checking D,EF 90.7 83.9 8y2 97.4 81.4 88.7
Legend for sources of additional supervision:
A. Training set containing 792 examples, B. Domain-specific set of initial synchronous CFG rules,

C. Domain-independent set of lexical templates, D. Domain-independent set of interior production rules,

E. Domain-specific initial lexicon, F. Type-checking and type specification for entities.

Figure 16: Results of semantic parsing experiments on the GEoQuEery and
Jobs datasets (Saparov, Saraswat, and Mitchell, 2017). Precision,
recall, and F1 scores are shown. The methods in the top por-
tion of the table were evaluated using 10-fold cross validation,
whereas those in the bottom portion were evaluated with an inde-
pendent test set. As a consequence, the methods evaluated using
10-fold cross validation were trained on 792 GEOQUERY examples
and tested on 88 examples for each fold (hence the additional super-
vision label “A” in the above table). In contrast, the methods evalu-
ated using an independent test set were trained on 600 GEOQUERY
examples and tested on 280 examples. The domain-independent
set of interior production rules (labeled “D” in the above table) is
described in section 4.2.2.

Logical form: answer (A,smallest(A,state(A))) answer(A,largest(B, (state(A),population(A,B))))
Test sentence: “Which state is the smallest?” “Which state has the most population?”

Generated: “What state is the smallest?” “What is the state with the largest population?”

Figure 17: Examples of sentences generated from our trained grammar
on logical forms in the GeoQuEry test set (Saparov, Saraswat,
and Mitchell, 2017). Generation is performed by computing
argmaxy ¢ p(y ,t jXx ,t)asdescribed in section 4.3.3.

90

LANGUAGE MODULE

themselves, in which case parsing would be trivial. Thus, there is an
inevitable balancing act in designing a semantic grammar and logical
formalism for natural language, where on one hand we want the pars-
ing problem to be as simple as possible, but on the other hand, we want
the logical forms to be useful for downstream tasks, such as question-
answering and reasoning, and ideally the logical forms of two distinct
sentences that have the same meaning should be equivalent. These are
important lessons to keep in mind when designing a domain-general
semantic grammar and logical formalism.

4.5 DOMAIN-GENERAL GRAMMAR AND SEMANTIC FORMALISM

Although we implemented the aforementioned Datalog grammar to be
as domain-general as possible, the Datalog representation in GEOQUERY
and Joss itself is unable to capture the meaning of many sentences
outside the domains of geography and job searching. Consider the
sentence “John travels to New York.” One possible Datalog logical
form for the semantics of this sentence is

(const(A,personid(john)),travel(A,B),const(B,cityid(’new york’,_))).

Now consider the sentence “John traveled to New York.” While the
tense distinction is irrelevant in GEoQuEery and Joss, this is not true in
general. Even when time is explicitly specified, as in “John traveled
to New York yesterday,” it is not clear how to represent this in Data-
log. This issue also arises with other adverbial qualifiers, as in “John
quickly traveled to New York” or “John will travel to New York after he
finishes breakfast.” Furthermore, in the above example logical form,
the variables A and B are implicitly universally quantified, according
to Datalog semantics. So it is unclear how to represent sentences with
existential semantics such as “If I had an airplane, I would fly.” These
limitations impede Datalog’s applicability as a domain-independent
representation of natural language semantics.

Other semantic formalisms have similar limitations. For example,
while Abstract Meaning Representation (AMR) (Banarescu et al., 2013)
provides a broad-coverage representation of natural language seman-
tics, it intentionally ignores some central aspects of language in order
to simplify and streamline the annotation of a large number of sen-
tences. AMR does not have universal quantification, and so does not
distinguish between singular and plural forms of words. The sentences
“Alex received a flower” and “Alex received flowers” would have the
same logical form, which would be problematic for a downstream task
such as answering the question “Did Alex receive at least 2 flowers?”
Discourse Representation Theory (DRT) (Kamp and Reyle, 1993; Sandt,
1992) is a semantic representation that has explicit universal quantifica-
tion and is able to capture the semantics of many linguistic phenomena
such as anaphora and presupposition. There is a well-defined map-
ping from DRT logical forms into first-order logic formulas, and so

4.5 DOMAIN-GENERAL GRAMMAR AND SEMANTIC FORMALISM

reasoning over DRT structures is possible using methods developed
for first-order logic. Proof calculi for DRT have also been developed
to enable reasoning directly with DRT structures (Kamp and Reyle,
1996).

Higher-order logic or lambda calculus (Church, 1940) is a well-studied
formal language with applications to mathematics and formal seman-
tics. In fact, the field of formal semantics emerged in a large part due
to Montague’s work on a grammar of English where meaning is rep-
resented in higher-order logic (Montague, 1970, 1973, 1974). There are
many well-studied proof calculi for performing reasoning in higher-
order logic, many of them being extensions of proof calculi for first-
order logic, including natural deduction (Gentzen, 1935, 1969). Much
of the work in formal semantics built upon Montague’s work, including
combinatory categorial grammar (CCG) (Steedman, 1997).

Thus, we present a new semantic formalism based on higher-order
logic and a new grammar with the explicit goal of domain-generality.
A semantic formalism is a mapping between interpretations of sentences
to logical forms. We emphasize that while a language-independent
semantic formalism would be tremendously valuable, it is not our
primary goal. We focus on representing the semantics of English
sentences in this thesis, and we leave extensions to other languages to
future work. Higher-order logic provides a convenient way to define
sets of objects as boolean-valued functions: A boolean-valued function
f represents the set of all objects x that make f(x) true. So if f(x) is true
if and only if X is a cat, then f is the set of all cats. Higher-order logic
provides notation to define new functions, called function abstraction,
and we can directly use this to “build” new sets:

o X.cat(X) defines the set of all cats,
e X(large(x) "™ dog(x)) is the set of all large dogs,

o X(cat(x) ™ z9y(like(x,y) ™ dog(y))) is the set of all cats that
do not like a dog, etc.

Plural noun phrases in English and other languages can express prop-
erties of sets of objects, such as “3 books,” which refers to a set whose
cardinality is three and whose elements are all books. The semantics
of this phrase can be represented in higher-order logic as:

subset(X, X.book(x)) ™ size(X)=3,
where size is the cardinality function, and subset is defined as:
8A8B(subset(A, B) 5 8x(A(X) T B(X))).

Thatis, subset(A, B) is true if and only if every element of the set A is
an element of the set B. Note that the subset is necessary here, since
if instead we had written X = X.book(X) /™ size(X) =3, the set of all
books would have cardinality three, which is not often the meaning
of “3 books.” The above tools allows us to analyze almost all noun

91

92

LANGUAGE MODULE

phrases as sets. Even singular noun phrases can be analyzed as sets
containing only one object: X.x = a'lex is the set that only contains
alex. This representation enables description of the properties of
sets rather than their elements, which, for example, is necessary to
represent the meaning of quantity phrases: “at least 3 books,” “most
books,” “a few books,” “half of the books on the table,” etc.

PARSING VS REASONING: An important lesson from the develop-
ment of our grammar for Datalog, and from the development of se-
mantic parsers more broadly, is that the semantic parsing problem is
easier if the logical forms of each sentence are more similar to the syn-
tactic structure of that sentence. In the extreme case, the logical forms
would be identical to the sentences themselves, in which case parsing
would be trivial. However, in this extreme case, the resulting logical
forms would not be any more useful than the sentences themselves for
downstream tasks, such as question-answering and reasoning. At a
bare minimum, we want the logical forms represented in a formal lan-
guage, in which reasoning is amenable (e.g. there is a proof calculus
for the formal language). We also want the logical forms of any two
sentences with the same meaning to be logically equivalent.

Beyond this bare minimum, there are design options to consider.
One such option is the order of commutative operations, such as con-
junction. The sentences

 “Alice is a dog and Bob is a cat”

« “Bob is a cat and Alice is a dog”

have the same meaning but differ in their ordering of operands. There
are two choices here:

1. The two sentences above have the same logical form: cat(bob) ™
dog(alice). This requires a canonical ordering of operands. In
this example, the canonical ordering is determined by the alpha-
betical ordering of their predicates.

2. The two sentences have distinct but equivalent logical forms,
mirroring the order of the respective operands in the sentences:
dog(alice) ™ cat(bob) for the first sentence, and cat(bob) ™
dog(alice) for the second.

In order to implement the first choice in our grammatical framework,
the grammar would need two production rules like the following:

S ¥ S:select_left_operand AND:require_canonical
S:select_right_operand
S ¥ S:select_right_operand AND:require_canonical

S:select_left_operand

where the function require_canonical checks whether the input
logical form is a binary conjunction with its operands in canonical
order. If so, it simply returns the input logical form unchanged;

4.5 DOMAIN-GENERAL GRAMMAR AND SEMANTIC FORMALISM

otherwise, it returns failure. The function select_left_operand
returns the left operand of an input conjunction (e.g. given input
dog(alice) /™ cat(bob), it returns dog(alice)). The function select_
right_operand returns the right operand of an input conjunction (e.g.
given input dog(alice) ™ cat(bob), it returns cat(bob)). Similar rules
would need to be implemented for any other nonterminal that could
be coordinated. This approach scales poorly when the number of
operands increases beyond two. In addition, since our parser is top-
down, such a grammar would cause a large number of spurious search
states to be created. It is for these reasons we chose the second choice:
the order of the operands in the logical form matches the order of
the corresponding phrases in the sentence. This is not limited to con-
junction. For the same reasons as above, we chose that the order of
adjuncts of a phrase in the sentence should match the order of the cor-
responding subexpressions in the logical form. For example, in "She
will go there by car in the evening," the subexpression in the logical
form corresponding to "by car" should precede the subexpression cor-
responding to “in the evening.” As another example, in “tall green
tree,” the subexpression in the logical form corresponding to “tall”
should precede that which corresponds to “green.”

But this design choice does not remove the necessity of canonical-
ization. It is deferred to the reasoning module. In the above example,
it is now the reasoning module’s job to determine that dog(alice) ™
cat(bob) is equivalent to cat(bob) ™ dog(alice). Thus, these design
choices serve to delineate the boundary between the language module
and reasoning module. If more computation is deferred to the reason-
ing module, the language module’s job will be easier, at the expense
of increasing the complexity of reasoning, and vice versa.

Another design choice in the semantic representation is the repre-
sentation of named entities. PWM defers named entity linking to the
reasoning module (the parser does not do named entity linking). That
is, the semantic parser does not parse “Alice” directly into the constant
alice. Rather, named entities are parsed into existentially-quantified
expressions, such as 9a(name(a) = “Alice” ~:::). This reduces the
number of possible logical forms that the parser must consider. If
instead the parser were responsible for named entity linking, “Alice”
could refer to alice, bob, or any other concept in the theory. This
would dramatically increase the size of the parser’s search space.

NEO-DAVIDSONIAN SEMANTICS: Like AMR and DRT, PWL uses
neo-Davidsonian semantics (Parsons, 1990) (also known as event seman-
tics) to represent meaning of actions and events in all logical forms
(both in the theory and during semantic parsing). As a concrete exam-
ple, a straightforward way to represent the meaning of “Jason traveled
to New York” could be with the logical form travel(jason, nyc). In
neo-Davidsonian semantics, this would instead be represented with

93

our approach

94

LANGUAGE MODULE

Possible axioms

Semantic parser output in theory

Without neo-Davidsonian

semantics, language
module performs entity

linking

book(c1),

9b(book(b) ™ write(alex, b)) write(alex, cy).

With neo-Davidsonian

book(c1), write(cs),

semantics, language 9b(book(b) ™ 9w(argl(w) = alex _

. . 7 argl(cp) = alex,
module performs entity Nwrite(w) N arg2(w) = b)) _
. arg2(cp) = c1q.
linking
With neo-Davidsonian book(c1), write(cs),

semantics, reasoning
module resolves named

entities

9a(name(a) = “Alex”
~9b(book(b) ™ 9w(argl(w) =a
Nwrite(w) N arg2(w) = b)))

name(cz) = “Alex”,
argl(cz) =cs,
arg2(cp) =cy.

Table 2: Design choices in the representation of the meaning of the sentence
“Alex wrote a book.” To avoid clutter, atoms that convey tense/aspect
information are omitted from the logical forms.

three distinct atoms: travel(cy), argl(ci) = jason, and arg2(c1) =
nyc. Here, 1 is a constant that represents the “traveling event,” whose
first argument is the constant representing Jason, and whose second
argument is the constant representing New York City. This represen-
tation allows the event to be more readily modified by other logical
expressions, such as in “Jason quickly traveled to NYC with my car
before nightfall.” Neo-Davidsonian semantics is not a full semantic
formalism in its own right, in that it does not prescribe a complete
logical form for the meaning of every sentence. Rather, it is a way to
represent events and actions (often expressed as verbs in natural lan-
guage) in a semantic formalism, where predicates are reified as objects
with properties. Table 2 illustrates the design choices in the represen-
tation of named entities and neo-Davidsonian semantics. Note that
in the subexpression of the logical form representing “Alex wrote a
book”:

Iw(argi(w)=a ™ write(w) ™ past(w) ™ arg2(w)=b),

the order of the conjuncts mirrors the order of the corresponding words
in the sentence: a is an entity named “Alex” and b is an instance of a
book.

Every inflected verb has a corresponding atom in the logical form
that indicates its tense and aspect. This atom always follows the atom
that declares the type of the event. In the above example, “wrote” is
in the simple past tense, which is represented as past(w) and immedi-
ately follows write(w). There are 12 predicates to convey tense-aspect:
one for every combination of tense (past, present, future) and aspect
(simple, perfect, progressive, and perfect progressive). For example

4.5 DOMAIN-GENERAL GRAMMAR AND SEMANTIC FORMALISM

future_perfect_progressive represents future tense and perfect
progressive aspect (e.g. “will have been writing”).

SEMANTIC VS SYNTACTIC HEAD: The syntactic head of a phrase is
the word that determines the syntactic category of that phrase. For
example, the head of the noun phrase “the apple that fell from the
tree” is “apple,” and the head of the adjectival phrase “exceedingly
bright” is “bright.” For any logical form representation of a natural
language phrase, we define the semantic head as the subexpression
within the logical form that corresponds to the syntactic head of the
phrase. Consider the example “Alex wrote a book.” It’s logical form is

9a(name(a)="Alex” ™ 9b(book(b)
N 9w(argi(w)=a ™ write(w) ™ past(w) ™ arg2(w)=Db))).

The syntactic head is “wrote” and the semantic head is the subex-
pression containing the existential quantification over w. In our new
semantic formalism, all logical forms have a semantic head. Observe
that the argument relations between the variables in the logical form
define a directed graph over the variables: Every variable corresponds
to a vertex, and every atom argl(x) =Yy and arg2(x) =Yy corresponds
to a labeled edge from X to y. In the above example, there are three
variables: a, b, and w; and two edges: an edge (w, a) labeled argi,
and an edge (w, b) labeled arg2. This scope graph is shown below:

w
[]
a b

The semantic head is identified as the source of this graph (i.e. the
vertex with no incoming edges). But this relationship does not extend
to the example “Alex wrote a book yesterday,” which has the logical
form

9a(name(a)="Alex” ™ 9b(book(b)
N 9w(argi(w)=a ™ write(w) ™ past(w) ™ arg2(w)=b
7 9y(yesterday(y) ™ argl(y)=w)))).
But the scope graph for this logical form is

y

Iargl
w
armgz
o

°
a b

95

96

LANGUAGE MODULE

This would imply that the semantic head is y, corresponding to “yes-
terday.” To avoid this, like AMR, we define inverses for the argument
functions: argl_of and arg2_of, where argl_of(a)=b if and only if
argl(b)=a. With these functions, we can rewrite the logical form for
“Alex wrote a book yesterday” as

9a(name(a)="Alex” ™ 9b(book(b)
N 9w(argl(w)=a ™ write(w) ™ past(w) ™ arg2(w)=b
7 9y(yesterday(y) ™ argl_of(w)=Y)))),

and the resulting scope graph is

y
°
argl_of
W
argl arg2
®
a b

The source vertex of the graph is w, which correctly corresponds to the
syntactic head of the sentence “wrote.”

In general, the following algorithm is used to find the semantic head,
starting with the root of the logical form:

1. Check if the current subexpression is the head:

« If the nonterminal is not a noun phrase, and the current subexpres-
sion is an existentially-quantified conjunction 9x(::: ™~ t(x) ™~ :::)
that contains an atom which declares the type of X, t(x), and tis not
a “special” predicate, and there is no term of the form arg1(*)=Xx,
arg2(x) =X, argl_of(x) =X, or arg2_of(*) =X, then return this
node as the head. “Special” predicates are argl, arg2, argl_of,
arg2_of, size, and any aspect-tense predicate.

e Ifthe nonterminal is a noun phrase, and the current expressionis a
declaration of a set: 9X(F(X) 7™ ::: ™M 9X(X(X) ™ Q(X))) or 9OX(F(X) ™
S ABX(X(X) T Q(X))) where F(X) is a definition of the set X,
then return this node as the head. Examples of set definitions are
X= X.cat(X) and subset(X, X.cat(x)).

2. If the current subexpression is not the head, then continue this
procedure recursively on the right-most child subexpression (i.e. if
this is a conjunction, repeat with the right-most operand; if this is
an if-then expression, repeat with the consequent; etc).

Observe that applying the above procedure to the example logical
forms for “Alex wrote a book” and “Alex wrote a book yesterday” will
correctly return the subexpression with the existential quantification
over W. The notion of the semantic head is useful since the semantic
transformation functions operate on the semantic head of the logical
form.

4.5 DOMAIN-GENERAL GRAMMAR AND SEMANTIC FORMALISM

After parsing a sentence into logical form, and before passing it
onto the reasoning module, PWL will convert these inverse argument
functions into their regular form: argl_of(a) =b is converted into
argl(b)=a, and arg2_of(a)=Db is converted into arg2(b)=a.

Another very important lesson learned from the experiments on
GeoQuEry and Joss is that the following is a very desirable property
of a grammar in this framework: For any natural language phrase y
and any nonterminal A 2 N, there is a one-to-one correspondence
between logical form meanings and derivation trees of y with root
N. That is, for any logical form interpretation X of a natural language
phrase y and for any nonterminal A 2 N, there is no more than one

derivation tree with root N of that phrase y with that logical form x.

Under this property, there is no ambiguity in derivations given the
logical form and nonterminal. A consequence of this property is that
during parsing, once the algorithm has found a logical form parse
for a given phrase and nonterminal, we would guaranteed that there

are no other derivations of that phrase that has the same logical form.

This has the effect of greatly reducing the number of search states
that the parser has to visit, increasing the performance of the parser
overall. One common source of ambiguity that violates this property
arises from production rules that combine adjuncts. Consider the
following example production rules (omitting semantic transformation
functions):

NP T NP PP, NP T ADJP NP.

And consider the phrase “yellow book on the desk.” With the above
grammar, the unique derivation property would be violated since there
are two ambiguous derivations for the same logical form:

NP NP
1 S —
ADJP NP NP PP
\ ——— 1 \
“yellow” N‘ P PP ADJP NP “on the desk”
“book” “on the desk” “yellow” “book”

To avoid this ambiguity, the nonterminal NP can instead be split
into two: NP|_and NPR. The nonterminal NP, is given the production
rules for the left adjuncts, whereas the nonterminal NPy is given the
production rules for the right adjuncts:

NPr ¥ NPy PP, NPg ¥ NP, NP, ¥ ADJP NP.

With these modified production rules, “yellow book on the desk” is
no longer ambiguous:

97

98

LANGUAGE MODULE

NPgr

f—lﬁ
NPg PP

\
NP, “on the desk”

—
AD‘JP NP,
\

“yellow” “book”

In the grammar implemented by PWL, we similarly split the nonter-
minals for verb phrases, noun phrases, adjectival phrases, and adver-
bial phrases into “left” and “right” counterparts. We also added code
in our parser to detect when a duplicate logical form is found for any
nonterminal and span of the sentence. This facilitates debugging the
inverse semantic transformation functions and maintains the perfor-
mance of the parser by avoiding unintentionally increasing the size of
the parser’s search space.

We designed the production rules of the grammar following many
of the ideas of Huddleston and Pullum (2002). Our semantic grammar
framework enabled us to look to the rich literature in the field of for-
mal semantics and incorporate ideas thereof into the grammar, such as
neo-Davidsonian semantics. As another example, consider the phrase
“two cups of water.” Rothstein (2010) posits that there are two interpre-
tations: The first interpretation is a quantity of water whose volume
is equal to roughly 473.18 milliliters. The second interpretation is two
containers with handles, each filled with water. Note that in the first
interpretation, the water may all be inside a single container, whereas
in the second interpretation, the total volume of the water may be very
different from 473.18 milliliters if the cups are especially small or large.
The first interpretation is known as the “measure” reading, and the
second is known as the “count” reading. In our logical formalism, the
two readings are shown for the sentence “I drank two cups”:

9c(cup_unit(c) ™ 9IM(measure(m) ™ argi(m)=2 ™ arg2(m)=c
N 9d(argi(d)=me ™ drink(d) ™ past(d) ™ arg2(d) = m))),
9C(C= c.cup(c) ™ size(C)=2 ™ 8c(C(c)
¥ 9d(argi(d)=me ™ drink(d) ™ past(d) ™ arg2(d) = ¢))).

In our grammar, the count reading is always available for noun phrases
that contain a non-negative integer followed by a nominal. To allow
for the other reading, we added a production rule to our grammar
NP T Q NOMINALg (semantic transformation functions not shown)
that requires the input logical form have a measure event at the head,
the first argument of this event is passed to the first child (Q) and the
second argument is passed to the second child (NOMINALR).

The predicate same represents the meaning of the verb “to be,” in-
dicating the equivalence of two objects, such as in “Pennsylvania is a
state.” After parsing sentences into logical forms, and before giving

4.5 DOMAIN-GENERAL GRAMMAR AND SEMANTIC FORMALISM

them to the reasoning module, PWL simplifies expressions of the form
IX(same(x) ™ argl(X)=a ™ arg2(x)=Db) into a=b. The order of the
conjuncts inside the 9x does not matter.

The passive voice is represented using a higher order predicate in-
verse, such as in the logical form for “A book was written by Alex:”

9b(book(b) ™ 9a(name(a)="Alex” ™ 9w(argli(w)=Db
N Hdnverse(write)(w) ™ past(w) ™ arg2(w)=a))).

This allows us to maintain argl as the indicator of the subject of the
verb, and arg2 as the indicator of the object of the verb, thereby allevi-
ating the need for additional production rules in the grammar. After
parsing, PWL simplifies expressions of the form 9x(inverse(f)(x) ™
argl(xX)=a ™ arg2(x)=Db) into IX(f(x) ™ arg2(xX)=a ™ argl(x)=Db),
swapping the arguments. The order of the conjuncts or the presence
of additional conjuncts inside the 9x does not matter. So in the above
logical form for “A book was written by Alex,” the logical form would
be simplified into:

9b(book(b) ™ 9a(name(a)="Alex”
N 9w(arg2(w)=b ™ write(w) ™ past(w) ™ argl(w)=a))).

Our new grammar is available at github.com/asaparov/PWL/blob/
main/english.gram.

4.5.1 Intra-sentential coreference

Anaphora is widely prevalent in natural language, and wide-coverage
parsing requires a way to resolve anaphora. However, since PWM
makes the assumption that each sentence is context-independent (the
sentences are conditionally independent given the theory), it is not
possible to correctly model cross-sentential anaphora. In order to do
so, we would need a model of context, which we propose in section 4.7
along with other future work. But for the sake of rapid prototyping, we
instead use a simpler model of anaphora, which we present as follows.

As with named entity linking, the language module of PWL does
not perform coreference/anaphora resolution. Rather, anaphora are
semantically interpreted as objects with special types: ref (“it”), fe-
male_ref (“she” and “her”), male_ref (“he” and “him”),and plural_
ref (“they” and “them”). For example, the logical form of “He saw
her” is represented as

9a(male_ref(a) ™ 9b(female_ref(b)
N 9s(argl(s)=a ™ see(s) ™ past(s) ™ arg2(s)=h))).

If this logical form were directly given to the reasoning module, the
variables a and b could be instantiated as any constant in the theory,

99

https://github.com/asaparov/PWL/blob/main/english.gram
https://github.com/asaparov/PWL/blob/main/english.gram

100

LANGUAGE MODULE

regardless of how recently that constant is mentioned in the sequence
of sentences. In natural language, anaphora are much more likely
to bind to more recently mentioned entities. Therefore, in order to
incorporate this strong recency preference in anaphora binding, we
alter the generative process of PWM slightly: Each logical form X;
is generated in the same way as before. These logical forms do not
have any special anaphoric types (i.e. ref, female_ref, male_ref,
etc). Rather than proceeding to generate sentences directly from these
logical forms Xj, we introduce an intermediate step, where for each X;j,
a new logical form X! is generated where some variables are replaced
by new existentially quantified variables with anaphoric types. The
sentences Y; are then generated from these new logical forms XiO. As
an example, consider the non-anaphoric logical form X;

8p(planet(p) ™ 9s(star(s)
N 9n(argi(n)=p ™ near(n) ™ arg2(n) =5s))
¥ 9h(argi(h)=p ” hot(h))). (94)

The intermediate (anaphoric) logical form x! could remain unchanged,
or it could introduce anaphora. If unchanged, the resulting sentence
could be something like “Every planet near a star is hot,” or “Every
planet that is near a star is hot.” If anaphora is introduced, an example
intermediate logical form x{ is

Ip(planet(p) ™ 9s(star(s)
N 9n(argli(n)=p ™ near(n) ™ arg2(n) =5s)))
¥ Or(ref(r) ™ 9nh(argi(h)=r ™ hot(h))), (95)

which could result in a sentence such as “If a planet is near a star, it
is hot.” Notice the quantifier 8p was changed into 9p as it was moved
from the root scope into the scope of the antecedent (the left side of
¥). This is due to the fact that under classical logic, 8x(f(x) ¥ @) is
equivalent to (9x.f(x)) ¥ g. But the quantifier is unchanged if moved
into the consequent. Similarly, the quantifier is changed if it is moved
into a negation: 9X.:f(X) is equivalent to -8x.f(x). The conditional
probability of the anaphoric logical form, given the non-anaphoric
logical form, is
8 9
< > =
PO{ixi) 7 exp _ - distx;(a) _ (96)
- a2anaphora(x}) z
where the sum is taken over variables with anaphoric types (in the
example logical form in equation 95, there is only one such variable:
r), and disty,(a) is the “distance” between the anaphora and the ref-
erent scope. This distance is defined as follows: create a sorted list
of non-event variables according to the prefix ordering of variables
in the logical form x!. The distance between an anaphoric variable

4.5 DOMAIN-GENERAL GRAMMAR AND SEMANTIC FORMALISM

and its referent variable is simply the distance of the variables in the
sorted list. For example, in the logical form in equation 95, the sorted
list of non-event variables is: p, s, and r. The distance between the
anaphoric variable r and its referent p is disty;(r) = 2. Since our
logical formalism was designed so that the order of the elements in
the logical form closely mirrors the order of the corresponding tokens
in the sentence, this notion of distance between elements in the log-
ical form corresponds closely to the notion of distance between the
corresponding tokens in the sentence. While this simple conditional
distribution incorporates the fact about anaphora binding that more
recently mentioned referents are preferred, it ignores other known
principles of binding theory in linguistics, such as the fact that subject
entities are more likely to be referents than object entities (“planet” vs
“star” in the above example). We suggest a different model as future
work in section 4.7 that could better incorporate such principles into
the model.

During inference, PWL effectively performs the inverse of the gener-
ative process: first parse the sentence y; into the top-k values of the
anaphoric logical form x{, then for each of the top-k logical forms, re-
solve the anaphora to produce the top-k® values of the non-anaphoric
logical form X;. These non-anaphoric logical forms X; are then given
to the reasoning module.

4.5.2 Data structure for sets of logical forms

The algorithms in section 4.3 operate over sets of logical forms. Some of
these sets can be infinite. The starting search state for these algorithms
is often the set of all logical forms. Thus, it is not feasible to represent
each set as a list of logical forms. A memory-efficient data structure
to represent sets of logical form is needed, which we present in this
section.

This data structure needs to implement the set intersection operation:
given two sets of logical forms X and Y, compute X\ Y. In addition, the
semantic transformation functions, their inverses, and semantic feature
functions work with logical form sets, and so the data structure must
also provide the operations needed by the implementations thereof.
Many of the semantic transformation functions in our new grammar,
as well as exclude_features as discussed in section 4.1.4, require
the set difference operation: given two sets of logical form X and Y,
compute XnY. Recall that the parser relies on a subroutine to compute
f=1(X) \ Y where f is a semantic transformation function, f~1(X) =
fx : f(x) 2 Xy is its inverse, and X and Y are sets of logical forms (see
line 20 in algorithm g). This subroutine, as well as the set intersection
operation, is permitted to return a list of sets that represents their
union: F"Y(X)\Y = Z1 [::: [Z,. These sets Z1,:::,Z, should be
disjoint, since otherwise it is possible for the parser to visit search

101

102

LANGUAGE MODULE

states more than once and can lead to wasted computation. We will
show that the set difference operation helps to ensure that the output
of set intersection is disjoint: Z1, (Z2NnZ1),::;, (ZrnZin:iinZe_1).
The core of our data structure is actually identical to that for a single-
ton logical form in higher-order logic, and is shown below in algorithm
13 in a pseudo-programming language with subtyping polymorphism.

Algorithm 13: Pseudocode for standard data structure representing a
higher-order logic formula.

1 class hol_term

20 class hol_lambda extends hol_term

/* supertype that represents the 21 | [ntvariable
higher-order formula x/ 22 | hol_term operand
2 class hol_not extends hol_term 23 class hol_application extends hol_term

3 L hol_term operand

4 class hol_if_then extends hol_term
5 | hol_termantecedent
hol_term consequent 26 class hol_true extends hol_term

7 class hol_equals extends hol_term
8 Lhol_termleft

hol_termright

24 | hol_term function
25 | array<hol_term> arguments

L/* subtype representing > x/

27 class hol_false extends hol_term
L/* subtype representing ? x/

10 class hol_and extends hol_term 28 class hol_variable extends hol_term
11 L array<hol_term> operands 29 L int variable
12 class hol_or extends hol_term 30 class hol_constant extends hol_term
13 L array<hol_term> operands 31 L int constant

14 class hol_for_all extends hol_term 32 class hol_string extends hol_term

15 L int variable

17 class hol_exists extends hol_term

18 L int variable

hol_term operand

33 L string str

34 class hol_number extends hol_term
35 L number num

hol_term operand

Each logical form is an instance of the type hol_term. To extend this
to represent sets of logical forms, we add a new “wildcard” subtype
hol_any_right:

36 class hol_any_right extends hol_term
37 | hol_term? included /* can be null */
38 | array<hol_term> excluded

This structure represents the set of all higher-order expressions,
which are not elements of any excluded set, and have a subexpres-
sion in the right-most path which is an element of the logical form
set corresponding to the field included (the right-most path of an ex-
pression tree is the set of nodes visited by starting from the root and
walking to the right-most child at each node). To be precise, if X is a log-
ical form, r(x) is the right-most child node of X (i.e. if X = X1 ™ ::: ™ Xn
is a conjunction, r(X) = Xn is the right-most operand; if X = x1 ¥ x>
is an if-then expression, r(x) = X, is the consequent subexpression; if
X = 8y.Ais a quantified expression, r(x) = A is the quantificand; etc).

/* a function application (e.g. argl(x)) =/

4.5 DOMAIN-GENERAL GRAMMAR AND SEMANTIC FORMALISM

Define Sg as the right-most path in the expression tree of x. That is,
the smallest set such that:

X 2 Sr(X), the root node is an element of Sgr(X), (97)
and for any n 2 Sr(x), r(n) 2 Sr(x). (98)

Then for any logical form set X, define R(X) as the set of all logical forms
that have a subexpression in the right-most path that is an element of
X:

R(X) , fX:9n 2 Sg(X) such that n 2 Xg. (99)

With this notation, we can precisely define the semantics of the hol_
any_right structure: let X be the logical form set that corresponds
to the included field, and Y1,:::,Yn be the logical form sets corre-
sponding to the excluded field. Then, the hol_any_right structure
represents the set of logical forms

RX)n(Y1L:::LYn). (100)

Note that included can be null, in which case the structure represents
the set of logical forms

n(YeL:::LYn), (101)

where is the set of all logical forms. So if both included is null
and excluded is empty, then the data structure represents the uncon-
strained set of all logical forms . We require that included is not a
subset of the excluded sets (i.e. R(X) * Y1 [::: [Yn), since otherwise
the resulting set would be empty. We also require that no excluded
set is superfluous (i.e. Yi \ R(X) is not empty for all).

Since hol_any_right is a subtype of hol_term, it can appear as a
subexpression within larger expressions. For example, the expression

9b(book(b) ™ R(OW(write(w) ™ past(w) ™ arg2(w)=Db)))

represents the set of all logical forms that look like 9b(book(b) ™
::1) where the ::: is any logical form that contains the subexpression
Ow(write(w) ™ past(w) ™ arg2(w)=Db)) in its right-most path. As
another example, R(a) ™ R(3) is the set of all logical forms with a
binary conjunction at the root, where the left child is any logical form
with the constant a as its right-most descendant node, and the right
child is any logical form with the number 3 as its right-most descendant
node.

The hol_any_right structure was chosen to reflect the fact that the
semantic head of a logical form in our new formalism is a subexpres-
sion in the right-most path of the expression tree. Recall that the
semantic transformation functions in our grammar operate on the se-
mantic head of the input logical form. So we can use hol_any_right

103

104 LANGUAGE MODULE

Algorithm 14: Pseudocode to compute the set intersection of two logical
form sets, each represented by the hol_term data structure.

1 function set_intersect(hol_termX, hol_termY)

if X has type hol_any_right

‘ return set_intersect_any_right(X, Y)

else if Y has type hol_any_right

‘ return set_intersect_any_right(Y, X)

else if X and Y have different types return empty list

L is an empty list

if X has type hol_not
[Z1,:::,ZRn] = set_intersect(X.operand,Y .operand)
fori=1,:::,ndo L.add(:Z;)

else if X has type hol_1if_then
[ZL, T Zh] = set_intersect(X.antecedent,Y.antecedent)
[ZR,:::,ZR] = set_intersect(X.consequent,Y.consequent)
fori=1,:::,ndo

Lforj=1,:::,mdo L.add(z: ¥ ZJ-R)

NV O N oW N

[e e
a A W N B O

16 | else if X has type hol_equals

17 [ZL,:::,Zh] = set_intersect(X.left,Y.left)

18 [ZR, i Zar] = set_intersect(X.right,Y.right)
19 fori=1:::,ndo

20 Lforj=1,:::,mdo L.add(ZiLZZJ-R)

21 | else if X has type hol_and or hol_or

22 if X.operands. length & Y.operands. length return empty list

23 let N be X.operands.length

24 fori=1,:::,Ndo

25 L [Zi Sl Z,i,,i] = set_intersect(X.operands[i],Y.operands[i])

26 for f(iy,::1,in) 11j 211,110, njgg do
27 LithastypehoZ_and L.add(Zill":::"ZE\"\l)

28 if X has type hol__or L.add(Z{ _:::_Z]N)

29 | elseif X has type hol_for_all or hol_exists or hol_lambda

30 if X.operands.variable & Y.operands.variable return empty list
31 [Z1,:::,ZRn] = set_intersect(X.operand,Y .operand)

32 fori=1:::,ndo

33 let X be X.operands.variable

34 if X has type hol_for_all L.add(8x.Z;)

35 if X has type hol_exists L.add(9x.Z;)

36 if X has type hol_lambda L.add(x.Zj)

37 | elseif X has type hol_func_application

38 if X. arguments. length & Y.arguments. length return empty list

39 [ZO, T Z%] = set_intersect(X.function,Y.function)

40 let N be X.arguments.length

41 fori=1,:::,Ndo

42 L [Zi i :,Zini] = set_intersect(X.arguments[i],Y.arguments[i])
43 for f(iy,::1,in) 11j 21,110, njg0 do

44 Lforizl,:::,ndo L.add(Z?(Zill,:::,ZE\I'\'))

45 | elseif X has type hol_true L.add(>)

46 | elseif X has type hol_false L.add(?)

47 | elseif X has type hol_variable and X.variable =Y.variable
28 | | L.add(X)

49 | else if X has type hol_constant and X.constant =Y. constant
50| | L.add(X)

51 | elseif X has type hol_string and X.str =Y.str

52| | L.add(X)

53 | else if X has type hol_number and X.num =Y . num

54 L L.add(X)

55 | return L

4.5 DOMAIN-GENERAL GRAMMAR AND SEMANTIC FORMALISM

to specify the semantic head of logical forms in a set, even when there
are no constraints on other parts of the logical form in that set. This
is related to the more general fact that the data structure design for
logical form sets is intimately linked to the design of the semantic
transformation functions of the grammar, and therefore, the design of
the logical formalism.

SET INTERSECTION: With the above data structure, our algorithm
for computing the set intersection of any two sets of logical forms is
shown in algorithm 14. In this algorithm, the loop over f(iq,:::,iN) :
ij 2 f1,:::,njg on lines 26 and 43 is a loop over all tuples (iy,:::,in)

such that for each j, ij is an integer between 1 and nj inclusive (i.e.

the Cartesian product f1,:::,n19 fl,:::,npg ::0 fl i, nNg). If
either of the two input logical form sets have type hol_any_right, it
calls the helper function set_intersect_any_right, which is shown
in algorithm 15.

The correctness of set_intersect_any_right in the case where Y
has type hol_any_right (on lines 4-18 in algorithm 15) relies on the
following fact:

Thm 2. Given any sets of logical forms AX, BX AY, and BY,

(RAXNBX)\ (R(A")nBY)
= (R \RA")n (B [B")) L (R(A" \RAX))n(B* [B")).

Proof. Note that

RAXNBX)\ (R(AY)nBY) = R(AX)\R(AY) \ BX\ BY,
= (R(A")\R(AY))n (B* [BY).

Soitwill suffice to show that R(AX) \R(AY) = R(AX\R(AY)) [R(A" \
R(AX)).

Take any X 2 R(AX) \ R(AY). By definition, there is a subtree a 2
Sr(X) such that a 2 AX and there is a subtree b 2 Sr(x) such that
b 2 AY. There are two cases: a 2 Sg(b) or b 2 Sg(a).

1. If a 2 Sr(b), then b 2 R(AX), and therefore, b 2 AY \ R(AX)
which implies x 2 R(AY \ R(AX)).

2. If instead b 2 Sg(a), then a 2 R(AY), and therefore, a 2 AX\
R(AY) which implies x 2 R(AX \ R(AY)).

We conclude that R(AX) \R(AY) R(AX\R(AY)) [R(AY \ R(AX)).
To show the other direction, take any x 2 R(AX\ R(AY)) [R(AY \
R(AX)).

1. In the first case, x 2 R(A* \ R(AY)), which means there is a
subtree a 2 Sr(x) such that a 2 AX\ R(AY). This implies that
X 2 R(AX), and that there is a subtree b 2 Sg(a) such thatb 2 AY.
By definition, b is also a member of Sr(X), and so x 2 R(AY).

105

106 LANGUAGE MODULE

Algorithm 15: Helper function for computing the intersection of two sets
of logical forms, where X has type hol_any_right.

1 function set_intersect_any_right(hol_any_right X, hol_termY)
2 | Lisan empty list
3 | let R(AX)n (B>1([L B)rﬁ) be the set represented by X
4 | ifY has type hol_any_right
5 letR(AY)n (BI [L qu) be the set represented by Y
if AX =AY
if R(AX) Bi([:::[BXL BI [:::[B) return empty list
Lreturn RAX) NGB L [BXLBY [::: [BY)]
9 [Z1,:::,2Zs] = set_intersect_any_right (R(AX),AY)
10 [Wy,:::,We] = set_intersect_any_right (R(AY), AX)
11 fori=1,:::,sdo

N O

12 if R(Zi) BYL:::[BXLBYL[:::[B), continue

13 | L.add(R(Zi)n(BY [::: [BY[BY [:::[BY))

14 fori=1:::,tdo

15 if RW;) BYL:::I[BXIBY [:::[B% L[RZ1)L:::[R(Zs)

16 Lcontinue

17 | L.add(R(Wi)n(BY [::: [BRLBY [::: [Bf [R(Z1) [::: [R(Zs)))
18 return L

19 | let Kbe a list initially containing only Y

20 | fori=1,:::,ndo
21 K is an empty list
22 for each Y' in K do

23| | | K .add_all(set_subtract(Y’,B}))
24 setK =K

25 | foreach Y'in K do
26 if YO has type hol_not

27 [Z1,:::,Zs] = set_intersect_any_right (R(AX),Y".operand)
28 fori=1,:::,sdo L.add(:Z;)

29 [Wq,:::,Ws] = set_intersect(AX, YO)

30 fori=1,:::,sdo

31 WY, ,Wto] = set_subtract(W;j.operand, R(AX))

32 forj=1,:::,tdo L.add(:WjO)

33 else if Y has type hol_if_then

34 [Z1,:::,Zs] = set_intersect_any_r'ight(R(Ax), Yo, consequent)
35 fori=1,:::,5do L.add(Y'.antecedent 1 Zi)

36 [W1,:::, Ws] = set_intersect (AX, Y0y

37 fori=1,:::,sdo

38 WY, ,Wto] = set_subtract(W;j.consequent, R(AX))

39 Lforj=1,:::,tdo L.add(Y".antecedent ¥ WJ-U)

40 else if Y" has type hol_equals

41 [Z1,:::,Zs] = set_'intersect_any_r‘ight(R(AX), Yo, right)

42 fori=1,:::,sdo L.add(YO.leftZZi)

43 [Wq,:::,Ws] = set_intersect(AX,Y")

44 fori=1,:::,sdo

ENEEN
o w»n

forj=1,:::,tdo L.add(Y'.left :WJ-O)

L WY, ,Wto] = set_subtract(W;.right, R(AX))

4.5 DOMAIN-GENERAL GRAMMAR AND SEMANTIC FORMALISM

Algorithm 15: (continued)

47
48
49
50
51
52

53
54
55
56
57
58

59

60
61
62
63
64
65
66

67
68
69
70
71
72

73

74

76
77
78

79
80
81
82
83
84

85

86

87

else if Y" has type hol_and or hol_or
let [YE, T Y,O\I] be the operands of Yo
[Z1,:::,Zs] = set_intersect_any_r'ight(R(AX), YIO\|)
fori=1,:::,sdo
if YO has type hol_and L.add(Y! ~:i:n~YY N Zh)
| if YO has type hol_or L.add (Y] _::: Y\, _Zj)
[Wq,:::,Ws] = set_i ntersect (A%, Y")
fori=1,:::,sdo
let [Sq,:::,SN] be the operands of W;
W2, ,WE] = set_subtract(Sn, R(AX))
forj=1,:::,tdo
if YO has type hol_and L.add(Y! ™Yl ’\WJ-O)
if YO has type hol_or L.add(Yg_: : :_Y,O\I_l_WjO)

else if Y! has type hol_for_all or hol_exists or hol_lambda
let xbe Y. variable
[Z1,::1,Zs] = set_intersect_any_right (R(AX),Y . operand)
fori=1,:::,sdo
if Y has type hol_for_all L.add(8x.Z;)
if Y has type hol_exists L.add(9x.Z;)
if Y0 has type hol_lambda L.add(x.Z;)

[W1,:::,Ws] = set_i ntersect (AX,Y?)
fori=1,:::,sdo
[WE, T ,Wg] = set_subtract(W;j.operand, R(AX))
forj=1,:::,tdo
if Y? has type hol_for_all L.add(8x.W/)
if YO has type hol_exists L.add(9x.Wj0)

if YO has type hol_lambda L.add(x.WJ-O)

else if Y° has type hol_func_application
let F be the function of Y and [YE, L ,Y,O\l] be the arguments of y?
[Z1,::1,Zs] = set_intersect_any_right (R(AX), Ylo\l)
fori=1,:::,sdo
| L.add(F(YS, 000, YR _0, Zi))
[Wq,:::,Wg] = set_i ntersect (A%, Y")
fori=1,:::,sdo
let Q be the function of W; and [S1,:::, SN] be the arguments of W;
W2, ,Wg] = set_subtract(Sn, R(AX))
forj=1,:::,tdo
LL.add(Q(YU, o :,Y,U\,_l,WjO))

else if Y has type hol_true or hol_false or hol_variable
or hol_constant or hol_string or hol_number
L L.add_all(set_intersect (AX, YO))

return L

107

108

LANGUAGE MODULE

2. In the second case, x 2 R(AY \ R(AX)), which means there is a
subtree b 2 Sr(X) such that b 2 AY \ R(AX). This implies that
x 2 R(AY), and that there is a subtree a 2 Sg(b) such thata 2 AX.
By definition, a is also a member of Sr(X), and so X 2 R(AX).

We conclude that R(AX\R(AY)) [R(AY \R(AX)) R(AX)\R(AY).
By double containment, the two sets are equivalent.

SET DIFFERENCE: Observe that the helper function set_intersect_
any_right relies on the set difference operation (via calls to set_
subtract). Our algorithm for computing the set difference is shown
in algorithm 16.

Just as with set_intersect, set_subtract also relies on a helper
function set_subtract_any_right to handle the case where Y has
type hol_any_right. This helper function is shown in algorithm 17.

The correctness of set_subtract in the case where both X and Y
have type hol_any_right (lines 5-16 in algorithm 16) relies on the
following observation: Let X and Y be written X = R(AX)n (B>l(L L
BX)and Y =R(AY)n(BY [::: [BY). Then:

(R(Ax)\ L:J B§<> \ (R(AY)\ Q BiY>, (102)

=R(A\ E?\ (R(AY) \N B?),
i=1

=1

=R\ (B \ <R(AY) [lJsY)
i=1

i=1

= (R(Ax) \R(AV)\ (n] B?‘) L "’ (R(AX) \ B \QB}()

i=1 i=1

. (R(AX)\ <R(AY) tU BX>) [UJ®R@9NED\ (B}
i=1 i=1 j=1

SET sUBSET: The last remaining set operation to complete the above
algorithms is set subset. This operation is required by set_intersect_
any_right (lines 12 and 15 in algorithm 15) and set_subtract (lines
7 and 18 in algorithm 16). To compute whether a set A is a subset of
B1 [::: [Bn, werely on the factthat A (B1 [::: [Bn) if and only if
An(Bi[:::[Bn) =AnBin:::nBp = ?, and so we can apply set_
subtract to implement the set subset operation for most inputs of A
and B. However, this approach is insufficient when A has type hol_
any_right, since set_subtract invokes the set subset operation on
lines 7 and 18 in algorithm 16. To develop an algorithm to compute
the subset operation in the case where A has type hol_any_right, we
first prove a number of useful necessary and sufficient conditions for
a set to be a subset of a union of sets.

4.5 DOMAIN-GENERAL GRAMMAR AND SEMANTIC FORMALISM

Algorithm 16: Pseudocode to compute the set difference of two logical
form sets, each represented by the hol_term data structure.

1 function set_subtract(hol_term X, hol_termY)

2
3
4
5
6
7

10
11
12

14
15

16
17
18
19

20
21
22
23
24
25
26
27
28

42
43
44
45

46
47
48
49
50

52

L is an empty list
if X has type hol_any_right
let RGAX) n (Bi([::: [BX) be the set represented by X
if Y has type hol_any_right
let R(AY) n (BI [::: [BY,) be the set represented by Y
if R(AX) > (BY [::: [BX [R(AY))
| L.add (RAX)n(BY [::: [BX [RAY)))
fori=1,:::,;mdo
K = set_intersect_any_right (R(AX), B}()
forj=1,:::,ndo
K is an empty list
foreach K'in Kdo L .add_all(subtract (K", BJ?())
set K=K

L L.add_all(K)

return L
else

ifR(AX) B [:::[BXLY returnempty list
| else return R(AX)n (B)l([:::[BXLY)

else if Y has type hol_any_right

‘ return set_subtract_any_right(X,Y)

else if X and Y have different types return X

if X has type hol_not

[Z1,:::,Zn] = set_subtract(X.operand,Y.operand)
fori=1:::,ndo L.add(:Z;)

else if X has type hol_if_then

[ZL, . ,Zh] = set_subtract(X.antecedent,Y.antecedent)
let XR be X.consequent

fori=1,:::,ndo L.add(Z} ¥ Xg)

[ZY,:::,Z5] = set_intersect(X.antecedent, Y .antecedent)
[ZR,:: :,Zar] = set_subtract(X.consequent,Y.consequent)
fori=1,:::,ndo

| forj=1::1,mdo L.add(Z[¥ Z}))

else if X has type hol_equals

[ZL, N ,Zh] = set_subtract(X.left,Y.left)
let XR be X.right

fori=1,:::,ndo L.add(Z} = XR)

[ZL, T ,Zlﬁ] = set_intersect(X.left,Y.left)
[ZR, N ,Z,Rn] = set_subtract(X.right,Y.right)
fori=1,:::,ndo

Lforj =1,:::,mdo L.add(Z} =ZJ-R)

else if X has type hol_and or hol_or
let [X1,:::,XNn] be X. operands
fori=1,:::,N-1do
L[Z' ,115,Z4, 1 = set_intersect(X.operands[i],Y.operands[i])
fori=1,:::,Ndo
W], 0, Wh,] = set_subtract(X.operands[i],Y.operands[i])
for f(ky, 1 ki) i ki 21,0, mjgand Ky 2 f1, .01, njg for j < ig do
if X has type hol_and
‘ L.add(Z&l’\:::’\Z"<lll’\Wl'(i AXir1 N XN
else if X has type hol_or
LL-add(Zﬁl_iii_ng}l_Wfﬁ_Xi+1_111_XN)

109

110 LANGUAGE MODULE

Algorithm 16: (continued)

53 | else if X has type hol_for_all or hol_exists or hol_lambda

54 if X.operands.variable & Y.operands.variable return X
55 [Z1,:::,Zn] = set_subtract(X.operand,Y.operand)

56 fori=1:::,ndo

57 let X be X.operands.variable

58 if X has type hol_for_all L.add(8x.Z;)

59 if X has type hol_exists L.add(9%x.Z;)

60 if X has type hol_lambda L.add(X.Zj)

61 | else if X has type hol_func_application

62 let [Xq,:::,XN] be X.arguments

63 [ZO, i Z%O = set_intersect(X. function,Y.function)
64 [WO, Lo ,W,Qno] = set_subtract(X. function,Y.function)
65 fori=1,:::,mgdo L.add(W?(Xl,:::,XN))

66 fori=1:::,N-1do

67 L[Zi o :,ZE1i = set_intersect(X.operands[i],Y.operands[i])
68 fori=1,:::,Ndo

69 [Wi, 11, W, 1= set_subtract(X.operands[i],Y.operands[i])
70 for f(ko, 1, Ki) t ki 211,10, mjgand kj 2 f1,:::, njg for j < ig do

71 LL.add(zgo(zﬁl,:::,z{;_ll,w‘i(i,xm,:::,xN)>

72 | else if X has type hol_true or hol_false return empty list

73 | else if X has type hol_variable and X.variable & Y.variable
74 \ L.add(X)

75 | else if X has type hol_constant and X.constant & Y.constant
76 ‘ L.add(X)

77 | elseif X has type hol_string and X.str & Y.str

78 ‘ L.add(X)

79 | else if X has type hol_number and X.num & Y . num

80 LL.add(X)

81 | return L

Lemma 1. For any logical form sets A, By, :::, Bn, each represented by
the hol_term data structure, if every B of type hol_any_right has no
excluded sets, then

R(A) Bi[:::[Bn ifandonlyif R(A) | JBi,
izl

where | , fi : Bj has type hol_any_righty is the set of indices i such that
Bi is of type hol_any_right.

Proof. The if direction is true for any sets, since [J;jo; Bi Ui Bi-

To show the only if direction, suppose to the contrary that R(A) *
Ui21 Bi, and so there exists a tree t 2 R(A) such that t 2 | J;5, Bi.
We will construct a new logical form t such that t 2 R(A) but
t 2 i1, Bi, which would be contradiction. Inspect each logical
form L(B;) that has type hol_for_all, and let X; be the declared vari-
able. There exists a new variable Xx where K > X; for all i, which is
undeclared by L(B;). Construct a new logical form t = 8xy.t, where
the root node of the expression tree has only one child t. Since t 2 R(A),

4.5 DOMAIN-GENERAL GRAMMAR AND SEMANTIC FORMALISM

Algorithm 17: Helper function to compute the set difference of two logical
form sets where Y has type hol_any_right.

/* precondition: X does not have type hol_any_right =/
1 function set_subtract_any_right(hol_term X, hol_any_rightY)
let R(A)n (B1 [::: [Bn) be the set represented by Y
[Z1,:::,Zm] = set_subtract (X, A)
L is an empty list
if X has type hol_not
[W1,:::,Ws] = set_subtract_any_right(X.operand,Y)
forf(i,j):i2fL,:::,mgand j 2 fl,:::,sy do
L [Z0 Lol Z% = set_intersect(Z; .operand,Wj)
fork=1,:::,tdo L.add(:Z})

O ©® N o0 A W N

10 | elseif X has type hol_1if_then
11 [W1,:::,Ws] = set_subtract_any_right(X.consequent,Y)
12 forf(i,j):i12f1,:::,;mgand j 2 f1,:::,sy do

13 let Z| be Zj.antecedent
14 [Z0 S Zg] = set_intersect(Zj.consequent, Wj)
15 fork=1,:::,tdo L.add(Z_ X ZIO()

16 | else if X has type hol_equals
17 [W1,:::,Ws] = set_subtract_any_right(X.right,Y)
18 forf(i,j):i2fl,:::,mgand j 2 fl,:::,sy do

19 let Z be Z;j.left
20 [Z0 i, Zg] = set_intersect(Z;j.right, Wj)
21 fork=1,:::,tdo L.add(Z =Z})

22 | else if X has type hol_and or hol_or

23 let N be X.operands.length

24 [W1,:::,Ws] = set_subtract_any_right(X.operands[N-1],Y)
25 forf(i,j):i2fL,::: , mgand j 2 fl,:::,sy9 do

26 let [Uq,:::,Un] be Zj.operands

27 [Z0 o :,Z%] = set_intersect(Un, Wj)

28 fork=1,:::,tdo

29 if X has type hol_and L.add(Uy ™ :::~NUn_1 N Z))
30 Lithustypehol_or L.add(Ul_:::_UN,l_ZP()

31 | elseif X has type hol_for_all or hol_exists or hol_lambda
32 [W1,:::,Ws] = set_subtract_any_right(X.operand,Y)
forf(i,j):i2fL,:::, mgand j 2 fl,:::,sy9 do

w
W

34 let X be the variable of Z;

35 [Z0 Sl Z%] = set_intersect(Z;j.operand, Wj)
36 fork=1,:::,tdo

37 if X has type hol_for_all L.add(8x.Z])

38 if X has type hol_exists L.add(9X.ZE<)

39 if X has type hol_lambda L.add(x.Z})

40 | else if X has type hol_func_application

41 let N be X.arguments.length

42 [Wq,:::, W] = set_subtract_any_right(X.arguments[N-1],Y)
43 forf(i,j):i2fl,:::,mgand j 2 fl,:::,sy do

44 let Fbe Zj.functionand let [Uq,:::,Un] be Zj.arguments
45 [Z0 o :,Zg] = set_intersect(Un, Wj)
46 fork=1,:::,tdo L.add(F(Uy,:::,Un_1,Z)))

47 | else if X has type hol_true or hol_false or hol_variable
or hol_constant or hol_string or hol_number
48 Lfori=1,:::,md0 L.add(Z;)

49 | return L

111

112 LANGUAGE MODULE

wehavet 2 R(A). Butsincet 2 L(B;j)foranyi,t 2 B;foranyi. As
such,t 2B; [U?:l Bj, which is a contradiction, and so we conclude

We generalize this result to the case where we remove the constraint
that all B of type hol_any_right have no excluded sets.

Thm 3. Let A, By, :::, Bn be logical form sets, each represented by the
hol_term data structure, and the Bj with type hol_any_right are written
Bi = R(Ui) n (Vil [N [Yimi)' Let | , fi : Bj has type hol_any_
rightqis the set of indices i such that Bj is of type hol_any_right. Define
Xi » RWi)and Yi , Vit Lt LYim; foralli 2 1, and X; , Bj and
Yi , Pforalli2]1.

R(A) U Bi ifand only if
i=1
R(A) | JXiand8f 2 F, <R(A)\ U xi> \fi=2>
izl i21 izl

where F , ff 1 f; 2 £X;,Yig where i 2 1 and =8i,fj = X;q is the set of all
sequences where each sequence T is defined over the indices i 2 1, and each
element T is either Xj or Y, excluding the sequence containing all Xj.

Proof. 1¥: In the if direction, since R(A) |Jj2; Xi, then by lemma 1,
R(A) U,n= 1 Xi. Next, we can re-write the union

O BiZ_LnJ Xil’lYi:-LnJ Xi \Y;
= Lnjxi\ﬂ <Ufi[Uxi)

i=1

Since for all f 2 F, (R(A) nU;2; Xi) \Ni2 fi = 2, the R(A) is disjoint
from the subtracted set, and therefore R(A) | JiL; Bi.

oNLY IF: Since R(A) UiL, Bi, it must be the case that R(A)
UiL; Xi and R(A) \ Usor (Nizr fi \Nizg Xi) = ?, which implies

SONUITa NI R

f2F izl i2l
8f 2 F,RAA)\[fi\[Xi="2,
izl i21
8f 2 F, (R(A)\ U xi> \fi="
i21 21

Also since R(A) UUjL; Xi, then by lemma 1, R(A) Uiz Xi-

4.5 DOMAIN-GENERAL GRAMMAR AND SEMANTIC FORMALISM

Lemma 2. For any sets A and B, R(A) R(B) ifand only if A R(B).

Proof. 1¥7: We wish to show thatif A R(B), thenR(A) R(B). Take
any element of R(A), t 2 R(A). By definition of R(), there exists a right
subtree t’ 2 Sg(t) such that t* 2 A. Thus, t’ 2 R(B) and so there exists
a right subtree t¥ 2 Sg(t%) such that t* 2 B. But since Sg(t") Sr(t),
tis also in R(B). We conclude that R(A) R(B).

oNLY 1F: Since A R(A)and R(A) R(B),A R(B).

Theorem 3 provides us with a way to compute whether alogical form
set R(A) is a subset of the union of logical form sets By [::: [Bn, where
R(A) has type hol_any_right and no excluded sets. The procedure
is as follows: Let I , fi : B has type hol_any_rightg be the set of
indices i such that B; is of type hol_any_right, and for these i 2 I, Bj
can be written B; = R(Uj) n (Vi1 L::: L Vim;)-

1. Check whether R(A) ;2 R(Ui). By lemma 2, this is equiva-
lent to checking A ;2 R(Uj). If not, return false.

2. LetF , ff: f; 2fR(U;i), n(Virt L:::[Vim;)y wherei 2 I and
28i, i = Xy be the set of all sequences where each sequence f
is defined over the indices i 2 I, and each element fj is either X;
orY;j, excluding the sequence containing all X;. For every f 2 F,
check whether (R(A) nU;2; Xi) \i2 fi = ?. If not, return
false.

3. Otherwise, return frue.

Theorem 3 cannot be extended to the case where the left-hand side
set R(A) is allowed to be any hol_term. One counter-example is: the
logical form set a ™ R(b), where a and b are constants, is a subset of
the union of a” (a_b) and R(a) ™ (R(b) n(a_b)). But at the same
time, a ™ R(b) is not a subset of a ™ (a__b) alone, and a ™ R(b) is not a
subset of R(a) ™ (R(b) n (a__b)) alone. Incidentally, we never run into
this case in any of our experiments, which suggests that under certain
conditions which are met during our experiments, it may be the case
that A By [:::[Bnifand onlyif A B; for some i. We leave it to
future work to identify these conditions if they exist.

Note that the worst-case computational complexity of the above
algorithms for computing set operations is very high. In the subset
operation above, the sequence F has length 2K where k is the number of
sets Bj that have type hol_any_right. In set_intersect (algorithm
14), in the case where the input set X has type hol_and, hol_or, or
hol_func_application, onlines26and 43, the algorithm iterates over
tuples of a Cartesian product, which can be very large. For instance,
if X has type hol_and with N operands, and the recursive calls to
set_intersect for each operand returned M sets, then the loop on
line 26 would iterate over MN tuples, and the function could return
a list of MN sets. However, we find that in practice, for the vast

113

114

LANGUAGE MODULE

majority of inputs during our experiments, the set operations return
a single set (i.e. M = 1), which avoids the exponential blowup. In
our implementation, we made an effort to avoid creating new sets
unnecessarily. For example, if set_intersect returns either of its
input sets (X or Y), instead of returning a copy, our implementation
returns a pointer to the set. This enables optimizations throughout the
code where we can compare whether two sets are equivalent first by
checking whether their pointers are the same. Another optimization
that we use is for commonly-used sets, such as , we define a global
variable that can be re-used (e.g. HOL_ANY for) to avoid the overhead
of creating the structure each time we need it. We do the same for
other common logical forms, such as >, ?, the number 0, etc.

In addition, observe that the above representation for sets of logical
forms is closed under the set intersection and difference operations: For
any input logical form sets, represented by hol_term, their intersec-
tion and difference is a union of sets, each representable by hol_term.
This is a desirable property for a data structure for sets of logical forms.
However, we will show later that this property is not necessary, so long
as the semantic transformation functions in the grammar avoid set op-
erations that would produce logical forms that cannot be represented
by the data structure.

CONJUNCTIONS AND DISJUNCTIONS WITH UNFIXED LENGTH:
Many semantic transformation functions in our grammar operate on
conjunctions and disjunctions of any length. For example, the transfor-
mation function select_left_conjunct selects two conjuncts from
the head scope of the input logical form: (1) the left-most operand,
and (2) the operand declaring the type of the head variable. Given the
input logical form:

9b(book(b)
N 9w(argl(w)=me ™ write(w) ™ past(w) ™ arg2(w)=Db))),

which represents the meaning of “I wrote a book,” select_left_
conjunct produces the output logical form:

Iw(write(w) ™ argl(w)=me)).

The head scope in the above input logical form is 9w(:::). But the
function select_left_conjunct is not only limited to conjunctions
with 4 operands as in the case above. As a result, it is impossible to
properly implement the inverse of this transformation function using

4.5 DOMAIN-GENERAL GRAMMAR AND SEMANTIC FORMALISM

the hol_term data structure defined thus far, since hol_and has a fixed
length. To fix this, we introduce a new subtype of hol_term:

39 enum hol_array_operator 43 class hol_any_array extends hol_term
40 | AND, 44 | hol_array_operator operator

41 | OR, 45 | hol_termall

42 | EITHER /* AND or OR x/ 46 | array<hol_term> left

47 | array<hol_term> right
48 | array<hol_term> any

This hol_any_array structure represents the set of all conjunctions
or disjunctions that satisfy the following properties:

1. If the operator field is AND, the expression is a conjunction. If
the operator field is OR, the expression is a disjunction.

2. Let aj be the i*" operand of the conjunction/disjunction.

a) Let A be the logical form set represented by the all field.
Foralli, a; 2 A.

b) Let(Ly,:::,Ln)be the array of logical form sets represented
by the left field. Foralli =1,:::,n,a; 2 L;.

c) Let(R1,:::,Rm)bethearray of logical form sets represented
by the right field, and let N be the length of the conjunc-
tion/disjunction. Foralli =1,:::,m, a&; 2 RN+i—m-.

d) Let (S1,:::, Sk) be the array of logical form sets represented
by the any field. There exists a jsuch that foralli =1,:::,kK,
aj 2 S;.

Stated plainly, the left field specifies the left-most operands of the con-
junction/disjunction, the right field specifies the right-most operands
of the conjunction/disjunction, and the any field specifies a sequence
of operands that must appear somewhere within the conjunction/dis-
junction (in the same order).

As an example to illustrate the application of hol_any_array, the
inverse of the select_left_conjunct function applied to the logical
form

Iw(write(w) ™ argl(w)=me))
is
R(Ow(any_array with operator = AND,
left = [argl(W)=me], right =[], any = [write(w)])).

This expression is the set of all logical forms with 9w at the root, and
whose child node is the set of all conjunctions where the left conjunct
is argl(w)=me and some conjunct is write(w).

With this new subtype of hol_term, the set operations (in algorithms
14, 15, 16, and 17) need to be extended to handle the cases when their
inputs have type hol_any_array. The set intersection operation for

116 LANGUAGE MODULE

Algorithm 18: Helper function for computing the intersection of two sets
of logical forms, where X has type hol_any_array.

/x precondition: Y does not have type hol_any_right =x/
1 function set_intersect_any_array(hol_any_array X, hol_termY)
2 | let L be an empty list
3 | if Y has type hol_any_array

4 if X.operator = EITHER letoper =Y .operator
5 elseif Y.operator = EITHER letoper = X.operator
6 else if X.operator =Y.operator letoper = X.operator
7 else return empty list
8 let[Sy,:::,Sk] be X.any and let [S!,:::, S}l be Y.any
9 if 9i,8j 21,110, K%(Sivj_1) ifi+j-12fL::: ky and
X.all SJQ otherwise)
10 ‘ let[S;,:::, 5,] =X.any /* X.any is a subset of Y.any x/
11 elseif9i,8j2f1,:::,kg(59+j_1 Sjifi+j—12f1,:::,K%, and
Y.all S;j otherwise)
12 ‘ let[Sq,:::,S]=Y.any /* Y.any 1is a subset of X.any x/
13 else return unclosed operation error

14 let[L1,:::,Ln] be X.left and let [LY,:::, L&o] beY.left
15 fori=1,:::,minfn,n%do L; = set_intersect(L;, LiU)
16 fori = minfn,n,:::,ndo L; = set_intersect(L;j,Y.all)

17 for i = minfn, nog, 21:,n"do L; = set_intersect(Lg, X.all)

18 let[R1,:::,Rm]be X.rightand let [RY,:::, quno] beY.right

19 let M* = maxfm, m% and M~ = minfm, m’g

20 fori=1,:::,M7 do Ry +_j4+q = set_intersect(Rm—ij+1, RSn°—i+l)
21 fori=M7,::;,mdo Ry,+_;,q = set_intersect(Rm—ij+1,Y.all)
22 fori=M—,:::,m’do Rm+—ijeq = set_i ntersect(REno_Hl,Y.all)

23 [Ag,:::,Ar] = set_intersect(X.all,Y.all)
24 fori=1:::,k do

25 let L? be an empty list

26 forj=1,:::,rdo L. add_all(set_intersect(S;,Aj))
27 set S; to be L

28 let N* = maxfn, n

N
0

fori=1,:::,rdo
for f(iq,:::,iNn+) 1 iu 2fL,:::,jLjog do
for f(j1,:::,im+) 1ju 2 f1,:::,jRyjog do
forf(ay,:::,ak):au 2f1,:::,jSyjg do
L.add (new any_array with operator oper, all = A;,
left = [Llil, A LN+iN+], right = [lel, i :,RM+J-N+], and
any =[S;4,.:11, Ska, D

o W W W
A =R =)

[N

34 | elseif Y has type hol_and or hol_or

35 if X. operator = AND and Y does not have type hol_and return empty list
36 if X. operator = OR and Y does not have type hol_or return empty list
37 let[Lq,:::,Ln] be X.left

38 let[Rq1,:::,Rm]be X.right

39 let[Yq,:::,Yn] be Y.operands

40 if N < maxfn,m,ky return empty list

41 fori=1,:::,Ndo

42 Y; = set_intersect(Yj, X.all)

43 ifién

44 let LY be an empty list

45 foreach U 2Y; do LY. add_all(set_intersect(U,Lj))
46 set Y; tobe Lo

47 ifi>N-m

48 let L be an empty list

49 foreach U 2Y; do LY. add_all(set_intersect(U, Ri—N+m))
50 set Y; tobe L0

4.5 DOMAIN-GENERAL GRAMMAR AND SEMANTIC FORMALISM

Algorithm 18: (continued)

51
52
53
54

62

for f(iy,::1,in) 115 2f1,::0,)Y; jgg do
let [S1,:::,Sk] be X.any
forj=1,:::,N—-k+1do
foru=1,:::,kdo Yj+u—1 = set_'intersect(YG+u_l)vij+u_l,Su)
forf(uj,:::,uj...k:ua2f1,:::,ij jog do
let L® be an empty list
forp=1,:::,Ndo
ifjep<j+k L)=Yp,,
else LE) :Ypip

if Y has type hol_and L.add (L} 7~ :::~LY)
| if Y has type hol_or L.add(Ly i L)

return L

Algorithm 19: The if statement that is added to set_intersect_any_

right (algorithm 15) on line 87 to handle the case where Y’ has type hol_
any_array.

o 0
52 W

0
%

97
98
99
100

101
102
103
104
105
106

else if Y has type hol_any_array
let[Ry,:::,Rm]be Y°.right
ifm6&0 [Ug,:::,Ur] = set_intersect_any_right (R(AX),Rm)
else [Uq,:::,Ur] = set_i ntersect_any_r'ight(R(AX), Y. a1
foreachi21,:::,rdo
L.add(new hol_any_array identical to Y’ except the last element of
rightis Uj)
[V1,:::,Vs] = set_i ntersect (AX,Y?)
fori=1,:::,sdo
if V;j has type hol_any_array
let [RY,:::,RY,]be Vj.right
fm6&0 [Wi,:::, W] = subtract_any_right (RY,, R(AX))
else [W1,:::,W¢] = subtract_any_right(Vj.all, R(AX))
forj=1,:::,tdo
L.add(new hol_any_array identical to V; except the last element
L of rightis Wj)

else /*x Vj has type hol_and or hol_or x/

let [RY,:::,RY%,] be V;j.operands

[Wq,:::, W] = subtract_any_r'ight(R0 ,R(AX))

forj=1,:::,tdo

Lifvi has type hol_and L.add (R} ~:::~RL ;A Wj)
if Vj has type hol_or L.add(R] _:::_ R} W;j)

o1

117

118 LANGUAGE MODULE

Algorithm 20: The if statement that is added to set_subtract (algorithm
16) on line 20 to handle the case where either X or Y has type hol_any_
array.

20 | elseif X has type hol_any_array
21 if Y has type hol_any_array

22 if X.operator & EITHER and Y . operator & EITHER and
X.operator & Y.operator return [X]

23 let[Ly,:::,Ln]be X.leftand let[L),:::, L% o] be Y. left

24 let[Ry,:::,Rm]be X.rightand let [R},:::,Rl o]be Y.right

25 let[Sy,:::,Sk] be X.any and let [S{,:::,Sko] be Y.any

26 ifX.all Y.olland8i2fl,:::,minfn,n%g L; L!and

8i2fn,:::,n%X.att L!and

8i 2 f1,:::, minfm,m%g, Rm_i+1 R%o_ ;.
8i 2fm,:::,mY%, X.att R, ;. and
9i,8j 2 f1,::1, Kly(Si+j-1 SJ9 ifi+j—12f1,::: kg and

X.all SJQ otherwise)

4 and

27 Lreturn empty list /* X is a subset of Y %/

28 if set_intersect(X,Y) is empty return [X]

29 ifX.all Y.alland8i,X.all L!and8i,X.all RYand
8i,X.all S!

30 let L be an empty list

31 fori=2:::, maxin’, m% k% -1 do

32 if X.operator = EITHER or X.operator = AND

33 letL!) = Lg’\:::’\LiOwhere LJQ = foreachj

34 L.add_all(set_intersect(X,L%))

35 if X.operator = EITHER or X.operator = OR

36 let LY=L} :::_L!where LJ9 = foreachj

37 L.add_all(set_intersect(X, LO))

38 return L

39 return unclosed operation error

40 else if Y has type hol_and or hol_or

41 if Y has type hol_and and X.operator & AND return [X]
42 if Y has type hol_or and X.operator & OR return [X]

43 if set_intersect(X,Y) isempty return [X]

44 | else return unclosed operation error

45 else return [X]

46 | elseif Y has type hol_any_array

47 if (X has type hol_and and Y .operator & EITHER and Y .operator & AND)
or (X has type hol_or and Y .operator & EITHER and Y .operator & OR)
or (X does not have type hol_and or hol_or)

48 L return [X]

49 let [Xq1,:::,XN] be X.operands

50 let[Ly,:::,Ln] beY.left

51 let [R1,:::,Rm]be Y.right

52 let[Sq,:::,Sk]be Y.any

53 if8i2fL,::: Ng,Xj Y.alland8i2fl,:::,ng, Xj Ljand
8i2fl,:::,mg, Xn—i+1 Rm—i+1and 9i,8) 21,11, kg, Xij+j Sj
54 Lreturn empty list

55 if set_intersect(X,Y) is empty return [X]
56 return unclosed operation error

4.5 DOMAIN-GENERAL GRAMMAR AND SEMANTIC FORMALISM

the case where either input set has type hol_any_array is shown
in algorithm 18. Notice that on line 13, the algorithm throws an error
indicating that the set operation is unclosed (i.e. it would produce a set
that cannot be represented by hol_term). To avoid this error, we could
modify the any field to be an array of an array, where each inner array
must appear somewhere in the conjunction/disjunction. However,
our implementation does not reach that point in the code, suggesting
that the our grammar and/or transformation functions never call set_
intersect_any_array with inputs such that the resulting intersection
is unclosed.

Inthe set_intersect_any_right helper function (in algorithm 15),
we need to add an if statement on line 87 to check for the case that Y°
has type hol_any_array. This if block is shown in algorithm 19.

Algorithm 21: The if statement that is added to set_subtract_any_right
(algorithm 17) on line 49 to handle the case that X has type hol_any_array.

49 | else if X has type hol_any_array
50 let[R1,:::,Rm]be X.right
51 ifm&0 [Wyp,:::,Ws] =set_subtract_any_right(Rm,Y)
else [W1,:::,Ws] = set_subtract_any_right(X.all,Y)
forf(i,j):i2fl,:::,mgand j 2 fl,:::,sy do
let[Uq,:::,Umo] be Zj.right
ifm' &0 [Z0 o :,Zg] = set_intersect(Umo, Wj)
else [Z0 i, Zg] = set_intersect(Zj.all,Wj)
fork=1,:::,tdo
L.add(new hol_any_array identical to Z; except the last element of
L rightis ZP()

n
@w N

>

o

[IS BT, BT BNC,
O

~

n
<9

To extend set_subtract (algorithm 16) to handle the case where
either input has type hol_any_array, we need to add an if statement
on line 20. This if block is shown in algorithm 20.

Finally, we extend set_subtract_any_right (algorithm 17) to han-
dle the case where the input X has type hol_any_array by adding an
if statement on line 49. This if block is shown in algorithm 21.

SETS OF CONSTANTS: Another useful subtype of hol_term in our
implementation is to represent sets of constants. While hol_any_
right can be used to represent sets of constants, it is highly non-
specific, and a set represented by hol_any_right contains many other
logical forms that are not constants. Many semantic feature functions
and transformation functions work with these constants. For example,
the HDP hierarchies for the N, V, ADJ, ADV nonterminals are constructed
using the constant value of the input logical form. That is, they use a
feature function that when given a logical form A, returns A if Ais a
constant, and otherwise returns null. To properly implement the get_
feature, set_feature, and exclude_feature for this feature func-
tion (as described in section 4.1.4). As another example, our grammar

119

120

LANGUAGE MODULE

has transformation functions that manipulate predicates that express

the tense and aspect of the sentence, and these predicates are them-

selves constants. A data structure that provides an easy way to work

with sets of constants is valuable. To this end, we introduce two new

subtypes of hol_term:

49 class hol_any_constant 51 class hol_any_constant_except
extends hol_term extends hol_term

/* length must be at least 2 */ /* possibly empty x/
50 | array<int> constants 52 | array<int> excluded

Algorithm 22: Helper functions for computing the intersection of two
sets of logical forms, where X has type hol_any_constant or hol_any_
constant_except.

/* precondition: Y 1is not hol_any_right or hol_any_array x/
1 function set_intersect_any_constant(
hol_any_constant X, hol_termY)
2 | if Y has type hol_any_constant
‘ letC=fc:c2 X.constantsand c 2 Y.constantsy
4 | elseif Y has type hol_any_constant_except
‘ letC=fc:c2 X.constantsand c 2 Y.excludedg
else if Y has type hol_constant
if Y.constant 2 X.constants returnY
else return empty list
9 | else return empty list
10 | if C="? return empty list
11 | else if C = fcyis a singleton return c
12 | return [new hol_any_constant with constants = C]

()] w

o N o

13 function set_intersect_any_constant_except(
hol_any_constant_except X, hol_termY)
14 | if Y has type hol_any_constant

15 letC=fc:c2 X.excludedand c 2 Y.constants{

16 if C="7? return empty list
17 else if C = fcy is a singleton return ¢
18 return [new hol_any_constant with constants = C]

19 | elseif Y has type hol_any_constant_except
20 letC =fc:c2 X.excludedorc 2 Y.excludedy

21 return [new hol_any_constant_except with excluded = C]
22 | elseif Y has type hol_constant

23 if Y.constant 2 X.excluded return empty list

24 else return Y

25 | else

26 Lreturn empty list

hol_any_constant represents a union of two or more constants,
whereas hol_any_constant_except represents the set of all constants
except zero or more constants.

As with hol_any_array, we extend the set operation algorithms
to handle the new subtypes. The set intersection operation for the
case where either input set has type hol_any_constant or hol_any_
constant_except is shown in algorithm 22.

4.5 DOMAIN-GENERAL GRAMMAR AND SEMANTIC FORMALISM

Algorithm 23: The if statement that is added to set_intersect_any_
right (algorithm 15) on line 87 to handle the case where Y? has type hol_
any_constant or hol_any_constant_except.

a7 | elseif Y! has type hol_any_constant

88 ‘ L. add_all(set_intersect_any_constant(YO,AX))

a0 | else if Y? has type hol_any_constant_except

90 L L. add_all(set_intersect_any_constant_except(YO, AXY)

Algorithm 24: The if statement that is added to set_subtract (algorithm
16) on line 20 to handle the case where either X or Y has type hol_any_
constant or hol_any_constant_except.

20 | else if X has type hol_any_constant
21 if Y has type hol_any_constant

22 ‘ letC=fc:c2 X.constantsand ¢ 2 Y.constantsg
23 else if Y has type hol_any_constant_except

24 ‘ letC=fc:c2 X.constantsand ¢ 2 Y.excludedy
25 else if Y has type hol_constant

26 ‘ letC=fc:c2 X.constantsand c & Y.constantg
27 else return [X]

28 if C =7 return empty list

29 else if C = fcy is a singleton return ¢

30 return [new hol_any_constant with constants = C]

31 | elseif Y has type hol_any_constant

32 if X has type hol_any_constant_except

letC=fc:c2 X.excludedorc 2 Y.constants(

return [new hol_any_constant_except with excluded = C]
35 else if X has type hol_constant

if X.constant 2 Y.constants return empty list

else return [X]

38 else return [X]

39 | elseif X has type hol_any_constant_except
40 if Y has type hol_any_constant_except

41 letC=fc:c2 X.excluded and ¢ 2 Y.excludedy

42 if C =7 return empty list

43 else if C = fcg is a singleton return c

44 return [new hol_any_constant with constants = C]

45 else if Y has type hol_constant

46 letC =fc:c 2 X.excluded and ¢ = Y.constanty

47 return [new hol_any_constant_except with excluded = C]
48 else return [X]

49 | elseif Y has type hol_any_constant_except
0 if X has type hol_constant
if X. constant 2 Y.excluded return [X]
else return empty list

else return [X]

au u o’
N

&)
@

121

122

LANGUAGE MODULE

In the set_intersect_any_right helper function (in algorithm 15),
we add another if statement on line 87 to check for the case that Y°
has type hol_any_constant or hol_any_constant_except. These if
blocks are shown in algorithm 23.

Algorithm 25: The if statement thatis added to set_subtract_any_right
(algorithm 17) on line 49 to handle the case that X has type hol_any_
constant or hol_any_constant_excluded.

49 | else if X has type hol_any_constant or hol_any_constant_excluded
50 Lfori =1,:::,mdo L.add(Z;)

To extend set_subtract (algorithm 16) to handle the case where ei-
therinputhastypehol_any_constantorhol_any_constant_except,
we add another if statement on line 20. This if block is shown in algo-
rithm 24.

Finally, we extend set_subtract_any_right (algorithm 17) to han-
dle the case where the input X has type hol_any_constant or hol_
any_constant_excluded by adding another if statement on line 49.
This if block is shown in algorithm 25.

4.5.3 Training

In order to use this new grammar for parsing, we first need to infer
the posterior distribution of the production rules of the new gram-
mar, as well as induce the preterminal production rules. Since PWL
uses an HDP for the conditional distribution of selecting production
rules, inferring the posterior of the production rules is equivalent to
computing MCMC samples of the seating assignments in the Chinese
restaurant franchise corresponding to each HDP (see section 4.1.1; and
recall that PWL only keeps the last sample Ngamples = 1). To infer the
posterior on the production rules, we construct a small seed training set
consisting of 44 labeled sentences, 33 nouns, 42 adjectives, and 14 verbs.
The seed training set is available at github.com/asaparov/PWL/blob/
main/seed_training_set.txt. One example from the seed training
setis shownin figure 18. We wrote and labeled these sentences by hand,
which are largely from the domain of astronomy, with the aim to cover
a diverse range of English syntactic constructions. This small train-
ing set was sufficient thanks to the statistical efficiency of the model,
and we found that a smaller handful of “prototypical” sentences was
good enough for robust and accurate parsing, in the sense that each
sentence exhibits some syntactic structure that the other examples do
not exhibit.

To facilitate debugging of the semantic transformation functions,
each sentence is labeled not only with its logical form but also its full
derivation tree. Derivation tree labels are not necessary, since section
4.3.1 details a method to sample the derivation trees in case any or all

https://github.com/asaparov/PWL/blob/main/seed_training_set.txt
https://github.com/asaparov/PWL/blob/main/seed_training_set.txt

4.5 DOMAIN-GENERAL GRAMMAR AND SEMANTIC FORMALISM 123

Sentence: “Which inner planet has the highest mass?”

Logical form: z. X(X= x(i(inner(i) argl_of(x)=1) planet(x))
X(z) f((f= x. v. m(y(value(y) arg2(y)=v argl_of(m)=y)
mass(m) h(argl(h)=x has (h) present(h) arg2(h)=m)))
g(greatest(f)(g) argl(g)=X arg2(g)=z)))
(i.e. what is the value of z such that there exists a set of inner planets X, z is a member
of X, and there exists a function f that returns the mass of its input, such that z
maximizes f over the set X)

Derivation tree:

3
[|
S" QUESTION
S" II?I/
{ ' \
VADJ‘UNCT VIIDR
{ \
NP VTR VADJ‘UNCT
WH\lCH NOMINALg VP, N‘P
\ \
“which” NOMINAL, Vv DEF_NP
\ "
“Which” ADJPg NOMINAL, “have”[3rD,rPrES] TTE N‘P’
\ | \
ADJP_ N “has” “the” NOMINALg
\
AD)J “planet” NOMINAL,
| ——
“inner” ADJPg NOMINAL,
\ \
ADJP, N
\
ADJ “mass”
“high”[sup]
\
“highest”

Figure 18: An example from the seed training set of PWL, labeled with the
logical form and derivation tree (i.e. syntax tree). This example
helps to train the parser in PWL. Note that the derivation tree label
isnot strictly necessary, as the training algorithm in section 4.3.1 can
infer the latent derivation trees from sentences with logical form
labels. In the above example derivation tree, 3rD is a morphological
flag that indicates the third person, rres indicates present tense,
and sur indicates superlative. Semantic transformation functions
are omitted for brevity.

124 LANGUAGE MODULE

Algorithm 26: Pseudocode to check whether a given derivation tree t is
parseable if the initial set of logical forms is X.

1 function is_parseab’le (logical form set X, expected derivation tree t)

2 | nis the root of the derivation tree t

3 | Xis the logical form atn

4 | if n has a single child node that is a terminal w

/* if using a morphology model, make sure that w 1is a valid
morphological parse at this position */

if X2 X return ?

()]

6 X =1s_rule_parseable(A ¥ w, X, X)
7 if X="? return ?

8 set X =X

9 | else

10 A ¥ Bj:f; :::Bkfk is the production rule at n
11 fori21,:::,Kdo

12 Xi = fi(X)
13 ifX; =72
14 Lreturn?/* the output of the function fj is incorrect */
15 xj = Fij(fxq)
16 ifxj =72
17 Lreturn?/* the output of the function fj is dncorrect */
18 ¢ is the i™ child node of n
19 ifh$(Xj)=-1
20 Lreturn?/* the semantic prior heuristic is incorrect */
21 t; is the subderivation of t rooted at the i*" child node of t
22 X; =is_parseable(Xj, tj)
23 ifX; =7
24 Lreturn ?

/* the operation X\fi_l(Xi) can return a union of sets x/
25 let Y1 [::: [Yp be the output of X\fi_l(Xi)

/* find the Yj that contains the correct logical form %/
26 J is the index such that x 2 Y;j
27 if there is no j such that X 2 Yj
28 Lreturn?/* the output of the function fi_l is incorrect x/
29 if x\fyi(xj) =2
30 ‘ return ? /x the output of the function fi_1 is dincorrect */
31 else if h{(Y;) = h§(X) or h§(Y;) = h§(X) or h%(Y;) = 1
32 Lreturn?/* the semantic prior heuristic is dincorrect */
33 | set X =Yj
34 X =ds_rule_parseable(A ¥ Bjy:f; :::Bkfk, X, X)
35 if X =7 return ?

36 set X =X

37 | return X

4.5 DOMAIN-GENERAL GRAMMAR AND SEMANTIC FORMALISM

Algorithm 27: Recall that in the HDP model of section 4.1.4, each leaf node
in the hierarchy corresponds to a set of logical forms (as defined by the
functions get_feature and set_feature). Let Sy be the set of logical
forms that corresponds to a leaf node in the HDP hierarchy such that x 2 S.
Given a logical form X, logical form set X, and production rule r, this
algorithm finds the appropriate HDP hierarchy and then computes Sx \ X.

1 function is_rule_parseable (production ruler,
logical form set X,
logical form X)
A is the left-hand nonterminal symbol of r
fq,:::, fq are the semantic feature functions in the HDP for A
fori=1,:::,ddo
X =set_feature(fj, X, get_feature(fj, X))
if X =72 return?
set X = X

N oot AN

e}

return X

of them are latent/unknown. Derivation tree labels were not provided
in the experiments on GEOQUERY and Joss in section 4.4.
We implemented a function is_parseable which would essentially

simulate the parser’s steps in the search for a given derivation tree.

A bug in the implementation of a semantic transformation function
or its inverse would cause is_parseable to return false and report
at which step the failure occurred. Similarly the function can help
to find bugs in the grammar itself. If a production rule is missing
or incorrectly written, this function will report the an error at the
incorrect rule. The function also checks for errors in morphological
parsing or the heuristic upper bound for the semantic prior. The
function is shown in algorithm 26. This function is first invoked with
X being the set of all logical forms. In principle, it may return a
set of logical forms rather than a singleton, which would indicate
that the semantic transformation functions and feature functions are
insufficient to partition the set X into a subset that only contains the
ground truth logical form. In this case, the parser also would not
return a singleton logical form. Rather, it would return a set of logical
forms that contains the ground truth logical form. This provides a
good indication to modify the semantic transformation functions and
feature functions so that the parser can correctly find the singleton set
containing the ground truth logical form.

Recall that the parser, given a production rule r and logical form
set X, iterates over the logical form sets that maximize the likelihood
p(rjx 2 X, t) (on line 28 in algorithm 26). To check for the correctness
of this step, is_parseable calls a helper function is_rule_parseable
(onlines 6 and 34). The implementation of this function depends on the
model for choosing production rules. As PWL uses the HDP model as
discussed in section 4.1.4, an implementation is provided in algorithm

27.

125

126

LANGUAGE MODULE

4.6 RELATED WORK

Our grammar formalism can be related to synchronous CFGs (SCFGs)
(Aho and Ullman, 1972), where the semantics and syntax are generated
simultaneously. However, instead of modeling the joint probability of
the logical form and natural language utterance p(X, y), we model the
factorized probability p(x)p(y j X), where the logical form X may have
its own complex prior distribution p(x). Modeling each component
in isolation provides a cleaner division between syntax and seman-
tics, and one half of the model can be modified without affecting the
other, and this is instrumental in PWM since in that model, the logical
form is derived from a larger theory containing background knowl-
edge. We used a CFG in the syntactic portion of our model (although
our grammar is not context-free, due to the dependence on the logi-
cal form). Richer syntactic formalisms such as combinatory categorial
grammar (Steedman, 1997) or head-driven phrase structure grammar
(Proudian and Pollard, 1985) could replace the syntactic component
in our framework and may provide a more uniform analysis across
languages. Our model is similar to lexical functional grammar (LFG)
(Kaplan and Bresnan, 1995), where f-structures are replaced with log-
ical forms. Nothing in our model precludes incorporating syntactic
information like f-structures into the logical form, and as such, LFG is
realized in our framework. In fact, including a model of morphology in
our grammar furthers its similarity to LFG. Our approach can be used
to define new generative models of these grammatical formalisms. We
implemented our method with a particular semantic formalism, but
the grammatical model is agnostic to the choice of semantic formalism
or thelanguage. Asinsome previous parsers, our parsing problem can
be related to the problem of finding shortest paths in hypergraphs us-
ing A* search (Gallo, Longo, and Pallottino, 1993; Klein and Manning,
2001, 2003; Pauls and Klein, 2009; Pauls, Klein, and Quirk, 2010).

4.7 FUTURE WORK

There is significant room for future work and exploration in the subject
presented in this chapter. In this section, we discuss shortcomings
of various aspects of our approach, and give suggestions for how to
overcome them.

4.7.1 Shortcomings of the grammatical framework

The performance of our parser and generator depend heavily on the
production rules of the grammar. Although the preterminal produc-
tion rules are induced during training, we had to specify the other
production rules by hand. While this does give us a great deal of
control over the grammar, and enables us to incorporate prior knowl-

4.7 FUTURE WORK

edge about the English language into the grammar, it is very time-
consuming. It would be valuable to look into ways in which these pro-
duction rules can be induced from data. Recall that every production
rule in our grammar is annotated with semantic transformation func-
tions. These functions are intimately tied with the semantic formalism
and effectively implement a theory of formal semantics. It would also
be valuable to explore whether these transformation functions can be
learned as well. One promising direction would be to decompose
the semantic transformation functions into a sequence of elementary
“instructions.” Each semantic transformation function could then be
equivalently written as short programs in a simple programming lan-
guage. We could then induce the semantic transformation functions
by searching over the space of these short programs, perhaps by at-
tempting to add or remove instructions, etc. However, it is not clear
how much grammar induction would improve our current grammar
for English. But such an approach would certainly help to learn gram-
mar for other languages, about which we have much less knowledge.
The statistical efficiency of our approach could greatly aid in natural
language processing for low-resource languages, for which training
data is very scarce.

During parsing, PWL uses an upper bound on the objective function
(as defined in equations 8y, 88, and 89) that takes into account syn-
tactic information. While this works well enough for our purposes, it
may be possible to further improve the performance of the parser by
defining tighter upper bound, possibly by taking into account semantic
information.

The language module of PWL assumes that the sentences are noise-
less: there are no spelling or grammatical errors in the utterances.
This assumption helps to simplify the problem and to focus the scope
of the thesis more onto language understanding and reasoning. But
real-world language is noisy, and thus further work to extend the
language module to noisy settings is warranted. To properly handle
grammatical errors, additional “incorrect” production rules must be
added to the grammar, such as a rule where the grammatical number of
the subject noun and the verb do not agree, or a rule where the subject
is dropped entirely (and left to be inferred from context). Grammar
induction could be used to learn these “incorrect” production rules.
A possible way to handle spelling errors is to add another step to the
generative process for the language module (as described in section
4.2.1). This extra step would take the correctly-spelled sentence as its
input and create errors, such as insertions, deletions, or substitutions of
characters. During inference, this process is inverted: Given the noisy
sentence as input, the parser first needs to infer the correctly-spelled
sentence (which is now latent), and then proceed with the parsing
algorithm as described earlier in this chapter.

127

128

LANGUAGE MODULE

4.7.2 Shortcomings of the grammar

Our new grammar was designed to broadly cover English, but it does
not currently support a number of core features of English, such as in-
terrogative subordinate clauses, wh-movement, imperative mood, and
others. However, it is not difficult to extend the grammar to handle
these features by adding additional production rules. For example,
wh-movement can be added by defining a new transformation func-
tion that searches for the scope (existentially-quantified subexpression)
within the input logical form that references the interrogative variable
(i.e. the variable x if the input logical form looks like x(:::)). This
scope may be nested within the semantic head of the input logical form.
If the function encounters any “barriers” in its search such as negation,
it would return failure. These movement restrictions are well-studied
in linguistics and are known as island effects, and the new transforma-
tion function can be implemented to enforce these known barriers to
movement.

SHORTCOMINGS OF THE SEMANTIC REPRESENTATION: Both the
Datalog representation of the GEoQuery and Joss datasets and the new
semantic formalism presented in section 4.5 are not able to correctly
represent sentences with intension and modality. Consider the sentence
“I seek a unicorn.” In our new semantic formalism, the meaning of the
sentence is represented as

9u(unicorn(u) ™ 9s(argl(s)=me
N seek(s) ™ present(s) ™ arg2(s)=u))).

This logical form declares the existence of an object with type unicorn.
So according to our formalism, the statement “I seek a unicorn” implies
“There is a unicorn.” In formal semantics, there are a number of ways
to address this problem. One such approach is to distinguish between
the real world and the world containing all objects, both real and
hypothetical (Hobbs, 1985). Quantifiers would quantify over both
real and hypothetical objects by default. A new predicate would be
introduced to declare that an object exists in the real world. In this
approach, we could represent “I seek a unicorn” as:

9u(unicorn(u) ™ 9s(argl(s)=me
Nseek(s) ™ real(s) ™ present(s) ™ arg2(s)=u))).

Here, only the seek event is marked as real, whereas the instance of
unicorn is not. Axioms can be added so that for most events g, if e is
real, then the arguments of e are real. But importantly, for event types
such as seek, think, believe, want, is_capable, etc, this property
would not hold. Another way to handle intensionality and modality
is modify the formal language itself, as in the approach of Montague
(1973). The above is an example of a broader distinction between the

4.7 FUTURE WORK

de re and de dicto readings of the sentence “I seek a unicorn.” This
distinction is clearer in the example “John believes someone is a spy.”
In the de re reading, John believes that a spy exists in the world, but
in the de dicto reading, there exists a person who John believes to be
a spy (Quine, 1956). For this thesis, we assume that sentences do not
express uncertainty or possibility, which allowed us to sidestep the
need to properly represent intensionality and modality in the formal
language. Thus it would be valuable to extend the semantic formalism
to distinguish between these readings.

In addition, our new semantic formalism is not able to identify all
of the interpretations of clauses with multiple universal quantifiers,
such as in “Three teachers graded 6 exams” (Scha, 1981). In the first
reading, this sentence means that each of the three teachers graded six
exams, for a total of up to 18 graded exams. In the second reading,
there exists a set of three teachers and a set of six exams, where each
teacher helped to grade every exam and each exam was graded by
every teacher. In the third reading, again there exists a set of three
teachers and a set of six exams, but every teacher graded at least one
exam, and every exam was graded by at least one teacher. In principle,
it is possible to represent all three readings in first- and higher-order
logic, but our grammar does not currently allow our parser to produce
the third reading. A new transformation function and/or production
rule would enable to parsing of this reading.

4.7.3 Modeling context

The logical forms in PWM are assumed to be context-independent.
Conditioned on the theory, they are independently and identically
distributed. This assumption greatly simplifies the natural language
that we need to be able to parse. While it helps to focus the scope of
thesis, it is not representative of real-world language. In real language,
the distribution of a sentence is highly dependent on the sentences that
precede it, even when conditioned on the theory, which contains all of
the background knowledge. For example, this assumption disallows
inter-sentential coreference (e.g. pronouns that can refer to objects
mentioned in other sentences). PWM also assumes that the universe
of discourse does not vary, and so the sentence “All of the children
are asleep” would mean that, literally, every child in the universe
is sleeping. The more likely meaning of the sentence is that all of
the children within the local area, such as the home or town, are
sleeping. The definite article “the” often indicates the uniqueness of
an object: “the tallest mountain” indicates that there is exactly one
tallest mountain. However, this is not the case in the example: “A cat
walked into the room. The cat purred.” Here, “the cat” does not imply
that there is exactly one cat in the universe. Rather, it means that the
cat is unique in the context. The universe of discourse can change

129

130

LANGUAGE MODULE

across sentences (and sometimes even within sentences). Relaxing the
assumption that logical forms are context-independent would enable
our parser to correctly understand these example sentences.

To relax this assumption, PWM must be augmented with a model of
context. One possible approach is to modify the generative process of
the proofs, which is described in section 3.2.2. The model can be mod-
ified to generate axioms in the same order in which the corresponding
phrases appear in the sentence. The distribution of these axioms would
now depend on an additional “context” random variable. This context
variable includes the current universe of discourse as well as recently-
mentioned entities. With every generated axiom, the context variable
is modified probabilistically, such as by adding an entity to the list of
recently-mentioned entities, and/or by widening/narrowing the uni-
verse of discourse. For example, if ¢;j and c;j are constants, then we
would modify the generative process so that axioms of the form t(c;),
argl(ci) = cj, or arg2(cj) = cj are more likely to be generated if c;
or Cj are in the list of recently-mentioned entities. And whenever an
axiom of the form t(c;j), argl(cij) = cj, or arg2(cj) = c;j is generated,
the context variable is modified so that the recently-mentioned entities
now include c; and cj. This context variable is not discarded after
finishing the generation of a sentence. Instead, it continues to influ-
ence the generative process of subsequent sentences. Such a model of
context would enable the generation of inter-sentential anaphora: If an
axiom of the form argi(c;) = cj or arg2(cj) = C;j is generated, where
cj is among the recently-mentioned entities in the context, then with
some probability, replace c; with a declaration of an anaphoric object,
such as 9x(::: 7 ref(x)) where the existential is instantiated with c;.
Our grammar could later render ref(x) as a pronoun such as “it.” As
this method would not fundamentally distinguish between inter- and
intra-sentential anaphora, it would replace our earlier approach for
parsing intra-sentential anaphora. In this approach, the logical forms
for “A cat walked into the room” and “The cat purred” would look
like:

9c(cat(c) ™ Uz(c) ™ 9R(R= r(room(r) ™ Uy(r)) N size(R)=1

N Or(R(r) ™ 9w(argi(w)=c ™ walk(w) ™ past(w) ™ arg2(w)=r)))),
9C(C= c(cat(c) ™ Uz(c)) ™ size(C)=1

7 9¢(C(c) ™ Ip(argi(p)=c ™ purr(p) ™ past(p)))).

Notice that “the room” is represented as a unique room within the
universe of discourse U,. The set R is defined as the set of all rooms
within the universe of discourse given by the set Uz, and the size of
R is exactly 1. The phrase “the cat” is also represented in the same
way. The set C is the set of all cats within the set Uz, and the size of
C is exactly 1. The universe of discourse Uz has narrowed from Uq so
that there is exactly one cat in U3. This model of context would be a

4.7 FUTURE WORK 131

more realistic model for the way humans generate language naturally,
as compared to PWM currently.

END-TO-END EXPERIMENTS

In the previous two chapters, we presented the two compo-
nents of PWL: the reasoning module and language module.
Here, we provide qualitative and quantitative results on ex-
periments that evaluate the properties and capabilities of PWL
end-to-end. In section 5.1, we showcase examples of sentences
with syntactic ambiguities, and how PWL is able to use its
knowledge acquired from previously-read sentences to resolve
those ambiguities. In section 5.3, we apply PWL to the out-
of-domain question-answering task in ProorWriTer (Tafjord,
Dalvi, and Clark, 2021) and achieve perfect zero-shot accuracy
when using intuitionistic logic. However, since the sentences
in PrRooFWRITER are simple in structure, being automatically
generated from templates, we create a new question-answering
dataset called FictioNnaLGEOQA, consisting of marginally more
syntactically-complex (but still overall simple) sentences. The
dataset is designed to be robust against algorithms that rely on
simple heuristics to answer questions, and thus to more accu-
rately measure their reasoning ability relative to other datasets.
In section 5.4, we describe this dataset in further detail and
show that PWL outperforms current state-of-the-art baselines.

5.1 RESOLVING SYNTACTIC AMBIGUITIES

PREPOSITIONAL PHRASE ATTACHMENT: In this section, we show-
case some examples of sentences with syntactic ambiguity which are
resolved via the consideration of background knowledge. Each exam-
ple serves to illustrate PWL'’s reading process step-by-step, and also
demonstrates how PWL is able to capitalize on knowledge acquired
from previously-read sentences to resolve syntactic ambiguities when
reading new sentences. However, we also showcase some examples
that highlight shortcomings of PWL that arise from, for example, the
simplicity of the prior on the theory and proofs.

Recall that PWL reads sentences in two steps. In the first step, given
a new (unseen) sentence Yy , find the k-best values of the logical form
X , according to the likelihood p(y j X ,X,y). In the second step, for
each of the klogical forms, compute its prior p(x j T) and rerank them
according to the posterior:

pX jxy,y ., T)ZpX jT)ply jx .Xy).

133

134 END-TO-END EXPERIMENTS

y = “Sally caught a butterfly with a net.”

Language module computes top-k logical forms
according to likelihood

Rank Top-4 candidate parses x logp(y jx ,xy)

s(x(name(x) argl_of(s)=x arg2(x)="Sally") n(net(n)
b(butterfly(b) h(has(h) arg2(h)=n argl_of(b)=h) -31.83
c(argl(c)=s catch(c) past(c) arg2(c)=b)))) :
(i.e. a butterfly had a net, and Sally caught that butterfly)

s(x(name(x) argl_of(s)=x arg2(x)="Sally") n(net(n)
b (butterfly(b)
2 c(argl(c)=s catch(c) past(c) arg2(c)=b -34.77
u(use_instrument(u) arg2(u)=n argl_of(c)=u)))))
(i.e. Sally used a net to catch a butterfly)

For each parse x , the reasoning module com-

;rlhe t}flleory T Ctonta:)n(sbt};et axifcim(g;at no Fuie(r') putes p(x jT) and reranks logical forms accord-
1es have a net: ui erftly ~ n(net(n il’lgtO |ng(X jxly’T,y) = |0gp(y jx ’X’y)+
h(has(h) argl(h)=b arg2(h)=n))) logp(x jT)+C
Rank Candidate parses x re-ranked by reasoning module logp(x jT) logp(x jxy.T,y)
s(x(name(x) argl_of(s)=x arg2(x)="Sally") n(net(n)
b(butterfly(b)
1 c(argl(c)=s catch(c) past(c) arg2(c)=b -2294.24 -2329.31

u(use_instrument(u) arg2(u)=n argl_of(c)=u)))))
(i.e. Sally used a net to catch a butterfly)

s(x(name(x) argl_of(s)=x arg2(x)="Sally") n(net(n)
b(butterfly(b) h(has (h) arg2(h)=n argl_of(b)=h) -1 -1
4 c(argl(c)=s catch(c) past(c) arg2(c)=b))))
(i.e. a butterfly had a net, and Sally caught that butterfly)

Figure 19: An example where PWL reads the sentence “Sally caught a but-
terfly with a net,” which is a classical example of a sentence with
prepositional phrase attachment ambiguity: “with a net” could
either attach to “butterfly” or “caught.” In PWL, “reading” a sen-
tence is divided into two stages: (1) find the 4 most likely logical
forms, ignoring the prior probability of each logical form condi-
tioned on the theory, and (2) for each logical form in the list, com-
puting its prior probability conditioned on the theory and then re-
ranking the list accordingly. The output of the first stage is shown
in the top table, and the output of the second stage is shown in
the bottom table. In this example, PWL has previously read “No
butterfly has a net,” and added its logical form to the theory. As
a result, the reasoning module is unable to find a theory that ex-
plains the logical form where the butterfly has the net, and so the
prior probability of that logical form is zero. The log probabilities
in the bottom table are unnormalized.

5.1 RESOLVING SYNTACTIC AMBIGUITIES

The reason for this two-stage process is the following: In the upper
bound for the parser (as discussed in section 4.3.2, in equations 87, 88,
and 89), we need to define h§(X), which is the upper bound on the
semantic prior log p(x™) at node n of the derivation tree. It is easier to
define this bound when the semantic prior is simple, so that it satisfies
the property that for any logical form X, and for any derivation tree
node n with child ¢, p(x") 6 p(x¢). This property is satisfied for
the prior that we use in the semantic parsing experiments in section
4.4, but it is not satisfied by the prior on logical forms defined by the
reasoning module (discussed in chapter 3). For example, the addition
of anegation can dramatically increase or decrease the prior probability
of a logical form. As a result, in the semantic parsing experiments in
section 4.4, the branch-and-bound algorithm is able to directly find the
k-best logical forms that maximize the full posterior p(x jX,y,y ,T).
However, for the other experiments of this thesis, PWL uses a trivial
upper bound on the semantic prior h}(X) = 0 > log p(x"), and so
the branch-and-bound algorithm finds the k-best logical forms that
maximize the likelihood p(y j X ,X,¥y) (without consideration of the
semantic prior). Then in the second step, PWL computes the prior of
each of the k logical forms p(x j T), and reranks them according to
their full posterior.

In this first example, we demonstrate how PWL can utilize previously-
acquired knowledge to resolve the prepositional phrase attachment
ambiguity in the sentence “Sally caught a butterfly with a net.” The
prepositional phrase “with a net” can either attach to the noun “butter-
fly” or to the verb “caught.” If it attaches to “butterfly,” the semantic
interpretation is that the butterfly has a net. If it attaches to “caught,”
the semantic interpretation is that Sally used a net to catch a butterfly.
We first consider PWL reading the sentence without any other sen-
tences or axioms, aside from those of the seed training set. In the first
stage of reading, the branch-and-bound algorithm visits 7387 states
and finds the top 4 logical forms that maximize the likelihood:

A. xg(xs5(name(xs) argl_of(xg)=xs arg2(xs)="Sally")
X10 (net(xi10) Xg (butterfly(xg) X1 (has(xy)
arg2(xi1)=x1e argl_of(xg)=x1) x1(argl(xi)=xe
catch(xy) past(xi) arg2(xi1)=x9)))),

with log likelihood -31.834222. This logical form has the mean-
ing: there exists something named “Sally” (x¢), and there exists a
butterfly (xo) that has a net (x10), and Sally caught that butterfly.

B. xg(x5(name(xs) argl_of(xg)=xs arg2(xs)="Sally")
X190 (butterfly(xig) Xg (net(xg) x1(argl(xy)=xg
catch(xy) past(xi) arg2(xi1)=xip
xg (use_instrument(xg) arg2(xg)=Xg
argl_of(x1)=xs))))),

135

136

END-TO-END EXPERIMENTS

with log likelihood -34.767277. This logical form has the mean-
ing: there exists something named “Sally” (xs), and there exists a
butterfly (x10), and Sally used the net (xs) to catch the butterfly.

C. xg(xs5(name(xs) argl_of(xg)=xs arg2(xs)="Sally")
x10 (net(xip) xg (butterfly(xg) x1 (has(x1)
arg2(xi)=xip argl_of(xs)=x1) x1(arg2(xi1)=xe
catch(xi) past(xi) argl(xi)=x9)))),
with log likelihood -35.544891. This logical form has the mean-
ing: there exists something named “Sally” (xs), and there exists a
butterfly (xo) that has a net (x10), and the butterfly caught Sally.

D. x5(x5(name(xs) argl_of(xg)=xs arg2(xs)="Sally")
X190 (butterfly(xie) Xg (net(xg) x1(arg2(xy1)=xeg
catch(xy) past(xy) argl(xi)=Xio
xg (use_instrument(xg) arg2(xg)=Xg

argl_of(x1)=xg))))).

with log likelihood -38.477945. This logical form has the mean-
ing: there exists something named “Sally” (xs), and there exists a
butterfly (x10), and the butterfly used the net (xo) to catch Sally.

This sentence is a prototypical example of prepositional phrase attach-
ment ambiguity, where the prepositional phrase “with a net” may
attach to either the noun “butterfly” or the verb “caught.” Without
any information from the semantic prior, the parser prefers the closer
attachment (i.e. the butterfly has the net).

In the second stage of the reading process, the semantic prior is
computed for each of the above four logical forms, using the sampling
method described in section 3.3.1, with 400 iterations of MH. The above
list is then reranked according to the sum of the log semantic prior and
the log likelihood:

A. log likelihood -31.834222 + log prior -2212.409332
= log posterior -2244.243554,

C. log likelihood -35.544891 + log prior -2209.566363
= log posterior -2245.111253,

B. log likelihood -34.767277 + log prior -2212.409332
= log posterior -2247.176609,

D. log likelihood -38.477945 + log prior -2212.591654
= log posterior -2251.069599.

The most probable logical form in the reranked list did not change.
Note the computed semantic prior is unnormalized, since we only aim
to compare the relative probabilities of the logical forms in the list, and
a constant normalization term has no effect on the ranking.

5.1 RESOLVING SYNTACTIC AMBIGUITIES

4

Next, consider first reading the sentence “No butterfly has a net.
The parser returns the logical form

x4 (butterfly(xg) x5 (net(xs)

x1(argl(xi)=x4 has(xy) present(xy) arg2(xi1)=xs))),

which has the meaning that there does not exist a butterfly (x,) that has
anet (xs). We add this logical form to the theory, and again attempt to
read “Sally caught a butterfly with a net.”

The parser of PWL preserves information encoded in the aspect and
tense of verbs. They are parsed into terms such as past(x) which
indicates that the event x occurred in the past. However, in order to
correctly handle such terms in the reasoning module, a model of time
is required. So in order to avoid overly complicating the experiments
in this chapter, PWL discards terms that indicate the aspect and tense,
before providing the logical forms to the reasoning module. If we did
not discard these terms, PWL would naively interpret “No butterfly has
a net” to be true in the present but not necessarily in the past, which
is when Sally caught the butterfly. There are also many interesting
and difficult questions regarding the correct handling of aspect and
tense, since the reference point which indicates the “present time” can
change with context: The use of the past tense in one sentence may
have a meaning distinct from the use of the past tense in a later sentence.
This reference point is referred to as origo in pragmatics.

In reading “Sally caught a butterfly with a net,” the first stage (i.e.
the branch-and-bound algorithm) returns the same list of 4 logical
forms as above, it only maximizes the likelihood, without considera-
tion of the semantic prior. However, in the second stage of reading, the
semantic prior is computed for each of the logical forms, and reranked
accordingly. The resulting ranked list is now:

B. log likelihood -34.767277 + log prior -2294.538125
= log posterior -2329.305402,

D. log likelihood -38.477945 + log prior -2294,538125
= log posterior -2333.016070,

C. log likelihood -35.544891 + log prior -inf
= log posterior -1inf,

A. log likelihood -31.834222 + log prior —inf
= log posterior -1inf.

The interpretations where the butterfly has the net is now impossible
(the proof initialization algorithm is unable to find a valid proof of the
logical form that is consistent with the theory). The most probable
logical form in the reranked list is the correct interpretation where
Sally used the net to capture the butterfly. A summary of the above
example is shown in figure 19.

137

138

END-TO-END EXPERIMENTS

In the above example, the sentence “No butterfly has a net” provided
a hard constraint on the possible interpretations of “Sally caught a
butterfly with a net.” Instead of reading “No butterfly has a net,”
suppose PWL first reads “Sally uses a net,” which provides a softer
constraint. The semantic parse of this sentence is:

X6 (X5 (name(xs) argl_of(xg)=xs arg2(xs)="Sally")
x7 (net(x7) x1 (argl(xy)=xg use(xy1) present(xi)

arg2(x1)=x7))),

which has the meaning that there exists something named “Sally” (xs)
and there exists a net (x7) such that Sally uses the net. We add this
logical form to the theory (instead of the logical form for “No butterfly
has a net”), and then again attempt to read “Sally caught a butterfly
with a net.” The first stage of reading returns the same list of logical
forms as above, since the branch-and-bound algorithm is only maxi-
mizing the likelihood. The second state of reading, however, returns
the following reranked list:

A. log likelihood -31.834222 + log prior -2440.877451
= log posterior -2472.711673,

C. log likelihood -35.544891 + log prior -2440.232007
= log posterior -2475.776897,

B. log likelihood -34.767277 + log prior -2444.451668
= log posterior -2479.218944,

D. log likelihood -38.477945 + log prior -2444.451668
= log posterior -2482.929613.

Notice that this reranking step did not significantly change the relative
probabilities of the candidate logical forms, and in fact, the incorrect
interpretation is still highest-ranked. The reason for this is that the
instrumentative sense of the preposition “with” is interpreted as a
use_instrument event, whereas the verb “use” is interpreted as a use
event. In order to correctly identify the equivalence of these events,
PWL would need an axiom such as:

8x8y(9f(argi(f)=x
N Qu(use_instrument(u) ™ argl(u)=Tf ™ arg2(u)=y))
¥ Qu(use(u) ™ argl(u)=x ™ arg2(u)=y)).

That is, PWL would need an axiom that if X uses an instrument y in
some event or action f, then X uses y. Since such an axiom is not present
in the seed axioms of the theory, PWL fails to correctly disambiguate
the prepositional phrase ambiguity.

Now we consider a slightly different example: Suppose that instead
of reading “No butterfly has a net” or “Sally uses a net,” PWL first

5.1 RESOLVING SYNTACTIC AMBIGUITIES

reads “A butterfly has a spot.” This sentence would avoid the problem
mentioned above. The semantic parse of this sentence is:

X4 (butterfly(xy) X5 (spot(xs)

x1(argl(xy)=x4 has(x1) present(xy) arg2(x1)=xs))),

which has the meaning that there exists a butterfly (x,) that has a spot
(xs5). We add this logical form to the theory (instead of the logical form
for “No butterfly has a net” or “Sally uses a net”), and then attempt to
read “Sally caught a butterfly with a spot.” The first stage of reading
returns the following list of logical forms that maximize the likelihood:

A. xg(x5(name(xs) argl_of(xg)=xs arg2(xs)="Sally")
X10 (spot(xig) Xg (butterfly(xg) x1 (has(x1)
arg2(xi1)=x1e argl_of(xg)=x1) x1(argl(xi)=xe

catch(xy) past(xi) arg2(xi)=xg)))),

with log likelihood -31.834222. This logical form has the mean-
ing: there exists something named “Sally” (xs), and there exists a
butterfly (xo) that has a spot (x), and Sally caught that butterfly.

B. xg(x5(name(xs) argl_of(xg)=xs arg2(xs)="Sally")
X10 (butterfly(xie) Xg (spot(xg)
x1(argl(xy)=xeg catch(xy) past(xi) arg2(xi1)=Xio
xg (use_instrument(xg) arg2(xg)=Xg

argl_of(x1)=xg))))),

with log likelihood -34.767277. This logical form has the meaning;:
there exists something named “Sally” (x;), a butterfly (x:,), and a
spot (xs), and Sally used the spot to catch the butterfly.

C. x6(x5(name(xs) argl_of(xg)=xs arg2(xs)="Sally")

X10 (spot(xip) Xg (butterfly(xg) x1 (has(xy)

arg2(xi1)=x1e argl_of(xg)=x1) x1(arg2(x1)=xe
catch(xy) past(xi) argl(xi)=xg9)))),

with log likelihood -35.544891. This logical form has the mean-
ing: there exists something named “Sally” (x¢), and there exists a
butterfly (xo) that has a spot (x10), and the butterfly caught Sally.

D. xg(x5(name(xs) argl_of(xg)=xs arg2(xs)="Sally")
X10 (butterfly(xi10) Xg (spot(xg)
X1 (arg2(xy1)=xeg catch(xy) past(xy) argl(xi)=Xio
xg (use_instrument(xg) arg2(xg)=Xg
argl_of(x1)=xg))))).

with log likelihood -38.477945. Thislogical form has the meaning;:
there exists something named “Sally” (x;), a butterfly (x1,), and a
spot (xo), and the butterfly used the spot to catch Sally.

The second stage of reading computes the semantic prior for each of
the above logical forms and reranks them:

139

140

END-TO-END EXPERIMENTS

A. log likelihood -31.834222 + log prior -2329.093733
= log posterior -2360.927955,

C. log likelihood -35.544891 + log prior -2329.786880
= log posterior -2365.331771,

B. log likelihood -34.767277 + log prior -2378.812990
= log posterior -2413.580266,

D. log likelihood -38.477945 + log prior -2379.013660
= log posterior -2417.491606.

In the reranked list, both interpretations where the prepositional phrase
attaches to the noun (i.e. the butterfly has the spot) are now much more
probable than both interpretations where the prepositional phrase at-
taches to the verb (i.e. Sally uses the spot to catch the butterfly). But
unlike the earlier example with the net, it is still possible that a spot
can be used as an instrument to catch something, if we know nothing
else about spots. As such, the reasoning module is able to construct
theories that describe these possibilities, however unlikely.

PRONOMINAL RESOLUTION: We also showcase an example where
PWL resolves ambiguity in pronominal resolution in the sentence “A
butterfly has a spot and it is blue,” where “it” can refer to either the
butterfly or the spot. We will show that PWL is able to acquire knowl-
edge from other sentences, and utilize that knowledge to resolve the
ambiguous pronoun “it.” First consider parsing the sentence “A but-
terfly has a spot and it is blue” without any axioms or other sentences
aside from the seed training set. The branch-and-bound algorithm
finds the 4-best logical forms that maximize the log likelihood, after
visiting 27,269 states:

A. x4 (butterfly(xs) x5 (spot (xs) x1 (argl(xy)=xs4
has(x1) present(xi) arg2(xi1)=xs))) Xq (ref(xg)

x1(argl(xy)=xgq blue(xy) present(xi))),

withlog likelihood -46.408566. This logical form has the meaning;:
there exists a butterfly that has a spot, and there exists an object
with special anaphoric type ref (representing “it”) that is blue.

B. xs(butterfly(xs) x5 (spot(xs) X1 (argl(xy)=xg
has(x1) present(xi) arg2(x1)=xs))) x4 (ref(xs)
X1 (arg2(xy1)=xaq blue(xy) present(xi1))),

withloglikelihood -41.982132. Thislogical form has the meaning:
there exists a butterfly that has a spot, an object x, with special
anaphoric type ref (representing “it”), and there exists an event
with type blue whose second argument is x,. This logical form is
spurious since blue is meant to be a property, and its arity should
be 1.

5.1 RESOLVING SYNTACTIC AMBIGUITIES 141

y = “A butterfly has a spot and it is blue.”

Language module computes top-k logical forms
according to likelihood

Rank Top-4 candidate parses x (after coreference resolution) logp(y jX ,X,¥Y)

s(b(butterfly(b) (spot(s)
h(argl(h)=b has (h) present(h) arg2(h)=s)))

i c(argl(c)=s blue(c) present(c))) —lead
(i.e. there is a butterfly with a spot, and the spot is blue)
xg ((butterfly (xg) X5 (spot(xs)
5 x1 (argl(xi)=xg has(x1) present(xi) arg2(x1)=xs))) —41.41

x1(argl(xi)=xg blue(x1) present(xy)))
(i.e. there is a butterfly with a spot, and the butterfly is blue)

For each parse x , the reasoning module com-

PWL has previously read the sentences “The spot is t X iT) and ks logical f d-
red,” “No red thing is blue,” and “A butterfly has a Fr?getso F;(gg pj(x) Jaf(l yr(_}rr?)S :Og; 83 p(o;rr}sxac)c(o;) +
spot,” and added their logical forms to the theory T. logp(x jT)+C Y Y

Rank Candidate parses x re-ranked by reasoning module logp(x jT) logp(x jxVy,T,y)

xg ((butterfly(xg) X5 (spot(xs)
X1 (argl(xi)=x has(x1) present(xy) arg2(xy1)=xs))) _ _
il(argl(il):ig bluel(xl) presentl(xl))) ' ° dozarl deaann
(i.e. there is a butterfly with a spot, and the butterfly is blue)

s(b(butterfly(b) (spot(s)
h(argl(h)=b has (h) present(h) arg2(h)=s))) -1 -1
4 c(argl(c)=s blue(c) present(c)))
(i.e. there is a butterfly with a spot, and the spot is blue)

Figure 20: An example where PWL reads the sentence “A butterfly has a
spot and it is blue,” which is an example of a sentence with an
ambiguous pronoun: “it” could either refer to “butterfly” or “spot.”
The output of the first stage of reading is shown in the top table
(after intra-sentential coreference resolution), and the output of the
second stage is shown in the bottom table. In this example, PWL
has previously read “The spot is red,” “No red thing is blue,” and
“A butterfly has a spot,” and added their logical form to the theory.
As a result, the reasoning module is unable to find a theory where
the spot is blue, and so the prior probability of that logical form is
zero. The log probabilities in the bottom table are unnormalized.

142

C.

END-TO-END EXPERIMENTS

x4 (butterfly(xg) x5 (spot(xs) x1(argl(xy)=xg
has(x1) present(xy) arg2(x1)=xs))) X4 (ref(xg)
X1 (argl(xy)=xa mass(x1) present(xi1))),

with log likelihood -42.157306. Thislogical form has the meaning:
there exists a butterfly that has a spot, an object x, with special
anaphoric type ref (representing “it”), and there exists an event
with type mass whose first argument is x,.

X4 (butterfly(xg) x5 (spot(xs) X1 (argl(xy)=x4
has(x1) present(xi) arg2(x1)=xs))) x4 (ref(xy)
x1(argl(xy)=xq terrestrial(x;y) present(xi))).

with log likelihood -43.325155. Thislogical form has the meaning;:
there exists a butterfly that has a spot, an object x, with special
anaphoric type ref (representing “it”), and there exists an event
with type terrestrial whose first argument is x,.

The parser then performs intra-sentential coreference resolution de-
scribed in section 4.5.1, and the resulting top-4 logical forms are:

A1

. xXe(x4(butterfly(xs) (spot(xe) x1(argl(xy)=xa
has(x1) present(xi) arg2(x1)=xg))) x1(argl(xy)=xg
blue(xi) present(xi))),

which has the meaning: there exists a butterfly that has a spot,
and the spot is blue.

xg ((butterfly(xg) X5 (spot(xs) x1(argl(xi)=xe
has(x1) present(xi) arg2(x1)=xs))) x1(argl(xy)=xeg
blue(x;i) present(xy))),

which has the meaning: there exists a butterfly that has a spot,
and the butterfly is blue.

Xg (X4 (butterfly(xg) (spot(xg) X1 (argl(xy)=xg4
has (x1) present(x;) arg2(xi1)=xg))) x1(arg2(x1)=xe
blue(xy) present(xy))),
which has the meaning: there exists a butterfly that has a spot,
and there exists an event with type blue whose second argument
is the spot (this is the same spurious logical form as above).

Xg (X4 (butterfly(xg) (spot(xg) x1(argl(xy)=xg4
has(x1) present(xi) arg2(x1)=xg))) x1(argl(xy)=xeg
mass (x1) present(xi))),
which has the meaning: there exists a butterfly that has a spot,

and there exists an event with type mass whose first argument is
the spot.

The log likelihoods above are fairly close, as a result of the fact that the
word “blue” does not appear within a sentence of the seed training
set. Rather, it is specified as a standalone adjective. Thus, the parser is

5.1 RESOLVING SYNTACTIC AMBIGUITIES

generally less certain about its use within a sentence. In addition, the
grammar does not currently incorporate the fact that when adjectives
are used predicatively (i.e. as a predicate), the corresponding predicate
in the logical form should be unary. The production rules need to be
modified in order to incorporate this observation. At the second stage
of reading, PWL computes the semantic prior for each of the above
logical forms and reranks them:

A.1 log likelihood -40.408566 + log prior -122.844591
= log posterior -163.253157,

A.2 log likelihood -41.408566 + log prior -122.844591
= log posterior -164.253157,

B. log likelihood -41.982132 + log prior -122.844591
= log posterior -164.826723,

C. log likelihood -42.157300 + log prior -122.844591
= log posterior -165.001892.

Now consider the case where PWL first reads the sentences “The
spot is red,” and “No red thing is blue,” before reading the sentence
“A butterfly has a spot and it is blue.” PWL parses “The spot is red”
into the logical form:

Xg (Xe= X3Spot(xs) size(xg)=1 x5 (X6 (X5)

x1(argl(xy)=xs red(xz) present(xy1)))),

which has the meaning: there exists a set xs which is the set of all
spots, xg has size 1, x5 is an element of x5, and xs is red. Similarly, PWL
parses “No red thing is blue” into the logical form:

X4 (x1(red(xy) argl_of(x4)=x1) object(xyg)
x1(argl(xy)=xy4 blue(xi) present(xy))),

which has the meaning: there does not exist an object that is both red
and blue. Note that PWL assumes that all objects have type object.
Both of the above logical forms are added to the theory, and we again
try to read the sentence “A butterfly has a spot and it is blue.” The
first stage of parsing is unchanged from before, but the second stage
of parsing produces the following ranked list of logical forms:

A.2 log likelihood -41.408566 + log prior -452.610736
= log posterior -494.019302,

C. log likelihood -42.157300 + log prior -452.644638
= log posterior -494.801938,

B. log likelihood -41.982132 + log prior -452.876440
= log posterior -494.858571,

143

144

END-TO-END EXPERIMENTS

A.1 log likelihood -40.408566 + log prior -inf
= log posterior -inf.

PWL correctly infers that the interpretation where the spot is blue is
impossible, and the most probable logical form is the one in which “it”
refers to the butterfly rather than the spot. Figure 20 summarizes this
example.

Here, we showcase an example where PWL is limited by the sim-
plicity of the prior on the theory and proofs. Consider first reading
the sentences “The spot is red,” “No red thing is blue,” and then “If a
butterfly has a spot, then it is blue.” The first stage of parsing returns
the following list of most likely logical forms:

A. (x4(butterfly(xs) X5 (spot(xs) x1(argl(xy)=xa
has(x1) present(xy) arg2(xi1)=xs))) x4 (ref(xy)

X1 (argl(xy1)=xq blue(xy) present(xy)))),

with log likelihood -47.038724. This logical form has the meaning;:
If there exists a butterfly (x4) and a spot (xs), and the butterfly has
the spot, then there exists an object of anaphoric type ref (x,) that
is blue.

B. (x4(butterfly(xs) x5 (spot(xs) x1(argl(xy)=x4
has(x1) present(xi) arg2(xi1)=xs))) x4 (ref(xg)

xi1(arg2(xi1)=xs blue(xy) present(xy)))),

with log likelihood -48.612296. Thislogical form has the meaning:
If there exists a butterfly (x4) and a spot (xs), and the butterfly has
the spot, then there exists an object of anaphoric type ref (x4), and
an event of type blue such that its second argument is x,. As with
the previous example, this logical form is spurious since the blue
event is unary.

C. (xa(butterfly(xa) X5 (spot(xs) x1(argl(xy)=xg
has(x1) present(xy) arg2(xi1)=xs))) x4 (ref(xy)
X1 (argl(xy)=xa mass (x7) present(xy)))),

with log likelihood -48.787458. This logical form has the meaning;:
If there exists a butterfly (x4) and a spot (xs), and the butterfly has
the spot, then there exists an object of anaphoric type ref (x4), and
an event of type mass such that its first argument is x,.

D. (x4(butterfly(xa) x5 (spot(xs) x1 (argl(xy)=x4
has(x1) present(xy) arg2(xi1)=xs))) x4 (ref(xs)
x1(argl(xy)=xq4 terrestrial(x;) present(xy1)))).
with log likelihood -49.955313. Thislogical form has the meaning:
If there exists a butterfly (x4) and a spot (xs), and the butterfly has

the spot, then there exists an object of anaphoric type ref (x4), and
an event of type terrestrial such that its first argument is x,.

The output of intra-sentential coreference resolution is:

5.1 RESOLVING SYNTACTIC AMBIGUITIES

A1, xg(x4(butterfly(xs) (spot(xe) x1(argl(xi)=x4
has(x1) present(xy) arg2(xi1)=xg))) x1(argl(xi)=xe
blue(xy) present(xi))),

which has the meaning: for all spots, if there exists a butterfly
that has that spot, the spot is blue.

A.2. xg(butterfly(xg) x5 (spot(xs) x1 (argl(xy)=xe
has(x1) present(xi) arg2(x1)=xs)) x1(argl(xy)=xe

blue(xi) present(xi))),

which has the meaning: for all butterflies, if the butterfly has a
spot, the butterfly is blue.

B. x6(xs4(butterfly(xs) (spot(xe) x1(argl(xy)=xs
has(x1) present(xy) arg2(x1)=xg))) x1 (arg2(xy1)=xg
blue(xy) present(xi))),

which has the meaning: for all spots, if there exists a butterfly that
has that spot, there exists an event with type blue whose second
argument is the spot (this is the same spurious logical form as
above).

C. xg(xa(butterfly(xs) (spot(xg) x1(argl(xy)=xg
has(x1) present(xy) arg2(x1)=xg))) x1(argl(xy)=xg

mass (x1) present(xy))),

which has the meaning: for all spots, if there exists a butterfly
that has that spot, there exists an event with type mass whose
first argument is the spot.

The second stage of reading then reranks the above list according to
the semantic prior of each logical form:

A.1 log likelihood -47.038724 + log prior -451.290984
= log posterior -498.329707,

A.2 log likelihood -48.038724 + log prior -451.316548
= log posterior -499.355272,

B. log likelihood -48.612290 + log prior -451.281382
= log posterior -499.893672,

C. log likelihood -48.787458 + log prior -452.038785
= log posterior -500.826244.

Unlike the last example, the interpretation where the spot is blue is no
longer impossible. In fact, it is now the most probable interpretation.
The reason for this is that PWL is still able to construct consistent
theories in which the first logical form in the above list is an axiom:
the axiom would be vacuously true if there do not exist any butterflies
with spots.

145

146

END-TO-END EXPERIMENTS

However, if we additionally provide the background sentence “A
butterfly has a spot” (in addition to “The spot is red” and “No red
thing is blue”), and then re-run the above reading procedure for “If
a butterfly has a spot, then it is blue,” the output of the second stage
would become:

A.2 log likelihood -48.038724 + log prior -637.068882
= log posterior -685.107606,

B. log likelihood -48.612290 + log prior -637.017189
= log posterior -685.629478,

C. log likelihood -48.787458 + log prior -638.144783
= log posterior -686.932241,

A log likelihood -47.038724 + log prior -inf
= log posterior -inf.

Now, the interpretation where the spot is blue is correctly given zero
posterior probability, and the most probable logical form is the one
where the butterfly is blue. However, this example highlights a differ-
ence in the prior probability of logical forms that are vacuously true.
Humans are very unlikely to generate such logical forms, but they are
not discouraged by PWM.

LEXICAL AMBIGUITY: Here, we showcase an example where PWL
uses semantics to resolve lexical ambiguity. In this example, in the
sentence “Minas Tirith is the largest city,” the word “largest” may
either refer to maximizing area or population. But if PWL is first
given sentences that specify the area of Minas Tirith and another city,
Pelargir, we demonstrate that PWL is able to correctly synthesize this
information, along with axioms that define maximality, in order to
resolve the lexical ambiguity.

In order to correctly disambiguate the meaning of “largest” in this
example, the reasoning module first needs to know the meaning of
maximality in order to reason about it. In all of the experiments
described in this chapter, the following two axioms are added to the
theory before reading any sentences. They define the meaning of
maximality and minimality (represented as events of type greatest
and least):

X1 X2 X3(
X4 (greatest(xy) (x4) argl(xg)=x3 arg2(x4)=x1)
x3 (x1) X4 (X2 (X1) (Xg) x5 (X3 (Xs5) X6 (X2 (X5) (Xg)
(number (x4) ge(Xa,Xg)) x7 (measure(x4) argl(xs)=x7
xg (measure(xg) Xg (arg2(xa)=xg arg2(xeg)=Xg)
argl(xe)=xs ge(x7,Xg))))))),
which states that for any object x; that maximizes the function x, over
the set x5 (i.e. there is an event of type greatest(x,), where the first

5.1 RESOLVING SYNTACTIC AMBIGUITIES 147

y = “Minas Tirith is the largest city.”

Language module computes top-k logical forms
according to likelihood

Rank Top-4 candidate parses X (after coreference resolution) logp(y jx ,xy)

m(n(name(n) argl_of(m)=n arg2(n)="Minas Tirith")
f(f= x y a(area(a) arg2(a)=y argl_of(x)=a)
C(C= c.city(c) G(G= g x(greatest(f) (x) argl(x)=C
arg2_of(g)=x) size(G)=1 g(G(g)
s(argl(s)=m same(s) present(s) arg2(s)=g))))))
(i.e. Minas Tirith is the city with the greatest area)
m(n(name(n) argl_of(m)=n arg2(n)="Minas Tirith")
f(f= x y p(population(p) arg2(p)=y argl_of(x)=p)
C(C= c.city(c) G(G= g x(greatest(f) (x) argl(x)=C
arg2_of(g)=x) size(G)=1 g(G(g)
s(argl(s)=m same(s) present(s) arg2(s)=g))))))
(i.e. Minas Tirith is the city with the greatest population)

-15.81

-16.50

PWL has previously read the sentences “The area of For each parse x , the reasoning module com-
Minas Tirith is 1.4 square kilometers,” “The area of putes p(X jT) and reranks logical forms accord-
Pelargir is 3.7 square kilometers,” and “Pelargir is a ing to logp(x jx,y, T,y) = logp(y jx ,Xxy)+
city,” and added their logical forms to the theory T. logp(x jT)+C

Rank Candidate parses X re-ranked by reasoning module logp(x jT) logp(x jXVy,T,y)

m(n(name(n) argl_of(m)=n arg2(n)="Minas Tirith")
f(f= x y p(population(p) arg2(p)=y argl_of(x)=p)
C(C= c.city(c) G(G= g x(greatest(f) (x) argl(x)=C
arg2_of(g)=x) size(G)=1 g(G(g)
s(argl(s)=m same(s) present(s) arg2(s)=g))))))
(i.e. Minas Tirith is the city with the greatest population)

-5860.06 -5876.57

m(n(name(n) argl_of(m)=n arg2(n)="Minas Tirith")
f(f= x y a(area(a) arg2(a)=y argl_of(x)=a)
C(C= c.city(c) G(G= g x(greatest(f) (x) argl(x)=C
3 arg2_of(g)=x) size(G)=1 g(G(g)
s(argl(s)=m same(s) present(s) arg2(s)=g))))))
(i.e. Minas Tirith is the city with the greatest area)

-5875.64 -5891.46

Figure 21: An example where PWL reads the sentence “Minas Tirith is the
largest city,” which is an example of a sentence with an ambiguous
word: “largest city” could either refer to the city with the largest
area or the largest population. The output of the first stage of
reading is shown in the top table, and the output of the second
stage is shown in the bottom table. In this example, PWL has
previously read “The area of Minas Tirith is 1.4 square kilometers,”
“The area of Pelargir is 3.7 square kilometers,” and “Pelargir is a
city,” and added their logical form to the theory. As a result, the
reasoning module only finds lower probability theories in which
Minas Tirith is the city with the largest area (an example of such a
theory is one where there are two cities named Minas Tirith, one
of which has area at least 3.7 sq km). The log probabilities in the
bottom table are unnormalized.

148 END-TO-END EXPERIMENTS

argument is x;, the second argument is xs), then x; is an element of xs,
and for any element x5 of x5, the value of the function x, of x; is greater
than or equal to the value of the function x, of x5 (wWhere the predicate
ge denotes greater than or equal). This axiom also handles cases
where the two quantities being compared are quantities with units (i.e.
instances of measure whose first argument is the numerical quantity
and second argument is the unit). In which case, the quantities are
only compared if they have the same unit x,. Similarly, the second
axiom defines the meaning of minimality:

X1 Xz X3(
x4 (Lleast(xz) (x4) argl(xsg)=x3 arg2(x4)=x1)
x3(X1) x4 (X2 (x1) (Xq) X5 (X3 (X5) X6 (X2 (X5) (X6)
(number (x4) ge(XgyXq)) x7 (measure(x4) argl(xg)=x7
xg (measure(xg) Xg (arg2(x4)=xg arg2(xg)=Xg)

argl(xe)=xg ge(xg,x7))))))).

In principle, additional seed axioms could easily be added to encode
further background knowledge.

Now, consider the example where PWL parses the sentence “Minas
Tirith is the largest city,” without having read any other sentences. The
branch-and-bound algorithm returns the 4 logical forms that maximize
the likelihood, after visiting 3380 states:

A. Xg (x5 (name(xs) argl_of(xg)=xs arg2(xs)="Minas Tirith")
x26(X26= Xg Xg Xp7(area(xz7) arg2(xp7)=xg argl_of(xg)=xa7)
X25(X25= X12¢ity(X12) X24(X24= X3 Xs(greatest(xze) (xs)
argl(xs)=xzs arg2_of(x3z)=xs) size(xzs4)=1 X23 (X24 (X23)

x1(argl(xi1)=xs same(x1) present(xi1) arg2(xi)=x23)))))),

with log likelihood -15.812698. Thislogical form has the meaning;:
Minas Tirith is the city with the greatest area.

B. x6(xs(name(xs) argl_of(xg)=xs arg2(xs)="Minas
Tirith") X26(X26= Xg Xg X7 (population(xz7)
arg2(xa7)=xe argl_of(xg)=x27) X25(X25= X12€ity(x12)
X24 (X24= X3 Xs(greatest(xze) (xs) argl(xs)=xzs
arg2_of(x3)=xs) size(xz4)=1 x23 (x24 (x23) x1(argl(xi)=xe

same (x1) present(xy) arg2(xi)=x23)))))),

with log likelihood -16.505754. Thislogical form has the meaning:
Minas Tirith is the city with the greatest population.

C. Xg (x5 (name(xs) argl_of(xe)=xs arg2(xs)="Minas Tirith")
x26(X26= Xg Xg Xa7(area(xz7) arg2(xp7)=xg argl_of(xg)=xa7)
X25(X25= X12¢ity(X12) x24 (X24= X3 X5 (greatest(xze) (xs)
argl(xs)=xzs arg2_of(x3z)=xs) size(xzs4)=1 X23 (X24 (X23)
x1(arg2(x1)=xe same(xi) present(xi) argl(xi)=x23)))))),
with log likelihood -17.198972. This logical form has the same
meaning as the first logical form in this list, but the arguments of

5.1 RESOLVING SYNTACTIC AMBIGUITIES

the same event are swapped (the parser is not aware that same is
symmetric).

D. X6 (X5 (name(xs) argl_of(xg)=xs arg2(xs)="Minas
Tirith") X26(X26= Xg Xg X7 (population(xz7)
arg2(xa7)=xe argl_of(xg)=x27) X25 (X25= X12€ity(X12)
X24(X24= X3 Xs(greatest(xze) (xs5) argl(xs)=xzs
arg2_of(x3z)=xs) size(xzs4)=1 X23 (X24 (X23) x1(arg2(x1)=xe

same (x1) present(xy) argl(xi)=x23)))))).

with log likelihood -17.892028. This logical form has the same
meaning as the second logical form in this list, but the arguments
of the same event are swapped (the parser is not aware that same is
symmetric).

In the second stage of reading, PWL computes the semantic prior for
each of the above logical forms and reranks them:

A. log likelihood -15.812698 + log prior -2378.425525
= log posterior -2394.238222,

B. log likelihood -16.505754 + log prior -2378.157261
= log posterior -2394.663015,

C. log likelihood -17.198972 + log prior -2377.854980
= log posterior -2395.053952,

D. log likelihood -17.892028 + log prior -2378.592579
= log posterior -2396.484607.

Unsurprisingly, since the theory has no axioms from prior observa-
tions, the ranking does not change. The most probable interpretation
of “largest” is that of maximizing area.

Next, suppose PWL first reads the sentences “The area of Minas
Tirith is 1.4 square kilometers,” “The area of Pelargir is 3.7 square
kilometers,” and “Pelargir is a city.” PWL parses “The area of Minas
Tirith is 1.4 square kilometers” into the logical form:

X16 (X109 (name(x1g9) argl_of(xig)=X10 arg2(xip)="Minas Tirith")
x15(X15= X3 xs(area(xs) argl(xs)=xie arg2_of(x3)=xs)
size(x15)=1 x14 (X15(X14) x1g (kilometer (x1g)
x17 (measure(xy7) argl(x;7)=1.4 arg2(xi7)=xis

x1(argl(xi1)=x14 same(xy) present(xy) arg2(x1)=x17)))))),

which has the meaning: There exists an object named “Minas Tirith”
x15, which has a unique area x;s. xi4 is identical to x;; which is
an instance of measure, whose quantity is 1.4 and unit is x;5 which

149

150

END-TO-END EXPERIMENTS

has type kilometer. PWL parses “The area of Pelargir is 3.7 square
kilometers” into the logical form:

X16(X10(name(xip) argl_of(xi6)=X10 arg2(xip)="Pelargir")
X15(X15= X3 xs(area(xs) argl(xs)=xis arg2_of(x3)=xs)
size(x15)=1 X14 (X15(X14) x1g (kilometer(xig)
x17 (measure(x17) argl(xi7)=3.7 arg2(xi17)=xi1s

x1(argl(xy)=x14 same (x1) present(xy) arg2(x1)=x17)))))),

which has the meaning: There exists an object named “Pelargir” x;¢,
which has a unique area x;4. x4 isidentical to x; 7 which is an instance
of measure, whose quantity is 3.7 and unit is x;5 which has type
kilometer. PWL parses “Pelargir is a city” into the logical form:

Xg (x5 (name(xs) argl_of(xg)=xs arg2(xs)="Pelargir") X7 (city(x7)

x1 (argl(xi)=xeg same (x1) present(xi) arg2(x1)=x7))),

which has meaning: There exists an object named “Pelargir” xs which
is equivalent to x; which is an instance of city. We add these logical
forms to the theory and then attempt to read the sentence “Minas
Tirith is the largest city” once more. The first stage of parsing is
unchanged, since it is independent of the theory. But in the second
stage, PWL reranks the logical forms according to their semantic prior.
The resulting ranked list is:

B. log likelihood -16.505754 + log prior -5860.061336
= log posterior -5876.567091,

D. log likelihood -17.892028 + log prior -5859.448232
= log posterior -5877.340260,

A. log likelihood -15.812698 + log prior -5875.643694
= log posterior -5891.456391,

C. log likelihood -17.198972 + log prior -7922.388543
= log posterior -7939.587514.

Now, the most probable interpretation of “largest” is that which maxi-
mizes population, rather than area. PWL was (successfully) unable to
construct a high-probability theory where Minas Tirith is the city that
maximizes area, since there exists another city (Pelargir) with greater
area, and the definition “maximality” is given by the axioms men-
tioned earlier. Instead, the reasoning module finds lower probability
theories, such as one where there are two cities named “Minas Tirith,”
one of which has area 1.4 sq km, and the other has area at least 3.7
sq km. Thus, the most probable theories are those in which “largest”
refers to population.

We will show in section 5.4 that this ability to exploit semantic infor-
mation to resolve lexical ambiguity is helpful in question-answering,
where the questions can exhibit lexical ambiguity.

5.2 REASONING OVER SIZES OF SETS

5.2 REASONING OVER SIZES OF SETS

In this section, we showcase an example where PWL reads sentences
that state the number of various objects, which are interpreted as sets,
and inspect the sizes of those sets in the posterior samples of the theory.
The example here is a simple counting problem that young children
are able to solve. This example will demonstrate that PWL is capable
of parsing and understanding the semantics of sentences that convey
information about the number of objects of various types, and is capa-
ble of reasoning about that information. Additionally, many modern
natural language understanding methods notoriously struggle with
discrete reasoning such as counting. The use of a symbolic formal
language and symbolic reasoning helps PWL in situations that require
discrete reasoning, and generalization to larger sets is guaranteed by
design.

In the first example, PWL reads the sentences “There are 30 red or
blue things,” and “Every fish is red or blue.” Their most probable
logical forms are added to the theory and then we perform 120,000
iterations of MH. At each MH sample, we record the size of the known
set X.fish(x) (i.e. the number of fish). Figure 22 shows a histogram
of the samples of this quantity. As expected, the number of fish takes
any integer value between o and 30.

0.25
0.20

0.15
0.10

probability

0.05

o.oo INNNANARERERERRRRRR R ERRRRRREN

0 4 8 12 16 20 24 28 32 36 40
size(Ax.Fish(x))

Figure 22: Histogram of the size of the set of fish (i.e. the number of fish),
from the MH samples of the theory, after reading the sentences
“There are 30 red or blue things,” and “Every fish is red or blue.”

Next, PWL reads another sentence “There are six red fish,” and
adds the most probable logical form to the theory. Again, we perform
120,000 iterations of MH and record the number of fish in each sample
theory. These samples are shown in the histogram in figure 23. As
expected, since there are six red fish, the lower bound on the number
of fish is 6, as well.

Next, PWL reads the sentence “There are 24 blue fish,” and adds the
most probable logical form to the theory. Again, we perform 120,000
iterations of MH and record the samples of the number of fish. The

151

152

END-TO-END EXPERIMENTS

0.25
0.20
0.15
0.10

probability

0.05

0.00 I
4 8

12 16 20 24 28 32 36 40
size(Ax.Fish(x))

Figure 23: Histogram of the size of the set of fish (i.e. the number of fish),
from the MH samples of the theory, after reading the sentences
“There are 30 red or blue things,” “Every fish is red or blue,” and
“There are six red fish.”

0.25
0.20
0.15

0.10
0.05
0.00
16 20 24 28 32 36 4

0 4 8 12

probability

0
size(Ax.Fish(x))

Figure 24: Histogram of the size of the set of fish (i.e. the number of fish), from
the MH samples of the theory, after reading the sentences “There
are 30 red or blue things,” “Every fish is red or blue,” “There are
six red fish,” and “There are 24 blue fish.”

histogram of these samples is shown in figure 24. Now, the number of
fish is bounded between 24 and 30. If all the fish had distinct colors,
there would be 30 fish, but if all of the red fish were also blue, there
would 24 fish.

PWL then reads the sentence “No fish is red and blue,” and adds
the most probable logical form to the theory. After 120,000 iterations
of MH, the samples of the number of fish are shown in the histogram
in figure 25. Since all fish now have distinct colors, the lower bound
on the number of fish is 30, and therefore, the number of fish is fixed
to 30.

However, our specialized data structure for checking the consistency
of set sizes (described in section 3.2.1.1) does not detect all inconsis-
tencies. We demonstrate this in the above example by replacing the
sentence “There are 30 red or blue things,” with “There are 35 red

5.3 QUESTION-ANSWERING IN PROOFWRITER

probability
© © o 9o o m
o N S » oo o

0 4 8 12 16 20 24 28 32 36 40
size(Ax.fish(x))

Figure 25: Histogram of the size of the set of fish (i.e. the number of fish), from
the MH samples of the theory, after reading the sentences “There
are 30 red or blue things,” “Every fish is red or blue,” “There are six
red fish,” “There are 24 blue fish,” and “No fish is red and blue.”

0.25
0.20

0.15
0.10
0.05
000 8 32 36 40

0 4 8 12 16 20 24 2
size(Ax.Fish(x))

probability

Figure 26: Histogram of the size of the set of fish (i.e. the number of fish), from
the MH samples of the theory, after reading the sentences “There
are 35 red or blue things,” “Every fish is red or blue,” “There are six
red fish,” “There are 24 blue fish,” and “No fish is red and blue.”

or blue things.” PWL reads this sentence in addition to the 4 other
sentences mentioned above, adds their most probable logical forms to
the theory, and runs 120,000 iterations of MH. The resulting histogram
of the number of fish is shown in figure 26. The size of the set of all
fish is bounded between 30 and 35. However, it is impossible to have
more than 30 fish, since all fish are either red or blue, and there are 6
red fish and 24 blue fish. Our data structure does not currently detect
this inconsistency.

5.3 QUESTION-ANSWERING IN PROOFWRITER

In order to quantitatively demonstrate our implementation as a proof-
of-concept, we evaluate it on two question-answering tasks. The first is
the PrRooFWRriTER dataset (Tafjord, Dalvi, and Clark, 2021), which itself

153

154

END-TO-END EXPERIMENTS

is based on the earlier RULETAkER dataset (Clark, Tafjord, and Richard-
son, 2020). This dataset contains a large number of paragraphs, each
followed by a true/false question, and a label indicating the answer.
Each paragraph describes a small self-contained situation, and the
task is to determine whether the question is true or false, given the
situation in the paragraph. An example from the dataset is shown in
figure 27. The PrRooFWRITER dataset comes in two versions: one which
makes the closed-world assumption, and one that does not. In the
closed-world version, if a fact is not provable from its premises, it is
false. As a result, all questions are labeled either true or false. In the
“open-world” version, some facts are not provably true or false given
the premises. These examples are labeled unknown. The dataset is
divided into a number of sections, which the authors used to evaluate
different aspects of their method. To evaluate and demonstrate the
out-of-domain language understanding and reasoning ability of PWL,
we use the Birds-Electricity “open-world” portion of the dataset, as the
authors evaluated their method on this portion with the same goal.
They evaluated their method on this portion by measuring its zero-shot
accuracy, where the algorithm is evaluated without being trained on
examples from the same dataset. We also evaluate PWL by measuring
zero-shot accuracy. This portion of the data is further subdivided into
6 sections, each with varying degrees of difficulty.

For each example in the Birds-Electricity portion of the dataset, PWL
reads the context and abduces a theory using MH. Next, it parses the
query sentence y into a logical form X and estimates its unnormalized
probability p(X] X1,:::,Xn) using the sampling method described
in section 3.3.1. To approximate this quantity, MH is run for 400
iterations, and at every 100th iteration, PWL re-initializes the Markov
chain by performing 20 “exploratory” MH steps (i.e. a random walk,
where MH only considers the third and fourth proposals in table 1 and
accepting every proposal). Once PWL has computed this probability
for the query sentence, it does the same for the negation of the sentence.
These unnormalized probabilities are then compared, and if they are
within 2000 in log probability, PWL returns the label unknown. If the
first probability is sufficiently larger than the second, PWL returns true,
and otherwise, return false. The parameters in the prior were set by
hand initially by choosing values which we thought were reasonable
(e.g. the average length of a natural deduction proof for a sentence
containing a simple subject noun phrase, object noun phrase, and
transitive verb is around 20 steps, which is why the Poisson parameter
for the proof length is set to 20). The values were tweaked as necessary
by running the algorithm on toy examples during debugging. Note
that the sentences “Bill is a bird” and “Bill is not a bird” can still both be
true if each “Bill” refers to distinct entities. To avoid this, we chose an
extreme value of the prior parameter such that the log prior probability
of a theory with two entities having the same name is 2000 less than

5.3 QUESTION-ANSWERING IN PROOFWRITER

Context: “Arthur is a bird. Arthur is not wounded. Bill is an ostrich.
Colin is a bird. Colin is wounded. Dave is not an ostrich. Dave is
wounded. Every ostrich is a bird. Every ostrich is abnormal. Every
ostrich is not flying. Every bird that is wounded is abnormal. Every
thing that is wounded is not flying. Every bird that is not abnormal
is flying.”

Query: “Bill is a bird.” true, false, unknown?

Figure 27: An example from the Birds1 section in the PrRoorWRITER dataset.
Its label is true.

Context: “The switch is on. The circuit has the bell. If the circuit has
the switch and the switch is on then the circuit is complete. If the
circuit does not have the switch then the circuit is complete. If the
circuit is complete and the circuit has the light bulb then the light
bulb is glowing. If the circuit is complete and the circuit has the bell
then the bell is ringing. If the circuit is complete and the circuit has
the radio then the radio is playing.”

Query: “The circuit is complete.” true, false, unknown?

Figure 28: Another example from the Electricityl section in the PROOFWRITER
dataset. Its label is unknown. However, under classical logic, the
query is provably true from the information in the 1st, 3rd, and
4th sentences. This is not typical; classical and intuitionistic logic
produce the same result for most examples in the PRoOOFWRITER
dataset.

that of a theory where the name is unique. It is for this reason 2000 was
chosen as the threshold for determining whether a query is true/false
vs unknown. This prior worked well enough for the experiments in
this thesis, but the goal is to have a single prior work well for any
task, so further work to explore which priors work better across a
wider variety of tasks is welcome. We evaluated PWL on PROOFWRITER
using both classical and intuitionistic logic, even though the ground
truth labels in the dataset were generated using intuitionistic logic.
Figure 28 showcases an example where the provability of the question
is dependent on the choice of logic.

Table 3 lists the zero-shot accuracy of PWL, comparing with baselines
based on the T5 transformer (Raffel et al., 2020). The baseline methods
are black-box models that are trained to take, as input, the paragraph
and question, and output a proof of whether the question is true or
false (or “None” if there isno proof). The baseline ProofWriter-All feeds
the input into a Tg transformer and outputs this proof all-at-once. On
the other hand, ProofWriter-Iter performs the task iteratively: it feeds
the input into a T5 transformer and outputs a single proof step. The
conclusion of this step is then added to the input and this process is
repeated: the new (larger) input is fed into the T5 transformer, which
again outputs a proof step. The process is repeated until there are no

155

END-TO-END EXPERIMENTS

further proof steps available. The final proof can then be constructed
from the individual proof steps. The baseline Proof Writer-All is trained
on the D5 portion of the PrRoorFWRriTER dataset, whereas ProofWriter-
Iter is trained on the DO, D1, D2, and D3 portions.

We emphasize here that PWL is not perfectly comparable to the
baselines, since they aimed to demonstrate that their method can learn
to reason. But we chose to compare against them since they were the
only available baselines on the dataset . We instead aim to demonstrate
that PWL'’s ability to parse and reason end-to-end generalizes to an
out-of-domain question-answering task. The baseline is trained on
other portions of the PRooFWRriTER data, whereas the parser in PWL
is trained only on its seed training set and the reasoning module is
not trained. PWL performed much better using intuitionistic logic
than classical logic, as expected since the ground truth labels were
generated using intuitionistic semantics. However, most humans and
real-world reasoning tasks would take the law of the excluded middle
to be true, and classical logic would serve as a better default. Although
the task is relatively simple, it nevertheless demonstrates the proof-of-
concept and the promise of further research in this program.

SecTiON N ‘ ProofWriter-All ProofWriter-Iter PWL (classical) (intuitionistic)
Electricityl 162 98.15 98.77 92.59 100.00
Electricity2 180 91.11 90.00 90.00 100.00
Electricity3 624 91.99 94.55 88.46 100.00
Electricityd 4224 91.64 99.91 94.22 100.00
Birds1 40 100.00 95.00 100.00 100.00
Birds2 40 100.00 95.00 100.00 100.00
Average 5270 91.99 98.82 93.43 100.00

Table 3: Zero-shot accuracy of PWL and baselines on the ProorWRriTER dataset.

5.4 QUESTION-ANSWERING IN FICTIONALGEOQA

The sentences in the PROOFWRITER experiment are template-generated
and have simple semantics, and therefore, they do not provide a good
representation of real-world NLU. For the sake of a more representa-
tive evaluation, we introduce a new question-answering dataset called
FictioNnaLGEOQA. FicTioNaLGEOQA is a dataset containing paragraphs,
each followed by a question and a label indicating the correct answer(s).
Unlike PROOFWRITER, the questions in FictioNaLGEOQA are not true/-
false. For many questions, the correct answer is a collection of multiple
entities rather than a single entity, such as in “What rivers in Wulster-
shire are not major?” For some questions, the correct answer is the
empty set (e.g. “What rivers in Wulstershire are not major?” but no
river in Wulstershire is major).

5.4 QUESTION-ANSWERING IN FICTIONALGEOQA

To create this dataset, we took questions from GEoQUERY (Zelle and
Mooney, 1996), and for each question, we wrote a paragraph con-
text containing the information necessary to answer the question. We
added distractor sentences to make the task more robust against heuris-
tics. For example, a common heuristic for answering questions about
superlatives (“What is the tallest...”, etc) is to find the largest num-
ber in the paragraph and return the object associated with it. So for
each of the questions involving superlatives, we added distractor sen-
tences that contained numbers larger than the other numbers in the
paragraph. Whenever possible, the sentences in this paragraph were
taken from Simple English Wikipedia. However, some facts, such
as the lengths of rivers, are not expressed in sentences in Wikipedia
(they typically appear in a table on the right side of the page), and
so we wrote those sentences by hand. To keep the focus of the eval-
uation on reasoning ability and to avoid reducing the evaluation to
a semantic parsing benchmark, we chose to restrict the complexity of
the language. In particular, each sentence is independent and can be
understood in isolation (e.g. there are no cross-sentential anaphora).
The sentences are more complex than those in PrRoorWRriTER, having
more of the complexities of real language, such as synonymy, lexical
ambiguity (e.g. what is the semantics of “has” in “a state has city” vs
“a state has area”; or whether “largest state” refers to area or popu-
lation), and syntactic ambiguity. This dataset also contains sentences
with more complex semantics, such as definitions of new concepts. For
example, there are examples in the dataset where the concept “major”
is defined as “Every river that is longer than 400 kilometers is major.”
Reading this definition and then reasoning about it is required in or-
der to correctly answer the question “What rivers in Wulstershire are
major?” This increased difficulty of the dataset is evident in the results.
We replaced all place names with fictional names in order to remove
any confounding effects from pretraining. The dataset consists of 600
paragraph-question pairs and is freely available in our repository. This
dataset is meant to evaluate out-of-domain generalizability, and so we
do not provide a separate training set for fine-tuning. However, this
presents a problem when methods output the correct answer for a
question, but phrased slightly differently from the label in the dataset.
This is most apparent when language models overgenerate text. One
way to workaround this problems it to evaluate the answers manually,
but this is time-consuming. As such, we wrote a Python script to au-
tomatically evaluate the outputs of each method, where each question
is labeled with a list of simple patterns. If the answer matches any of
the patterns, it is considered correct.

We compare PWL (using classical logic) with a number of baselines:
(1) UnifiedQA (Khashabi et al., 2020), a question-answering system
based on large-scale neural language models, (2) Boxer (Bos, 2015), a
wide-coverage symbolic semantic parser, combined with Vampire 4.5.1

157

158

END-TO-END EXPERIMENTS

Context: “River Giffeleney is a river in Wulstershire. River Wulster-
shire is a river in the state of Wulstershire. River Elsuir is a river
in Wulstershire. The length of River Giffeleney is 413 kilometers.
The length of River Wulstershire is 830 kilometers. The length of
River Elsuir is 207 kilometers. Every river that is shorter than 400
kilometers is not major.”

Query: “What rivers in Wulstershire are not major?”

Figure 29: An example from FicrioNaLGEOQA, a new fictional geography
question-answering dataset that we created to evaluate reasoning
in natural language understanding.

(Kovacs and Voronkov, 2013), a theorem prover for full first-order logic,
(3) Boxer combined with E 2.6 (Schulz, Cruanes, and Vukmirovic, 2019),
another theorem prover for full first-order logic, (4) the language mod-
ule of PWL combined with Vampire, and (5) the language module of
PWL combined with E. The results are shown in figure 4, along with a
breakdown across multiple subsets of the dataset. The difficulty of this
task relative to PROOFWRITER is evident from these results. UnifiedQA
performs relatively well but fairs more poorly on questions with nega-
tion and subjective concept definitions (e.g. “Every river longer than
500km is major... What are the major rivers?”). Humans are easily
able to understand and utilize such definitions, and the ability to do
so is instrumental in learning about new concepts or vocabulary in
new domains. PWL is able to fare better than UnifiedQA in examples
with lexical ambiguity, as a result of the language module’s ability to
exploit acquired knowledge to resolve ambiguities. We find that Boxer
has significantly higher coverage than PWL (100% vs 79.8%) but much
lower precision. For instance, Boxer uses the semantic representation
in the Parallel Meaning Bank (Abzianidze et al., 2017) which has a
simpler representation of superlatives, and is thus unable to capture
the correct semantics of superlatives in examples of this dataset. We
also find that for most examples, Boxer produces different semantics
for the question than for the context sentences, oftentimes predicting
the incorrect semantic role for the interrogative words, which leads
to the theorem provers being unable to find a proof for these extra
semantic roles. We also experimented with replacing our reasoning
module with a theorem prover and found that for almost all examples,
the search of the theorem prover would explode combinatorially and
would timeout. This was due to the fact that our semantic represen-
tation relies heavily on sets, and so a number of simple set theoretic
axioms are required for the theorem provers, but this quickly causes
the deduction problem to become undecideable. Our reasoning mod-
ule instead performs abduction, and is able to create axioms to more
quickly find an initial proof, and then refine that proof using MH. De-
spite our attempt to maximize the generalizability of the grammar in
PWL, there are a number of linguistic phenomena that we did not yet

5.4 QUESTION-ANSWERING IN FICTIONALGEOQA

159

ST A A § ¢
& Q Q 9 9 2 %)
S 58 f8 358 L2 & f 0§ & & & 4
& g &5 O5 < §& &L S & & & & &
y| § 58 §8 56§ &£ 5 0§ & & & & 09
< % g9 09 5$ < 5(9 < C [§) ~ o (3] w
N 600 | 210 150 170 180 102 100 20 30 8 213 187 85 30
UnifiedQA 33.8 | 29.5 73 335 328 147 43.0 100 200 412 479 278 82 233
Boxer + E 9.7 00 120 11.8 00 157 140 100 00 71 178 53 47 0.
Boxer + Vampire 9.7 00 120 118 00 157 140 100 00 71 178 53 47 0.0
PWL parser + E 5.0 00 133 29 00 157 40 100 00 12 70 53 47 0.0
PWL parser + Vampire 9.0 0.0 133 11.2 0.0 157 40 100 0.0 129 13.6 53 47 0.
PWL 431 | 405 333 335 344 235 450 100 0.0 43.5 62,9 390 17.6 0.0

LEeGeND:
o sUPERLATIVE The subset of the dataset with examples that require reasoning over
superlatives, i.e. “longest river.”

e SUBJECTIVE CONCEPT DEF. Subset with definitions of “subjective” concepts, i.e.
“Every river longer than 500 km is major.”

* OBJECTIVE CONCEPT DEF. Subset with definitions of “objective” concepts, i.e. the
population of a location is the number of people living there.

e LEXICAL AMBIGUITY Subset with lexical ambiguity, i.e. “has” means different
things in “a state has a city named” vs “a state has an area of...”

* NEGATION Subset with examples that require reasoning with classical negation
(negation-as-failure is insufficient).

* LARGE CONTEXT Subset of examples where there are at least 100 sentences in the
context.

o ARITHMETIC Subset with examples that require simple arithmetic.
* COUNTING Subset with examples that require counting.

e N suBseT(s) Examples that belong to exactly n of the above subsets (no example
is a member of more than 4 subsets).

Table 4: Zero-shot accuracy of PWL and baselines on the FictionaLGEOQA
dataset.

implement, such as interrogative subordinate clauses, wh-movement,
spelling or grammatical mistakes, etc, and this led to the lower cov-
erage on this dataset. Work remains to be done to implement these
missing production rules in order to further increase the coverage of
the parser.

Each question in the FicTioNaLGEOQA dataset is labeled with a list of
flags that indicate various features of that question. These flags serve
to divide the dataset into the subsets that are shown in figure 4. For
example, if a question both requires reasoning with superlatives and
has lexical ambiguity, it would be labeled with the flags superlative
and lexical_ambiguity, and would belong to both of those respec-
tive sets. This helps to identify how well each method performs on
questions with superlatives, lexical ambiguity, negation, etc.

Below, we will provide examples of questions that PWL answered
correctly and questions that it answered incorrectly:

160 END-TO-END EXPERIMENTS

« A correctly-answered question with the suPERLATIVE flag:

Context: “The Merasardu River is a river in Efanangole. The Mer-
afagole River is a river in Efanangole. The Mbalam is a river in
Bolurofi. The Kolufori River is a river in Efanangole. There are 3
rivers in Efanangole. The length of the Merasardu River is 432 kilo-
meters. The length of the Merafagole River is 218 kilometers. The
length of the Mbalam River is 1297 kilometers. The length of the
Kolufori River is 587 kilometers.”

Query: “Which is the longest river in Efanangole?”

 An incorrectly-answered question with the suPERLATIVE flag:

Context: “The Merasardu River is a river in Efanangole. The Mer-
afagole River is a river in Efanangole. The Mbalam is a river in
Bolurofi. The Kolufori River is a river in Efanangole. There are 3
rivers in Efanangole. The length of the Merasardu River is 432 kilo-
meters. The length of the Merafagole River is 218 kilometers. The
length of the Mbalam River is 1297 kilometers. The length of the
Kolufori River is 587 kilometers.”

Query: “How long is the longest river in Efanangole?”

The grammar in PWL does not currently implement wh-movement,
and so the parser fails to parse the question.

e A correctly-answered question with the SUBJECTIVE CONCEPT DEF.
flag:

Context: “River Giffeleney is a river in Wulstershire. River Wulster-
shire is a river in the state of Wulstershire. River Elsuir is a river in
Waulstershire. The length of River Giffeleney is 413 kilometers. The
length of River Wulstershire is 830 kilometers. The length of River El-
suir is 207 kilometers. Every river that is longer than 400 kilometers
is major.”

Query: “What are the major rivers in Wulstershire?”

« An incorrectly-answered question with the suBJECTIVE CONCEPT
DEF. flag:

5.4 QUESTION-ANSWERING IN FICTIONALGEOQA 161

Context: “Voronolga is a province in Bievorsk. Abdorostan is a
province in Bievorsk. Fordgorod is a province in Bievorsk. There are
7 provinces. Galininograd is a province in Bievorsk. Puotorsk is a
province in Bievorsk. Getarovo is a province in Bievorsk. Bripetrsk
is a province in Bievorsk. The population of Voronolga is 10178291.
The area of Voronolga is 671200 square kilometers. The popula-
tion of Abdorostan is 6712302. The area of Abdorostan is 912300
square kilometers. The population of Fordgorod is 7290132. The
area of Fordgorod is 671300 square kilometers. The population of
Galininograd is 2392010. The area of Galininograd is 314900 square
kilometers. The population of Puotorsk is 410293. The area of Puo-
torsk is 1023900 square kilometers. The population of Getarovo is
2912062. The area of Getarovo is 519200 square kilometers. The pop-
ulation of Bripetrsk is 412908. The area of Bripetrsk is 428100 square
kilometers. If the area of X is smaller than 500000 square kilometers
then X is minor.”

Query: “What are the minor provinces?”

The sentence “If the area of X is smaller than 500000 square kilo-
meters then X is minor” is incorrectly parsed. The comparative
“smaller” is ambiguous in that it can refer to smaller in area (e.g.
the tennis court is smaller than the football field), in population
(e.g. the town is smaller than the city), or in value (e.g. the mass
of stone is smaller than 1000kg). PWL interpreted “smaller” to
mean smaller in area, but the correct interpretation should be
smaller in value, since “area of X” refers to a value rather than
an object with an area.

A correctly-answered question with the OBJECTIVE CONCEPT DEF.

flag:

Context: “If the number of people living in Xis Y then the population
of X is Y. Every city is in one state. Wilgalway is a city in the state
of Wulstershire. 189202 people live in Wilgalway. The elevation of
Wilgalway is 32 meters. Elfincaster is a city in Wulstershire. The
population of Elfincaster is 87142.”

Query: “What is the population of Wilgalway, Wulstershire?”

e An incorrectly-answered question with the oBJECTIVE CONCEPT
DEF. flag:

162 END-TO-END EXPERIMENTS

Context: “Baritolloti is the capital city of Grappulia. Grappulia is a
state in Catardinia. Grappulia borders Cartabitan. Regnobenoa is a
state in Catardinia. Bascilitina is a state in Catardinia. Regnobenoa
borders Grappulia. Bascilitina borders Regnobenoa. Bascilitina bor-
ders Grappulia. Geoturin is the capital city of the state of Cartabitan.
Veronizzia is a city in Cartabitan. Baritolloti is a city in Grappulia.
Brescitabia is a city in Cartabitan. Cartabitan is a state in Catardinia.
The Begliomento is a river in Catardinia. The Begliomento runs
through Grappulia. The Begliomento runs through Regnobenoa.
The Terravipacco is a river in Catardinia. The Terravipacco runs
through Grappulia. The Terravipacco runs through Regnobenoa.
The Terravipacco runs through Bascilitina. The Pernatisone is a river
in Catardinia. The Pernatisone runs through Grappulia. If X borders
Y, then Y borders X.”

Query: “Which rivers run through states that border the state with
the capital Baritolloti?”

The grammar in PWL does not currently cover compound noun-
noun phrases such as “capital Baritolloti,” and so the parser
misinterprets the question and provides the reasoning module
with a mistaken logical form.

o A correctly-answered question with the LExicAL AMBIGUITY flag:

Context: “Voronolga is a province in Bievorsk. Abdorostan is a
province in Bievorsk. Fordgorod is one of the 7 provinces in Bievorsk.
Galininograd is a province in Bievorsk. Puotorsk is a province in
Bievorsk. Getarovo is a province in Bievorsk. Bripetrsk is a province
in Bievorsk. The area of Voronolga is 671200 square kilometers.
The area of Abdorostan is 912300 square kilometers. The area of
Fordgorod is 671300 square kilometers. The area of Galininograd is
314900 square kilometers. The area of Puotorsk is 1023900 square
kilometers. The area of Getarovo is 519200 square kilometers. The
area of Bripetrsk is 428100 square kilometers. There are 7 provinces.”

Query: “Puotorsk is how large?”

e Incorrectly-answered question with the LExicAL AMBIGUITY flag:

Context: “Baritolloti is the capital city of Grappulia. Grappulia is a
state in Catardinia. Regnobenoa is a state in Catardinia. The capital
of Regnobenoa is Messinitina. Messinitina is a city in Regnobenoa.
Lomberonais a city in Regnobenoa. Bascilitina is a state in Catardinia.
Lomtrieste is a city in Bascilitina. Albucapua is the capital city of
Bascilitina. Geoturin is the capital city of the state of Cartabitan.
Veronizzia is a city in Cartabitan. Brescitabia is a city in Cartabitan.”

Query: “What is the capital of states that have cities named Baritol-
loti?”

The grammar in PWL does not currently support passive verb
phrase adjuncts of nouns where the verb phrase doesn’t contain
a “by” indicating the subject. So for example, PWL can correctly

5.4 QUESTION-ANSWERING IN FICTIONALGEOQA

interpret “the state bordered by Canada,” it cannot currently

parse “the state named Alaska.”

* A correctly-answered question with the NEGATION flag:

Context: “Grappulia is a state in Catardinia. Regnobenoa is a state
in Catardinia. Bascilitina is a state in Catardinia. Geoturin is the cap-
ital city of the state of Cartabitan. Veronizzia is a city in Cartabitan.
Baritolloti is a city in Grappulia. Brescitabia is a city in Cartabitan.
Cartabitan is a state in Catardinia. The Begliomento is a river in
Catardinia. The Begliomento does not run through Grappulia. The
Begliomento does not run through Regnobenoa. The Terravipacco is
a river in Catardinia. The Terravipacco does not run through Grap-
pulia. The Terravipacco does not run through Regnobenoa. The
Terravipacco does not run through Bascilitina. The Pernatisone is a
river in Catardinia. The Pernatisone does not run through Grappu-
lia.”

Query: “What rivers do not run through Grappulia?”

e An incorrectly-answered question with the NEGaTION flag:

Context: “Grappulia is a state in Catardinia. Regnobenoa is a state
in Catardinia. Bascilitina is a state in Catardinia. Geoturin is the cap-
ital city of the state of Cartabitan. Veronizzia is a city in Cartabitan.
Baritolloti is a city in Grappulia. Brescitabia is a city in Cartabitan.
Cartabitan is a state in Catardinia. The Begliomento is a river in
Catardinia. The Begliomento does not run through Grappulia. The
Begliomento does not run through Regnobenoa. The Terravipacco is
a river in Catardinia. The Terravipacco does not run through Grap-
pulia. The Terravipacco does not run through Regnobenoa. The
Terravipacco does not run through Bascilitina. The Pernatisone is a
river in Catardinia. The Pernatisone does not run through Grappu-
lia.”

Query: “What rivers do not run through Cartabitan?”

The correct answer should be the empty set, as there is no river
that provably runs through Cartabitan. However, PWL only
outputs the empty set as an answer if it cannot find any other
possible answers. But PWL was able to construct theories in
which the Begliomento, Pernatisone, and Terravipacco all ran
through Cartabitan. As a result, it did not output the empty set.

« A correctly-answered question with the ARiTHMETIC flag:

163

164

END-TO-END EXPERIMENTS

Context: “Kangoyaken is a state in Gyoshoru. Gunmaishyu is one
of the 4 states in Gyoshoru. Ibarakishyo is a state in Gyoshoru.
Toyusuma is a state in Dogoreoku. Senkuoka is a state in Gyoshoru.
The area of Kangoyaken is 3507 square kilometers. The area of
Senkuoka is 4216 square kilometers. The area of Toyusuma is 4198
square kilometers. The area of Ibarakishyo is 9108 square kilometers.
The area of Gunmaishyu is 82987 square kilometers. The population
of Gunmaishyu is 5218607. The population of Senkuoka is 1027862.
The population of Ibarakishyo is 419272. The population of Kangoy-
aken is 89703. The population of Toyusuma is 19272. The population
density of X is the population of X divided by the area of X. If the
population density of X is greater than 300, X is dense.”

Query: “What are the dense states in Gyoshoru?”

The reasoning module of PWL does not currently support arith-
metic, and so it output nothing. However, the correct answer
happened to be the empty set, since no states are “dense” ac-
cording to the definition in the context. In fact, this is the only
example with arithmetic that any method answered correctly, and
they all did so for the same reason.

 An incorrectly-answered question with the ARiTHMETIC flag:

Context: “Kangoyaken is a state in Gyoshoru. Gunmaishyu is one
of the 4 states in Gyoshoru. Ibarakishyo is a state in Gyoshoru.
Toyusuma is a state in Dogoreoku. Senkuoka is a state in Gyoshoru.
The area of Kangoyaken is 3507 square kilometers. The area of
Senkuoka is 4216 square kilometers. The area of Toyusuma is 4198
square kilometers. The area of Ibarakishyo is 9108 square kilometers.
The area of Gunmaishyu is 82987 square kilometers. The population
of Gunmaishyu is 5218607. The population of Senkuoka is 1027862.
The population of Ibarakishyo is 419272. The population of Kangoy-
aken is 89703. The population of Toyusuma is 19272. The population
density of X is the population of X divided by the area of X.”

Query: “What state in Gyoshoru has the lowest population density?”

The reasoning module of PWL does not currently support arith-
metic.

¢ PWL does not correctly answer any questions with the countTing
flag.

 An incorrectly-answered question with the counTING flag:

5.5 SUMMARY

Context: “Kangoyaken is a state in Gyoshoru. Koruhashi is a city in
Kangoyaken. The population of Koruhashi is 132902. Dogayashi is
a city in Kangoyaken. The population of Dogayashi is 1923012. Ky-
oukashino is a city in Kangoyaken. The population of Kyoukashino
is 210392. Agarikoshi is a city in Kangoyaken. The population of
Agarikoshi is 42910. Kagenegawa is a city in Kangoyaken. The pop-
ulation of Kagenegawa is 813729. Senkuoka is a state in Gyoshoru.
There are 2 states. Yotsuyamashi is a city in Senkuoka. The popula-
tion of Yotsuyamashi is 21390162. Sennouhama is a city in Senkuoka.
The population of Sennouhama is 29104. If the population of X is
greater than 20000000, X is a metropolis.”

Query: “Which state has the fewest metropolises?”

PWL did not correctly interpret “has” as containment (i.e. Xis a
city in Y should mean that Y has X).

We choose to omit examples with the LARGE conTEXT flag for brevity.
PWL was able to answer many such examples correctly, which demon-
strates that PWL can scale to examples with more than 100 sentences.
However, PWL did become noticeably slower and further work is
needed to improve its scalability to much larger inputs. We discuss
this in the next chapter and provide suggestions for how scalability
can be further improved.

5.5 SUMMARY

In this chapter, we provided qualitative and quantitative results of PWL
reading sentences and reasoning about them end-to-end. The qualita-
tive examples at the beginning of the chapter demonstrated that PWL s
able to resolve syntactic ambiguities by utilizing acquired knowledge
from previously-read sentences. Specifically, we showcased examples
where PWL resolves prepositional phrase attachment ambiguity, am-
biguity in pronominal resolution, as well as lexical ambiguity. But we
also presented examples that highlight current shortcomings of PWL,
such as from the overly-simplified nature of the prior on the theory
and proofs. We also demonstrated that PWL is capable of discrete
reasoning (e.g. counting) via reasoning about the sizes of sets. Finally,
we provided quantitative results on two question-answering datasets:
ProorWRITER and a new dataset we called FictioNaLGEOQA. PWL was
able to outperform current state-of-the-art baselines on these datasets.
We refer the author to the next chapter for more detailed discussion
on general conclusions and future work.

165

CONCLUSIONS AND FUTURE WORK

In this thesis, we introduced the Probabilistic Worldbuilding Model (PWM),
a fully symbolic Bayesian model of semantic parsing and reasoning,
which we hope serves as a compelling first step in a research program
toward more domain- and task-general natural language understand-
ing. PWL explicitly builds an internal mental model, called the theory,
akin to the mental model that humans construct when making sense
of their observations. We believe that this sort of “worldbuilding” is
instrumental in building natural language understanding and Al sys-
tems that are able to generalize to new tasks and domains as humans
do. We derived Probabilistic Worldbuilding with Language (PWL), an effi-
cientinference algorithm that reads sentences by parsing and abducing
updates to its latent world model that capture the semantics of those
sentences. We demonstrated its ability to exploit acquired knowledge
to resolve syntactic ambiguities, such as prepositional phrase attach-
ment and pronominal resolution. We also empirically demonstrated
its ability to generalize to two out-of-domain question-answering tasks.
In doing so, we created a new question-answering dataset, Fiction-
ALGEOQA, designed specifically to evaluate reasoning ability while
capturing more of the complexities of real language and being robust
against heuristic strategies.

6.1 HIGH-LEVEL CONCLUSIONS

In contrast with past deductive reasoning approaches, PWL instead
performs abduction, which is computationally easier, since it can create
new axioms as needed to find a proof of an inputlogical form. The highly
underspecified nature of the problem of abduction is alleviated by the
probabilistic nature of PWL, as it provides a principled way to find the
most probable theories.

The probabilistic nature of both the model and inference also helps
to remedy the brittleness that plagued fully symbolic deterministic
systems. Such systems run into an impasse when they encounter ob-
servations or sentences that are inconsistent with the theory. However,
in PWL, the theory is random, and so if a given observation is incon-
sistent with one possible theory, there exist other theories in which the
observation is consistent, and the probability distribution over theo-
ries provides a principled way to find such consistent theories. PWL
is a Bayesian model, where every random variable in the model has a
prior distribution. These prior distributions enabled us to incorporate
background/expert knowledge into the design of the model, improv-

167

168

CONCLUSIONS AND FUTURE WORK

ing statistical efficiency. For example, we were able to incorporate a
great deal of information about English syntax into the grammar of
PWL, and as a result, a small seed training set was sufficient to achieve
high accuracy in semantic parsing.

We chose a single unified human-readable formal language, higher-
order logic, to represent all knowledge in the theory, the intermediate
proof steps, as well as the semantics of natural language sentences.
Higher-order logic is well-studied and highly expressive, capable of
representing the meaning of a very broad class of natural language
sentences, and many different kinds of knowledge. This choice helps
to keep the theory unspecialized to any particular domain, task, or
modality, more similar to the internal mental model in human lan-
guage understanding. In addition, the expressivity allows PWL to read
and understand sentences with richer semantics, such as definitions
of previously unknown concepts. Future work to evaluate PWL on
other modalities and tasks would interesting. PWL could be extended
to other modalities, for example by creating a new “vision module”
which would allow semantic information to be extracted from images
and incorporated into the theory. Such a module would also enable
the flow of information in the reverse direction: to help improve image
understanding by incorporating information from previously acquired
knowledge. Overall, the modular architecture (i.e. dividing the overall
model into the language and reasoning modules) was very useful in
the implementation of PWL, as it provided us with the ability to test
and debug each module independently.

6.2 REASONING MODULE: CONCLUSIONS AND FUTURE WORK

We chose to use natural deduction for the proofs in the reasoning module,
a well-studied proof calculus for higher-order logic. And among the
well-studied proof calculi for higher-order logic, the deduction rules
in natural deduction are most similar to human deductive reasoning;
hence the name. Natural deduction is also complete in that for any true
logical form , there exists a proof of in natural deduction.

During inference, PWL aims to approximate the full posterior dis-
tribution of the latent random variables (logical form of each sentence
Xi, proof of each logical form j, and the theory T), conditioned on
the observations (the sentences yj). We chose to approximate the full
posterior, rather than obtain a point estimate, in order to preserve infor-
mation about uncertainty. This strategy helps to avoid the brittleness
of fully symbolic systems. Furthermore, human languages contain
words that express uncertainty, such as “probably,” “maybe,” “could,”
etc, which indicates that human language generation and processing
preserves information about uncertainty.

However, in this thesis, we made the simplifying assumption that
the sentences do not express modality or uncertainty, and so each indi-

s

6.2 REASONING MODULE: CONCLUSIONS AND FUTURE WORK

vidual sample of T is deterministic. All examples in our experiments
are deterministic: no sentence in the datasets contains words that ex-
press uncertainty. This is clearly an unrealistic assumption, and to
relax it, PWM needs to be extended so that each individual sample of
T is probabilistic. If this were the case, PWWM would be able to prop-
erly define logical forms that express the probability of events, such
as the logical form meaning “the probability of “the cat is sleeping’ is
60%.” PWM would be able to define “probably” as having probability
greater than 50%, and therefore PWL would be able to correctly read
and understand the sentence “The cat is probably sleeping.”

PWL uses Metropolis-Hastings (MH) to approximate the posterior
distribution of the theory T and proofs ;. MH is able to compute
samples from the posterior while avoiding the computation of expen-
sive normalization terms, since they cancel out in the expression for
the acceptance probability (see section 2.1). We presented an inference
strategy where MH is performed in a streaming fashion, on each sen-
tence, where the previous sample of the theory and proofs provides
a warm-start for inference of the next sentence, reducing the number
of MH iterations needed to find a good approximation of the poste-
rior theory and proofs. In principle, with enough iterations, a single
Markov chain can provide samples from the full posterior of the theory
and proofs of each logical form. However, in settings with high un-
certainty, the true posterior may be highly multi-modal, in which case
using multiple Markov chains would be a better approach, and would
require fewer iterations of MH to obtain representative samples of the
true posterior. MH is not the only MCMC method that can provide
posterior samples efficiently, and there may be other MCMC methods
that work similarly well.

We made the simplifying assumption that the posterior for the logi-
cal forms X; is unimodal (i.e. the posterior probability is concentrated
in a single logical form). This allowed us to compute the most proba-
ble logical form for each sentence and fix that logical form as the point
estimate of the posterior. Thus the logical form does not vary in sub-
sequent inference. However, the posterior for the logical forms is not
always unimodal, even in consideration of the context and background
information. Relaxing this assumption would enable PWL to handle
scenarios in which there is greater uncertainty in the logical forms.

Some priors in PWM were chosen for ease of implementation and
rapid prototyping, such as the prior on the theory p(T) and the proofs
P(i T). Recall that the theory T is a collection of axioms fay, az, :: g
and the prior for the theory p(T) generates these axioms sequentially,
conditioned on the fact that the axioms are not inconsistent with one
another. This prior has some desirable properties: such as the fact
that simpler theories have higher probability than more complex ones
(Occam’s razor) and that inconsistent theories have zero probability.
But the prior is fairly unstructured, and a promising direction for future

169

170

CONCLUSIONS AND FUTURE WORK

work would be to explore more structured priors, such as those that
explicitly generate a hierarchical ontology of types. The prior for proofs
p(i jT)is also overly simplified: the premises of each proof step are
chosen to be uniformly distributed from the conclusions of previous
proof steps. In contrast, human reasoning is likely much more directed,
often relying on repeating proofs patterns that appear across many
different proofs. For example, PWL often used a “proof by exclusion”
pattern in its consistency checking: If a set is known to have size n,
and has provable elements X1, :::,Xn(, and if a logical form A being
true would imply the existence of a new provable element Xp+1, then
we can conclude that A is false. This proof pattern consists of multiple
proof steps in natural deduction. And despite this proof pattern being
used repeatedly, PWM assumes the pattern is generated independently
each time it is used. A better prior would give higher probability to
proof patterns that have been used multiple times in previous proofs.
Constructing a prior distribution for proofs that include these features
would be valuable for future work.

Perhaps the most consequential assumption in this thesis is that
every sentence is conditionally independent of every other sentence,
given the theory. Much of real-world natural language violates this
assumption, and phenomena such as cross-sentential anaphora would
be impossible under this assumption. A proper model of context is
necessary to relax this assumption, where the generative process of a
logical form is influenced by previous logical forms. In section 4.7, we
provide suggestions for a model of context, where the context keeps
track of the current topic, the universe of discourse (including dis-
course narrowing/widening), and recently-mentioned entities which
can be used to generate longer-range and cross-sentential anaphora.

In addition, there are many research questions on the issue of scal-
ability. Although PWL is able to scale to examples in FictionalGeoQA
with more than 100 sentences, there are two main bottlenecks currently
preventing the model from scaling to significantly larger theories: (1)
the maintenance of global consistency, and (2) the unfocused nature
of the current MH proposals. When checking for consistency of a new
axiom, rather than considering all other axioms/sets in the theory, it
would be preferable to only consider the portion of the theory relevant
to the new axiom. But to do so is not obvious. How would we define
“relevance”? Relaxing global consistency would allow theory samples
to be inconsistent. Would this inconsistency be due to the approximate
nature of inference (i.e. the samples are approximating an underlying
consistent theory)? Or is the inconsistency a part of the model (in
the underlying theory itself)? If the latter, PWM must be modified to
generate inconsistencies. Additionally, the current MH proposals do
not take into account the goal of reasoning. For example, if the current
task is to answer a question about geography, then MH proposals for
proofs unrelated to geography are wasteful, and would increase the

63 LANGUAGE MODULE: CONCLUSIONS AND FUTURE WORK

number of MH steps necessary to sufficiently mix the Markov chain. A
more clever goal-aware approach for selecting proofs to mutate would
help to alleviate this problem and improve scalability.

63 LANGUAGE MODULE: CONCLUSIONS AND FUTURE WORK

The model of the language module is an extension of a context-free
grammar (CFG). In any derivation tree (i.e. syntax tree), every node
is associated with a logical form which represents the meaning of the
corresponding fragment of the sentence. For each production rule in
the grammar, every right-hand side nonterminal is associated with
a semantic transformation function. These transformation functions
characterize the relationship between the logical form of the parent
node and that of the child node. Our training procedure presented
in section 4.3.1 induces preterminal production rules (i.e. rules of
the form N ¥ “tennis”). However, the other production rules in the
grammar were specified by hand. This gave us a high level of control
over the grammar, but was also very time-consuming. An interesting
avenue for future research would be to explore how these production
rules could be induced, as well. In section 4.7, we suggest one approach
where semantic transformation functions can be written as short “pro-
grams” in a simple programming language (i.e. a sequence of instruc-
tions). While grammar induction is interesting in its own right, and
would save a great deal of time when writing a new grammar, such as
for languages other than English, there is no obvious reason to believe
that it would meaningfully improve parsing accuracy.

In the generative process for the derivation trees, PWL uses hierarchi-
cal Dirichlet processes (HDPs) to model the distribution of production
rules. We presented a novel application of HDPs where distributions
can depend on discrete structures, such as logical forms, and this de-
pendence can be learned from data (see section 4.1.4). More specifically,
the HDP in PWL defines a distribution over the production rules that
make up the derivation trees. Our training procedure in section 4.3.1
learns the relationship between the logical forms and the distribution
of these production rules. Each level of the HDP corresponds to de-
pendence on a specific feature of the logical form (e.g. the predicate
of an atom, or the value of a constant in the left-most conjunct, etc),
and so additional levels can be added to the hierarchy in order to add
additional dependence on more features of the logical form. But the
HDP is not the only choice to model the distribution of production
rules in derivation trees. For instance, the order of the features of the
logical form is important when constructing the HDP hierarchy. A dif-
ferent order of features will produce a different hierarchy. This may be
advantageous in some cases. For example if we know that feature fa
provides more information about the distribution of production rules
than feature fg, then this inductive bias can be reflected by associating

171

172

CONCLUSIONS AND FUTURE WORK

the first level of the HDP hierarchy with fa and associating the second
level with fg. But it would be interesting to explore the use of alterna-
tive conditional distributions for the production rules, including those
that are independent of the order of the features. Our parser requires
an efficient algorithm to compute the k most likely sets of logical forms,
given an observed production rule (see sections 4.1.2 and 4.3.2). So in
order to use our parser with an alternative conditional distribution, a
similar algorithm is required.

We designed and implemented a new broad-coverage semantic for-
malism and grammar for English in section 4.5. This semantic for-
malism was built on higher-order logic in order to capture a wide
variety of linguistic phenomena and so that the logical forms can be
directly used by the reasoning module. In this formalism, events
and predicates are represented as existentially-quantified objects (i.e.
neo-Davidsonian semantics). Named entities are also represented as
existentially-quantified objects, which means the semantic parser is no
longer responsible for named entity linking. Instead, the reasoning
module resolves named entities. The structure of logical forms are
made to closely mirror the syntactic structure of the corresponding
sentences or phrases, which helps to simplify semantic parsing. Un-
like AMR, our semantic formalism is able to represent richer semantics,
such as negation and universal quantification. And unlike DRT, we are
able to use well-studied reasoning methods which were developed for
first- and higher-order logic. Due to limited time, we did not imple-
ment a number of core features of the English language into the new
grammar, such as interrogative subordinate clauses, wh-movement,
imperative mood, and others. But extending the grammar to include
these features is not difficult in the established framework. Additional
production rules/semantic transformation functions can be written to
do so.

The semantic representation of sentences also needs to be extended
to properly represent modality and intensionality. A promising av-
enue to do so is to allow quantifiers to quantify over both real and
hypothetical objects, and real objects would be specially marked with
a new real predicate (see section 4.7). Then, our semantic formalism
would be able to express statements about both real and hypothetical
objects.

In addition, even though PWL is fully symbolic, non-symbolic meth-
ods could be used for expressive prior/proposal distributions or ap-
proximate inference. For example, the distribution for selecting pro-
duction rules in the language module could be replaced with a richer
prior distribution. The whole language module itself could be replaced
with a different model of natural language semantics; perhaps with one
that is not based on a grammar. All-in-all, there are many fascinating
research paths to pursue from here.

64 FUTURE OF NATURAL LANGUAGE UNDERSTANDING

64 FUTURE OF NATURAL LANGUAGE UNDERSTANDING

Looking ahead, natural language understanding and artificial intel-
ligence stands to benefit immensely from models with the ability to
reason, especially in a domain-, modality-, and task-independent man-
ner. We posit that this reasoning ability, whether trained or built-in,
is instrumental in building NLU and Al systems that can generalize
to new tasks and domains to the same degree as humans. This abil-
ity would also help to address problems like catastrophic forgetting,
where a model may be trained to perform well on a task, but when
trained on a second task, its performance on the first task deteriorates
(the model “forgets” how to do the first task).

Symbolic representations of meaning can be very useful in construct-
ing systems with the aforementioned ability to reason, as they can draw
upon the vast work in symbolic reasoning, automated deduction, proof
theory, formal semantics, etc. Symbolic representations also facilitate
interpretability, which is particularly useful to discern why an NLU / Al
system behaves the way that it does. This ability will become hugely
important when developing and debugging larger systems with multi-
ple interacting components. A promising direction is the recent work
into neuro-symbolic methods that endeavor to capture the advantages
of symbolic representations. We should also not be so quick to dismiss
fully symbolic approaches either. A large diversity of active research
directions is an indicator of a healthy field of research.

We must also rethink our approach for evaluating methods in Al
and NLP. The prevailing approach of pretraining a model and then
fine-tuning it on an evaluation dataset is prone to overfitting, and the
resulting evaluation may not reflect the algorithm’s true ability. For
example, the resulting fine-tuned algorithm may not perform as well
on a new similar dataset without fine-tuning again. A shift in focus to
out-of-domain evaluation or zero-shot evaluation would help to prior-
itize the development of more robust algorithms that are not as prone
to overfitting. Moving forward, we must be mindful when develop-
ing new evaluation datasets to ensure that they are not vulnerable to
heuristics, and that they truly do evaluate what they were meant to
evaluate.

173

BIBLIOGRAPHY

Abzianidze, Lasha, Johannes Bjerva, Kilian Evang, Hessel Haagsma,
Rik van Noord, Pierre Ludmann, Duc-Duy Nguyen, and Johan
Bos (2017). “The Parallel Meaning Bank: Towards a Multilingual
Corpus of Translations Annotated with Compositional Meaning
Representations.” In: Proceedings of the 15th Conference of the Euro-
pean Chapter of the Association for Computational Linguistics, EACL
2017, Valencia, Spain, April 3-7, 2017, Volume 2: Short Papers. Ed. by
Mirella Lapata, Phil Blunsom, and Alexander Koller. Association
for Computational Linguistics, pp. 242—247.

Aho, Alfred V. and Jeffrey D. Ullman (1972). The theory of parsing, trans-
lation, and compiling. 1: Parsing. Prentice-Hall. 1sBN: 0139145567.
Aldous, David J. (1985). “Exchangeability and related topics.” In: Lec-

ture Notes in Mathematics. Springer Berlin Heidelberg, pp. 1-198.

Arakelyan, Erik, Daniel Daza, Pasquale Minervini, and Michael Cochez
(2021). “Complex Query Answering with Neural Link Predictors.”
In: gth International Conference on Learning Representations, ICLR
2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net.

Banarescu, Laura, Claire Bonial, Shu Cai, Madalina Georgescu, Kira
Griffitt, Ulf Hermjakob, Kevin Knight, Philipp Koehn, Martha
Palmer, and Nathan Schneider (2013). “Abstract Meaning Repre-
sentation for Sembanking.” In: Proceedings of the 7th Linguistic An-
notation Workshop and Interoperability with Discourse, LAW-ID@ACL
2013, August 8-9, 2013, Sofia, Bulgaria. Ed. by Stefanie Dipper, Maria
Liakata, and Antonio Pareja-Lora. The Association for Computer
Linguistics, pp. 178-186.

Bellodi, Elena and Fabrizio Riguzzi (2015). “Structure learning of prob-
abilistic logic programs by searching the clause space.” In: Theory
Pract. Log. Program. 15.2, pp. 169—212.

Bender, Emily M. and Alexander Koller (2020). “Climbing towards
NLU: On Meaning, Form, and Understanding in the Age of Data.”
In: Proceedings of the 58th Annual Meeting of the Association for Com-
putational Linguistics, ACL 2020, Online, July 5-10, 2020. Ed. by Dan
Jurafsky, Joyce Chai, Natalie Schluter, and Joel R. Tetreault. Asso-
ciation for Computational Linguistics, pp. 5185-5198.

Bhagavatula, Chandra, Ronan Le Bras, Chaitanya Malaviya, Keisuke
Sakaguchi, Ari Holtzman, Hannah Rashkin, Doug Downey, Wen-
tau Yih, and Yejin Choi (2020). “Abductive Commonsense Rea-
soning.” In: 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.

Blunsom, Phil and Trevor Cohn (2010). “Inducing Synchronous Gram-
mars with Slice Sampling.” In: Human Language Technologies: Confer-

175

176

BIBLIOGRAPHY

ence of the North American Chapter of the Association of Computational
Linguistics, Proceedings, June 2-4, 2010, Los Angeles, California, USA.
The Association for Computational Linguistics, pp. 238—241.

Bos, Johan (2015). “Open-Domain Semantic Parsing with Boxer.” In:
Proceedings of the 20th Nordic Conference of Computational Linguistics,
NODALIDA 2015, Institute of the Lithuanian Language, Vilnius, Lithua-
nia, May 11-13, 2015. Ed. by Bedta Megyesi. Vol. 109. Link&ping
Electronic Conference Proceedings. Linkdping University Elec-
tronic Press / Association for Computational Linguistics, pp. 301-
304.

Bron, Coenraad and Joep Kerbosch (1973). “Finding All Cliques of
an Undirected Graph (Algorithm 457).” In: Commun. ACM 16.9,
pp- 575-576.

Brown, Tom B. et al. (2020). “Language Models are Few-Shot Learners.”
In: CoRR abs/2005.14165v4.

Charniak, Eugene and Robert P. Goldman (1993). “A Bayesian Model
of Plan Recognition.” In: Artif. Intell. 64.1, pp. 53—79.

Chomsky, Noam (1956). “Three models for the description of lan-
guage.” In: IRE Trans. Inf. Theory 2.3, pp. 113-124.

Church, Alonzo (1940). “A Formulation of the Simple Theory of Types.”
In: J. Symb. Log. 5.2, pp. 56—68.

Clark, Peter, Oyvind Tafjord, and Kyle Richardson (2020). “Transform-
ers as Soft Reasoners over Language.” In: Proceedings of the Twenty-
Ninth International Joint Conference on Artificial Intelligence, IJCAI
2020. Ed. by Christian Bessiere. ijcai.org, pp. 3882-3890.

Cohn, Trevor, Phil Blunsom, and Sharon Goldwater (2010). “Inducing
Tree-Substitution Grammars.” In: J. Mach. Learn. Res. 11, pp. 3053—
3096.

Cooper, Robin, Simon Dobnik, Shalom Lappin, and Staffan Larsson
(2015). “Probabilistic Type Theory and Natural Language Seman-
tics.” In: Linguistic Issues in Language Technology, Volume 10, 2015.
CSLI Publications.

Cussens, James (2001). “Parameter Estimation in Stochastic Logic Pro-
grams.” In: Mach. Learn. 44.3, pp. 245-271.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova
(2019). “BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding.” In: Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL-HLT 2019, Min-
neapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers).
Ed. by Jill Burstein, Christy Doran, and Thamar Solorio. Associa-
tion for Computational Linguistics, pp. 4171—4186.

Dong, Li and Mirella Lapata (2016). “Language to Logical Form with
Neural Attention.” In: CoRR abs/1601.01280.

BIBLIOGRAPHY

Dowty, D. R. (1981). Introduction to Montague Semantics. eng. 1sted. 1981.
Studies in Linguistics and Philosophy, 11. Dordrecht: Springer
Netherlands. 1sBN: 94-009-9065-0.

Dreyfus, H. L. (1985). “From Micro-Worlds to Knowledge Representa-
tion: Al at an Impasse.” In: Readings in Knowledge Representation. Ed.
by R. J. Brachman and H. J. Levesque. Los Altos, CA: Kaufmann,
pp- 71-93-

Dunietz, Jesse, Gregory Burnham, Akash Bharadwaj, Owen Rambow,
Jennifer Chu-Carroll, and David A. Ferrucci (2020). “To Test Ma-
chine Comprehension, Start by Defining Comprehension.” In: Pro-
ceedings of the 58th Annual Meeting of the Association for Computa-
tional Linguistics, ACL 2020, Online, July 5-10, 2020. Ed. by Dan
Jurafsky, Joyce Chai, Natalie Schluter, and Joel R. Tetreault. Asso-
ciation for Computational Linguistics, pp. 7839-7859.

Durrett, Rick (2010). Probability: Theory and Examples, 4th Edition. Cam-
bridge University Press. 1sBN: 9780511779398.

Earley, Jay (1970). “An Efficient Context-Free Parsing Algorithm.” In:
Commun. ACM 13.2, pp. 94-102.

Escobar, Michael D. and Mike West (June 1995). “Bayesian Density Es-
timation and Inference Using Mixtures.” In: Journal of the American
Statistical Association 90.430, pp. 577-588.

Ferguson, Thomas S. (1973). “A Bayesian Analysis of Some Nonpara-
metric Problems.” In: The Annals of Statistics 1.2, pp. 209 —230.
Finkel, Jenny Rose, Christopher D. Manning, and Andrew Y. Ng (2006).

“Solving the Problem of Cascading Errors: Approximate Bayesian
Inference for Linguistic Annotation Pipelines.” In: EMINLP 2006,
Proceedings of the 2006 Conference on Empirical Methods in Natural
Language Processing, 22-23 July 2006, Sydney, Australia. Ed. by Dan

Jurafsky and Eric Gaussier. ACL, pp. 618-626.

Furbach, Ulrich, Andrew S. Gordon, and Claudia Schon (2015). “Tack-
ling Benchmark Problems of Commonsense Reasoning.” In: Pro-
ceedings of the Workshop on Bridging the Gap between Human and
Automated Reasoning - A workshop of the 25th International Confer-
ence on Automated Deduction (CADE-25), Berlin, Germany, August 1,
2015. Ed. by Ulrich Furbach and Claudia Schon. Vol. 1412. CEUR
Workshop Proceedings. CEUR-WS.org, pp. 47-59.

Gallo, Giorgio, Giustino Longo, and Stefano Pallottino (1993). “Di-
rected Hypergraphs and Applications.” In: Discret. Appl. Math. 42.2,
pp- 177—201.

Gardner, Matt, Jonathan Berant, Hannaneh Hajishirzi, Alon Talmor,
and Sewon Min (2019). “On Making Reading Comprehension
More Comprehensive.” In: Proceedings of the 2nd Workshop on Ma-
chine Reading for Question Answering, MRQA@EMNLP 2019, Hong
Kong, China, November 4, 2019. Ed. by Adam Fisch, Alon Talmor,
Robin Jia, Minjoon Seo, Eunsol Choi, and Dangi Chen. Association
for Computational Linguistics, pp. 105-112.

177

178

BIBLIOGRAPHY

Geman, Stuart and Donald Geman (1984). “Stochastic Relaxation,
Gibbs Distributions, and the Bayesian Restoration of Images.” In:
IEEE Trans. Pattern Anal. Mach. Intell. 6.6, pp. 721-741.

Gentzen, G. (1935). “Untersuchungen iiber das logische Schliefen 1.”
In: Mathematische Zeitschrift 39, pp. 176—210.

— (1969). “Investigations into Logical Deduction.” In: The Collected
Papers of Gerhard Gentzen. Ed. by M. E. Szabo. Amsterdam: North-
Holland, pp. 68-213.

Gregory, Howard (2015). Language and Logics: An Introduction to the
Logical Foundations of Language. Edinburgh University Press. 1sBN:
9780748691623.

Hastings, W. K. (1970). “Monte Carlo sampling methods using Markov
chains and their applications.” In: Biometrika 57.1, pp. 97-109.
Henkin, Leon (1950). “Completeness in the Theory of Types.” In: J.

Symb. Log. 15.2, pp. 81-91.

Hobbs, Jerry R. (1985). “Ontological Promiscuity.” In: 23rd Annual Meet-
ing of the Association for Computational Linguistics, 8-12 July 1985, Uni-
versity of Chicago, Chicago, Illinois, USA, Proceedings. Ed. by William
C. Mann. ACL, pp. 61-69.

Hogan, Aidan et al. (2020). “Knowledge Graphs.” In: CoRR abs/2003
.02320V5.

Huddleston, Rodney and Geoffrey K. Pullum (2002). The Cambridge
Grammar of the English Language. Cambridge University Press.
Jain, Arcchit, Tal Friedman, Ondrej Kuzelka, Guy Van den Broeck,
and Luc De Raedt (2019). “Scalable Rule Learning in Probabilistic
Knowledge Bases.” In: 1st Conference on Automated Knowledge Base

Construction, AKBC 2019, Amherst, MA, USA, May 20-22, 2019.

Johnson, Mark, Thomas L. Griffiths, and Sharon Goldwater (2006).
“Adaptor Grammars: A Framework for Specifying Compositional
Nonparametric Bayesian Models.” In: Advances in Neural Informa-
tion Processing Systems 19, Proceedings of the Twentieth Annual Con-
ference on Neural Information Processing Systems, Vancouver, British
Columbia, Canada, December 4-7, 2006. Ed. by Bernhard Scholkopf,
John C. Platt, and Thomas Hofmann. MIT Press, pp. 641-648.

— (2007). “Bayesian Inference for PCFGs via Markov Chain Monte
Carlo.” In: Human Language Technology Conference of the North Amer-
ican Chapter of the Association of Computational Linguistics, Proceed-
ings, April 22-27, 2007, Rochester, New York, USA. Ed. by Candace L.
Sidner, Tanja Schultz, Matthew Stone, and ChengXiang Zhai. The
Association for Computational Linguistics, pp. 139-146.

Kamp, Hans and Uwe Reyle (1993). From Discourse to Logic - Introduction
to Modeltheoretic Semantics of Natural Language, Formal Logic and
Discourse Representation Theory. Vol. 42. Studies in linguistics and
philosophy. Springer. 1sBN: 978-0-7923-1028-0.

— (1996). “A Calculus for First Order Discourse Representation Struc-
tures.” In: . Log. Lang. Inf. 5.3/ 4, pp- 297-348.

BIBLIOGRAPHY

Kapanipathi, Pavan et al. (2021). “Leveraging Abstract Meaning Repre-
sentation for Knowledge Base Question Answering.” In: Findings
of the Association for Computational Linguistics: ACL/I[JCNLP 2021,
Online Event, August 1-6, 2021. Ed. by Chengqing Zong, Fei Xia,
Wenjie Li, and Roberto Navigli. Vol. ACL/IJCNLP 2021. Findings
of ACL. Association for Computational Linguistics, pp. 3884-3894.

Kaplan, Ronald M. and Joan Bresnan (1995). Lexical-Functional Gram-
mar: A Formal System for Grammatical Representation.

Khashabi, Daniel, Sewon Min, Tushar Khot, Ashish Sabharwal, Oyvind
Tafjord, Peter Clark, and Hannaneh Hajishirzi (2020). “UnifiedQA:
Crossing Format Boundaries With a Single QA System.” In: Find-
ings of the Association for Computational Linguistics: EMINLP 2020,
Online Event, 16-20 November 2020. Ed. by Trevor Cohn, Yulan He,
and Yang Liu. Vol. EMNLP 2020. Findings of ACL. Association for
Computational Linguistics, pp. 1896-1907.

Klein, Dan and Christopher D. Manning (2001). “Parsing and Hyper-
graphs.” In: Proceedings of the Seventh International Workshop on Pars-
ing Technologies (IWPT-2001), 17-19 October 2001, Beijing, China. Ts-
inghua University Press.

— (2003). “A* Parsing: Fast Exact Viterbi Parse Selection.” In: Human
Language Technology Conference of the North American Chapter of the
Association for Computational Linguistics, HLT-NAACL 2003, Edmon-
ton, Canada, May 27 - June 1, 2003. Ed. by Marti A. Hearst and Mari
Ostendorf. The Association for Computational Linguistics.

Kotseruba, Iuliia and John K. Tsotsos (2020). “40 years of cognitive
architectures: core cognitive abilities and practical applications.”
In: Artif. Intell. Rev. 53.1, pp. 17-94.

Kovécs, Laura and Andrei Voronkov (2013). “First-Order Theorem
Proving and Vampire.” In: Computer Aided Verification - 25th In-
ternational Conference, CAV 2013, Saint Petersburg, Russia, July 13-19,
2013. Proceedings. Ed. by Natasha Sharygina and Helmut Veith.
Vol. 8044. Lecture Notes in Computer Science. Springer, pp. 1—-35.

Kwiatkowski, Tom, Eunsol Choi, Yoav Artzi, and Luke S. Zettlemoyer
(2013). “Scaling Semantic Parsers with On-the-Fly Ontology Match-
ing.” In: Proceedings of the 2013 Conference on Empirical Methods
in Natural Language Processing, EMINLP 2013, 18-21 October 2013,
Grand Hyatt Seattle, Seattle, Washington, USA, A meeting of SIGDAT,
a Special Interest Group of the ACL. ACL, pp. 1545-1556.

Kwiatkowski, Tom, Luke S. Zettlemoyer, Sharon Goldwater, and Mark
Steedman (2010). “Inducing Probabilistic CCG Grammars from
Logical Form with Higher-Order Unification.” In: Proceedings of the
2010 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2010, 9-11 October 2010, MIT Stata Center, Massachusetts,
USA, A meeting of SIGDAT, a Special Interest Group of the ACL. ACL,

pp- 1223-1233.

179

180

BIBLIOGRAPHY

Kwiatkowski, Tom, Luke S. Zettlemoyer, Sharon Goldwater, and Mark
Steedman (2011). “Lexical Generalization in CCG Grammar In-
duction for Semantic Parsing.” In: Proceedings of the 2011 Conference
on Empirical Methods in Natural Language Processing, EMINLP 2011,
27-31 July 2011, John McIntyre Conference Centre, Edinburgh, UK, A
meeting of SIGDAT, a Special Interest Group of the ACL. ACL, pp. 1512~
1523.

Laird, John E., Allen Newell, and Paul S. Rosenbloom (1987). “SOAR:
An Architecture for General Intelligence.” In: Artif. Intell. 33.1,
pp- 1-64.

Lake, Brenden M., Tomer D. Ullman, Joshua B. Tenenbaum, and
Samuel J. Gershman (2016). “Building Machines That Learn and
Think Like People.” In: CoRR abs/1604.00289v3.

Land, A. H. and A. G. Doig (July 1960). “An Automatic Method of
Solving Discrete Programming Problems.” In: Econometrica 28.3,
p- 497

Li, Peng, Yang Liu, and Maosong Sun (2013). “An Extended GHKM Al-
gorithm for Inducing Lambda-SCFG.” In: Proceedings of the Twenty-
Seventh AAAI Conference on Artificial Intelligence, July 14-18, 2013,
Bellevue, Washington, USA. Ed. by Marie desJardins and Michael L.
Littman. AAAI Press.

Liang, Percy, Michael I. Jordan, and Dan Klein (2010). “Type-Based
MCMC.” In: Human Language Technologies: Conference of the North
American Chapter of the Association of Computational Linguistics, Pro-
ceedings, June 2-4, 2010, Los Angeles, California, USA. The Associa-
tion for Computational Linguistics, pp. 573-581.

— (2013). “Learning Dependency-Based Compositional Semantics.”
In: Comput. Linguistics 39.2, pp. 389—446.

Linzen, Tal (2020). “How Can We Accelerate Progress Towards Human-
like Linguistic Generalization?” In: Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, ACL 2020,
Online, July 5-10, 2020. Ed. by Dan Jurafsky, Joyce Chai, Natalie
Schluter, and Joel R. Tetreault. Association for Computational Lin-
guistics, pp. 5210-5217.

Liu, Yinhan, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi
Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoy-
anov (2019). “RoBERTa: A Robustly Optimized BERT Pretraining
Approach.” In: CoRR abs/1907.11692v1.

Luo, Yucen, Alex Beatson, Mohammad Norouzi, Jun Zhu, David Du-
venaud, Ryan P. Adams, and Ricky T. Q. Chen (2020). “SUMO:
Unbiased Estimation of Log Marginal Probability for Latent Vari-
able Models.” In: 8th International Conference on Learning Represen-
tations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. Open-
Review.net.

McCoy, Tom, Ellie Pavlick, and Tal Linzen (2019). “Right for the Wrong
Reasons: Diagnosing Syntactic Heuristics in Natural Language In-

BIBLIOGRAPHY

ference.” In: Proceedings of the 57th Conference of the Association for
Computational Linguistics, ACL 2019, Florence, Italy, July 28- August
2, 2019, Volume 1: Long Papers. Ed. by Anna Korhonen, David R.
Traum, and Lluis Marquez. Association for Computational Lin-
guistics, pp. 3428-3448.

Meyn, Sean P. and Richard L. Tweedie (1993). Markov Chains and
Stochastic Stability. Communications and Control Engineering Se-
ries. Springer. 1SBN: 978-1-4471-3269-1.

Mitchell, Tom M. et al. (2018). “Never-ending learning.” In: Commun.
ACM 61.5, pp. 103-115.

Montague, Richard (1970). “Universal grammar.” In: Theoria 36.3,
pp- 373-398

— (1973). “The Proper Treatment of Quantification in Ordinary En-
glish.” In: Approaches to Natural Language. Springer Netherlands,
pp- 221—242.

— (1974). “English as a Formal Language.” In: Formal Philosophy: Se-
lected Papers of Richard Montague. Ed. by Richmond H. Thomason.
New Haven, London: Yale University Press, pp. 188—222.

Muggleton, Stephen (1991). “Inductive Logic Programming.” In: New
Gener. Comput. 8.4, pp. 295—318.

— (1996). “Stochastic Logic Programs.” In: Advances in Inductive Logic
Programming, pp. 254-264.

Newell, Allen and Herbert A. Simon (1976). “Computer Science as
Empirical Inquiry: Symbols and Search.” In: Commun. ACM 19.3,
pp- 113-126.

Nie, Yixin, Yicheng Wang, and Mohit Bansal (2019). “Analyzing
Compositionality-Sensitivity of NLI Models.” In: The Thirty-Third
AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First
Innovative Applications of Artificial Intelligence Conference, IAAI 2019,
The Ninth AAAI Symposium on Educational Advances in Artificial In-
telligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February
1, 2019. AAAI Press, pp. 6867-6874.

Niepert, Mathias and Pedro M. Domingos (2015). “Learning and Infer-
ence in Tractable Probabilistic Knowledge Bases.” In: Proceedings
of the Thirty-First Conference on Uncertainty in Artificial Intelligence,
UAI 2015, July 12-16, 2015, Amsterdam, The Netherlands. Ed. by Ma-
rina Meila and Tom Heskes. AUAI Press, pp. 632-641.

Niepert, Mathias, Christian Meilicke, and Heiner Stuckenschmidt
(2012). “Towards Distributed MCMC Inference in Probabilistic
Knowledge Bases.” In: Proceedings of the Joint Workshop on Auto-
matic Knowledge Base Construction and Web-scale Knowledge Extrac-
tion, AKBC-WEKEX@NAACL-HLT 2012, Montréal, Canada, June 7-8,
2012. Ed. by James Fan, Raphael Hoffman, Aditya Kalyanpur, Se-
bastian Riedel, Fabian M. Suchanek, and Partha Pratim Talukdar.
Association for Computational Linguistics, pp. 1-6.

181

182

BIBLIOGRAPHY

Parsons, Terence (1990). Events in the Semantics of English. Cambridge,
MA: MIT Press.

Pauls, Adam and Dan Klein (2009). “K-Best A* Parsing.” In: ACL 2009,
Proceedings of the 47th Annual Meeting of the Association for Computa-
tional Linguistics and the 4th International Joint Conference on Natural
Language Processing of the AFNLP, 2-7 August 2009, Singapore. Ed.
by Keh-Yih Su, Jian Su, and Janyce Wiebe. The Association for
Computer Linguistics, pp. 958-966.

Pauls, Adam, Dan Klein, and Chris Quirk (2010). “Top-Down K-Best A*
Parsing.” In: ACL 2010, Proceedings of the 48th Annual Meeting of the
Association for Computational Linguistics, July 11-16, 2010, Uppsala,
Sweden, Short Papers. The Association for Computer Linguistics,
Pp- 200—204.

Pfenning, Frank (2004). Natural Deduction. Lecture notes in 15-815 Au-
tomated Theorem Proving. urL: https://www.cs.cmu.edu/~fp/
courses/atp/handouts/ch2-natded.pdf.

Proudian, Derek and Carl Pollard (1985). “Parsing Head-Driven Phrase
Structure Grammar.” In: 23rd Annual Meeting of the Association
for Computational Linguistics, 8-12 July 1985, University of Chicago,
Chicago, Illinois, USA, Proceedings. Ed. by William C. Mann. ACL,
pp- 167-171.

Quine, Willard V. (1956). “Quantifiers and Propositional Attitudes.” In:
The Journal of Philosophy 53.5, pp. 177-187. 1ssN: 0022362X.

Rabinovich, Maxim, Mitchell Stern, and Dan Klein (2017). “Abstract
Syntax Networks for Code Generation and Semantic Parsing.” In:
Proceedings of the 55th Annual Meeting of the Association for Compu-
tational Linguistics, ACL 2017, Vancouver, Canada, July 30 - August
4, Volume 1: Long Papers. Ed. by Regina Barzilay and Min-Yen Kan.
Association for Computational Linguistics, pp. 1139-1149.

Raffel, Colin, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan
Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter]. Liu
(2020). “Exploring the Limits of Transfer Learning with a Unified
Text-to-Text Transformer.” In: J. Mach. Learn. Res. 21, 140:1-140:67.

Ren, Hongyu, Weihua Hu, and Jure Leskovec (2020). “Query2box: Rea-
soning over Knowledge Graphs in Vector Space Using Box Em-
beddings.” In: 8th International Conference on Learning Representa-
tions, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net.

Riegel, Ryan et al. (2020). “Logical Neural Networks.” In: CoRR
abs/2006.13155.

Robert, Christian P. and George Casella (2004). Monte Carlo Statisti-
cal Methods. Springer Texts in Statistics. Springer. 1sBN: 978-1-4419-
1939-7.

Rocktdschel, Tim and Sebastian Riedel (2017). “End-to-end Differen-
tiable Proving.” In: Advances in Neural Information Processing Sys-
tems 30: Annual Conference on Neural Information Processing Systems

https://www.cs.cmu.edu/~fp/courses/atp/handouts/ch2-natded.pdf
https://www.cs.cmu.edu/~fp/courses/atp/handouts/ch2-natded.pdf

BIBLIOGRAPHY

2017, December 4-9, 2017, Long Beach, CA, USA. Ed. by Isabelle
Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach,
Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, pp. 3788
3800.

Rothstein, Susan (Jan. 2010). “Counting, Measuring And The Semantics
Of Classifiers.” In: Baltic International Yearbook of Cognition, Logic
and Communication 6.1.

Russell, Stuart J. and Peter Norvig (2010). Artificial Intelligence - A Mod-
ern Approach, Third International Edition. Pearson Education. 1sBN:
978-0-13-207148-2.

Saha, Swarnadeep, Sayan Ghosh, Shashank Srivastava, and Mohit
Bansal (2020). “PRover: Proof Generation for Interpretable Rea-
soning over Rules.” In: Proceedings of the 2020 Conference on Empir-
ical Methods in Natural Language Processing, EMNLP 2020, Online,
November 16-20, 2020. Ed. by Bonnie Webber, Trevor Cohn, Yu-
lan He, and Yang Liu. Association for Computational Linguistics,
pp. 122-136.

Sandt, Rob A. van der (1992). “Presupposition Projection as Anaphora
Resolution.” In: J. Semant. 9.4, pp. 333—-377.

Saparov, Abulhair, Vijay A. Saraswat, and Tom M. Mitchell (2017).
“A Probabilistic Generative Grammar for Semantic Parsing.” In:
Proceedings of the 21st Conference on Computational Natural Language
Learning (CoNLL 2017), Vancouver, Canada, August 3-4, 2017. Ed.
by Roger Levy and Lucia Specia. Association for Computational
Linguistics, pp. 248-259.

Sato, Taisuke, Yoshitaka Kameya, and Neng-Fa Zhou (2005). “Genera-
tive Modeling with Failure in PRISM.” In: IJ[CAI-05, Proceedings of
the Nineteenth International Joint Conference on Artificial Intelligence,
Edinburgh, Scotland, UK, July 30 - August 5, 2005. Ed. by Leslie
Pack Kaelbling and Alessandro Saffiotti. Professional Book Center,
pp- 847-852.

Scha, R. (1981). “Distributive, Collective and Cumulative Quantifica-
tion.” In: Formal Methods in the Study of Language, Part 2. Ed. by
J. A. G. Groenendijk, T. M. V. Janssen, and M. B.]J. Stokhof. Mathe-
matisch Centrum, pp. 483-512.

Schulz, Stephan, Simon Cruanes, and Petar Vukmirovic (2019). “Faster,
Higher, Stronger: E 2.3.” In: Automated Deduction - CADE 27 - 27th
International Conference on Automated Deduction, Natal, Brazil, Au-
gust 27-30, 2019, Proceedings. Ed. by Pascal Fontaine. Vol. 11716.
Lecture Notes in Computer Science. Springer, pp. 495-507.

Steedman, Mark (1997). Surface structure and interpretation. Vol. 30. Lin-
guistic inquiry. MIT Press. 1sBN: 978-0-262-69193-2.

Sun, Haitian, Andrew O. Arnold, Tania Bedrax-Weiss, Fernando
Pereira, and William W. Cohen (2020). “Faithful Embeddings for
Knowledge Base Queries.” In: Advances in Neural Information Pro-
cessing Systems 33: Annual Conference on Neural Information Process-

183

184

BIBLIOGRAPHY

ing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual. Ed.
by Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-
Florina Balcan, and Hsuan-Tien Lin.

Tafjord, Oyvind, Bhavana Dalvi, and Peter Clark (2021). “ProofWriter:
Generating Implications, Proofs, and Abductive Statements over
Natural Language.” In: Findings of the Association for Computational
Linguistics: ACL/IJCNLP 2021, Online Event, August 1-6, 2021. Ed.
by Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli.
Vol. ACL/IJCNLP 2021. Findings of ACL. Association for Com-
putational Linguistics, pp. 3621-3634.

Tamari, Ronen, Chen Shani, Tom Hope, Miriam R. L. Petruck, Omri
Abend, and Dafna Shahaf (2020). “Language (Re)modelling: To-
wards Embodied Language Understanding.” In: Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics,
ACL 2020, Online, July 5-10, 2020. Ed. by Dan Jurafsky, Joyce Chai,
Natalie Schluter, and Joel R. Tetreault. Association for Computa-
tional Linguistics, pp. 6268—6281.

Tang, Lappoon R. and Raymond J. Mooney (2000). “Automated Con-
struction of Database Interfaces: Integrating Statistical and Rela-
tional Learning for Semantic Parsing.” In: Joint SIGDAT Conference
on Empirical Methods in Natural Language Processing and Very Large
Corpora, EMNLP 2000, Hong Kong, October 7-8, 2000. Ed. by Hinrich
Schiitze and Keh-Yih Su. Association for Computational Linguis-
tics, pp. 133-141.

Teh, Yee Whye, Michael I. Jordan, Matthew J. Beal, and David M. Blei
(2006). “Hierarchical Dirichlet Processes.” In: Journal of the Ameri-
can Statistical Association 101.476, pp. 1566—1581.

Wang, Adrienne, Tom Kwiatkowski, and Luke S. Zettlemoyer (2014).
“Morpho-syntactic Lexical Generalization for CCG Semantic Pars-
ing.” In: Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing, EMINLP 2014, October 25-29, 2014,
Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the
ACL. Ed. by Alessandro Moschitti, Bo Pang, and Walter Daele-
mans. ACL, pp. 1284-1295.

Wikimedia Foundation (2020). Wiktionary Data Dumps. URL: https :
//dumps.wikimedia.org/enwiktionary/.

Wong, Yuk Wah and Raymond J. Mooney (2006). “Learning for Se-
mantic Parsing with Statistical Machine Translation.” In: Human
Language Technology Conference of the North American Chapter of the
Association of Computational Linguistics, Proceedings, June 4-9, 2006,
New York, New York, USA. Ed. by Robert C. Moore, Jeff A. Bilmes,
Jennifer Chu-Carroll, and Mark Sanderson. The Association for
Computational Linguistics.

— (2007). “Learning Synchronous Grammars for Semantic Parsing
with Lambda Calculus.” In: ACL 2007, Proceedings of the 45th Annual
Meeting of the Association for Computational Linguistics, June 23-30,

https://dumps.wikimedia.org/enwiktionary/
https://dumps.wikimedia.org/enwiktionary/

BIBLIOGRAPHY

2007, Prague, Czech Republic. Ed. by John A. Carroll, Antal van
den Bosch, and Annie Zaenen. The Association for Computational
Linguistics.

Yang, Zhilin, Zihang Dai, Yiming Yang, Jaime G. Carbonell, Ruslan
Salakhutdinov, and Quoc V. Le (2019). “XLNet: Generalized Au-
toregressive Pretraining for Language Understanding.” In: Ad-
vances in Neural Information Processing Systems 32: Annual Confer-
ence on Neural Information Processing Systems 2019, NeurIPS 2019,
December 8-14, 2019, Vancouver, BC, Canada. Ed. by Hanna M. Wal-
lach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc,
Emily B. Fox, and Roman Garnett, pp. 5754-5764.

Yi, Kexin, Chuang Gan, Yunzhu Li, Pushmeet Kohli, Jiajun Wu, Anto-
nio Torralba, and Joshua B. Tenenbaum (2020). “CLEVRER: Colli-
sion Events for Video Representation and Reasoning.” In: 8th In-
ternational Conference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020.

Zelle, John M. and Raymond]. Mooney (1996). “Learning to Parse
Database Queries Using Inductive Logic Programming.” In: Pro-
ceedings of the Thirteenth National Conference on Artificial Intelligence
and Eighth Innovative Applications of Artificial Intelligence Conference,
AAAI 96, IAAI 96, Portland, Oregon, USA, August 4-8, 1996, Volume
2. Ed. by William J. Clancey and Daniel S. Weld. AAAI Press / The
MIT Press, pp. 1050-1055.

Zettlemoyer, Luke S. and Michael Collins (2005). “Learning to Map Sen-
tences to Logical Form: Structured Classification with Probabilistic
Categorial Grammars.” In: UAI ‘05, Proceedings of the 21st Confer-
ence in Uncertainty in Artificial Intelligence, Edinburgh, Scotland, July
26-29, 2005. AUAI Press, pp. 658-666.

— (2007). “Online Learning of Relaxed CCG Grammars for Parsing to
Logical Form.” In: EMNLP-CoNLL 2007, Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning, June 28-30, 2007, Prague,
Czech Republic. Ed. by Jason Eisner. ACL, pp. 678-687.

Zhao, Kai and Liang Huang (2015). “Type-Driven Incremental Seman-
tic Parsing with Polymorphism.” In: NAACL HLT 2015, The 2015
Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, Denver, Colorado,
USA, May 31 - June 5, 2015. Ed. by Rada Mihalcea, Joyce Yue Chai,
and Anoop Sarkar. The Association for Computational Linguistics,

pp- 1416-1421.

185

	Dedication
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	1 Introduction
	1.1 Related work
	1.2 Outline

	2 Architecture overview
	2.1 Background: Markov chain Monte Carlo
	2.2 Probabilistic Worldbuilding Model
	2.3 Probabilistic Worldbuilding from Language
	2.4 Key design choices

	3 Reasoning module
	3.1 Background: Dirichlet processes
	3.2 Model
	3.2.1 Generative process for the theory p(T)
	3.2.2 Generative process for the proofs p(i T)

	3.3 Inference and implementation
	3.3.1 Computing the semantic prior p(x* x)

	3.4 Key design choices and future directions

	4 Language module
	4.1 Background: Hierarchical Dirichlet processes
	4.1.1 Hierarchical Dirichlet processes
	4.1.2 Inferring the source node x
	4.1.3 Infinite hierarchies
	4.1.4 Modeling dependence on discrete structures

	4.2 Model: semantic grammar
	4.2.1 Generative process
	4.2.2 Selecting production rules
	4.2.3 Modeling morphology

	4.3 Inference and implementation
	4.3.1 Training
	4.3.2 Parsing
	4.3.3 Generating sentences

	4.4 Semantic parsing experiments on GeoQuery and Jobs
	4.5 Domain-general grammar and semantic formalism
	4.5.1 Intra-sentential coreference
	4.5.2 Data structure for sets of logical forms
	4.5.3 Training

	4.6 Related work
	4.7 Future work
	4.7.1 Shortcomings of the grammatical framework
	4.7.2 Shortcomings of the grammar
	4.7.3 Modeling context

	5 End-to-end experiments
	5.1 Resolving syntactic ambiguities
	5.2 Reasoning over sizes of sets
	5.3 Question-answering in ProofWriter
	5.4 Question-answering in FictionalGeoQA
	5.5 Summary

	6 Conclusions and future work
	6.1 High-level conclusions
	6.2 Reasoning module: conclusions and future work
	6.3 Language module: conclusions and future work
	6.4 Future of natural language understanding

	Bibliography

